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Abstract

We formulate self-consistency equations for the distribution of links in spin models and of plaquettes in 
gauge theories. This improves upon known mean-field, mean-link, and mean-plaquette approximations in 
such that we self-consistently determine all moments of the considered variable instead of just the first. We 
give examples in both Abelian and non-Abelian cases.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

It is always of interest to think about methods that allow easy extraction of approximate re-
sults, even though the computer power available for exact simulations is growing at an ever 
increasing pace. Mean-field methods are often qualitatively reliable in their self-consistent deter-
mination of the long-distance physics, and have a wide range of applications, with spin models 
as typical examples. For a gauge theory, formulated in terms of the gauge links, however, it is 
questionable what a mean link would mean, because of the local nature of the symmetry. This 
can be addressed by fixing the gauge, but the mean-field solution will then in general depend on 
the gauge-fixing parameter. Nevertheless, Drouffe and Zuber developed techniques for a mean 
field treatment of general Lattice Gauge Theories in [1] and showed that for fixed βd , where β
is the inverse gauge coupling and d the dimension, the mean-field approximation can be consid-
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Fig. 1. The change of variables from spins si (left panel) to links lij (right panel) that leads to the Bianchi identity 
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ered the first term in a 1/d expansion. They established that the mean field approximation can 
be thought of as a resummation of the weak coupling expansion in a particular gauge and that 
there is a first order transition to a strong coupling phase at a critical value of β . Since it becomes 
exact in the d → ∞ limit, this mean field approximation can be used with some confidence in 
high-dimensional models [2].

The crucial problem of gauge invariance was tackled and solved by Batrouni in a series of 
papers [3,4], where he first changed variables from gauge-variant links to gauge-invariant pla-
quettes. The associated Jacobian is a product of lattice Bianchi identities, which enforce that 
the product of the plaquette variables around an elementary cube is the identity element. In the 
Abelian case this is easily understood, since each link occurs twice (in opposite directions) and 
cancels in this product, leaving the identity element. In the non-Abelian case the plaquettes in 
each cube have to be parallel transported to a common reference point in order for the cancel-
lation to work. It is worth noting that in two dimensions there are no cubes so the Jacobian of 
the transformation is trivial and the new degrees of freedom completely decouple (up to global 
constraints).

This kind of change of variables can be performed for any gauge or spin model whose vari-
ables are elements of some group. Apart from gauge theories, examples include ZN -spin models, 
O(2)- and O(4)-spin models and matrix-valued spin models. In spin models, the change of vari-
ables is from spins to links and the Bianchi constraint dictates that the product of the links around 
an elementary plaquette is the identity element. A visualization of the transformation and the 
Bianchi constraint for a 2d spin model is given in Fig. 1.

Let us review the change of variables for a gauge theory [4]. The original variables are links. 
The new ones are plaquettes. Under the action of the original symmetry of the model, the new 
variables transform within equivalence classes and it is possible to employ a mean field analysis 
to determine the “mean equivalence class”. As usual we first choose a set of live variables, which 
keep their original dynamics and interact with an external bath of mean-valued fields. Interac-
tions are generated through the Jacobian, which is a product of Bianchi identities represented by 
δ-functions

δ

( ∏
P∈∂C

UP − 1

)
, (1)

where P denotes a plaquette and ∂C denotes the oriented boundary of the elementary cube C. 
The δ-functions can be represented by a character expansion in which we can replace the char-
acters at the external sites by their expectation, or mean, values. Upon truncating the number 
of representations, this yields a closed set of equations in the expectation values which can be 
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solved numerically. The method can be systematically improved by increasing the number of 
representations used and the size of the live domain.

While this method works surprisingly well, even at low truncation, it determines the expec-
tation value of the plaquette in only a few representations. Here, we propose a method that 
self-consistently determines the complete distribution of the plaquettes (or links) and thus the 
expectation value in all representations. This is due to an exact treatment of the lattice Bianchi 
identities which does not rely on a character expansion. The only approximation then lies in the 
size of the live domain which can be systematically enlarged, as in any mean field method. It is 
worth noting that our method works best for small β and low dimensions: it does not become 
exact in the infinite dimension limit. In this way it can be seen as complementary to the mean 
field approach of [1]. We will also see that the mean distribution approach proposed here actually 
works rather well for both small and large β .

The paper is organized as follows. In section 2 we describe the method in general terms and 
compare it to the mean field, mean link and mean plaquette methods before describing more 
detailed treatments of spin models and gauge theories in sections 3 and 4 respectively. Finally, 
we draw conclusions in section 5.

2. Method

2.1. Mean field theory

Let us for completeness give a very brief reminder of standard mean field theory. Consider for 
definiteness a lattice model with a single type of variables s which live on the lattice sites. The 
lattice action is assumed to be translation invariant and of the form

S = −1

2

∑
i,j

J|i−j |s†
i sj +

∑
i

V (si), (2)

where i, j labels the lattice sites and V (s) is some local potential. Let us now split the original 
lattice into a live domain D and an external bath Dc. The variables {si | i ∈ Dc} all take a constant 
“mean” value s̄. The mean field action then becomes (up to a constant)

SMF = −1

2

∑
i,j∈D

J|i−j |s†
i sj +

∑
i∈D

⎛
⎝V (si) −

∑
j∈Dc

J|i−j |s†
i s̄

⎞
⎠ , (3)

where s̄ is determined by the self-consistency condition that the average value of s in the domain 
D is equal to the average value in the external bath,

〈s〉 =

∫ ∏
i∈D

dsi sie
−SMF

∫ ∏
i∈D

dsi e
−SMF

!= s̄. (4)

Once s̄ has been determined the mean field action (3) can be used to measure other observables 
local to the domain D.
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2.2. Mean distribution theory

To generalize the mean field approach we relax the condition that the fields at the live sites 
interact only with the mean value of the external bath. Instead, the fields in the external bath 
are allowed to vary and take different values distributed according to a mean distribution. The 
self-consistency condition is thus that the distribution of the variables in the live domain equals 
the distribution in the bath.

Consider a real scalar theory for illustration purposes. Starting from the action

S = −2κ
∑
〈i,j〉

φiφj +
∑

i

V (φi) , (5)

with nearest neighbor coupling κ and a general on-site potential V , we expand the field φ ≡
δφ + φ̄ around its mean value φ̄ and integrate out all the fields except the field at the origin 
φ0 = φ̄ + δφ0 and its nearest neighbors, denoted φi , i = 1, . . . , z, where z is the coordination 
number of the lattice. The partition function can then be written

Z =
∫

dφ0 e−V (φ0)+2zκφ̄δφ0

∫ z∏
i=1

dδφi pJ (δφ1, . . . , δφz)e
2κδφ0

∑z
i=1 δφi , (6)

where pJ (δφ1, . . . , δφz) is a joint distribution function for the fields around the origin and ab-
sorbs everything not explicitly depending of δφ0 into its normalization. So far everything is 
exact and, given a way to compute pJ , we could obtain all local observables, for example 〈
φn

0

〉
. Now, pJ is in general not known, so we will have to make some ansatz and determine 

the best distribution compatible with this ansatz. In standard mean field theory the ansatz is 
pJ (δφ1, . . . , δφz) = ∏z

i=1 δ(δφi) and only φ̄ is left to be determined as explained above. In 
the mean distribution approach we will assume that the distribution is a product distribution 
pJ (δφ1, . . . , δφz) =∏z

i=1 p(δφi) and determine p self-consistently to be equal to the distribu-
tion of δφ0, i.e.

p(δφ0) = 1

Z
e−V

(
δφ0+φ̄

)+2zκφ̄δφ0

(〈
e2κδφ0δφi

〉
p(δφi)

)z

, (7)

where 〈f (φ)〉p(φ) = ∫ dφ p(φ)f (φ). The mean value φ̄ has to be adjusted such that the distri-
bution p has zero mean. After p and φ̄ have been determined any observable, even observables 
extending outside the live domain, can be extracted under the assumption that every plaquette is 
distributed according to p. Local observables are given by simple expectation values with respect 
to the distribution p.

This strategy can also be applied to spin and gauge models, taking as variables the links and 
plaquettes respectively, as discussed in the introduction. For a gauge theory, the starting point is 
the partition function in the plaquette formulation

Z =
∫ ∏

P

dUP

∏
C

δ

( ∏
P∈∂C

UP − 1

)
e−S[UP ], (8)

where S[Up] is any action which is a sum over the individual plaquettes, for example the Wilson 
action S[UP ] = β

∑
P (1 − ReTrUP ), or a topological action [5,6] where the action is constant 

but the traces of the plaquette variables are limited to a compact region around the identity.
The difference to the mean plaquette method is that it is not assumed that the external plaque-

ttes take some average value, but rather that they are distributed according to a mean distribution. 
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More specifically, we assume that there exists a mean distribution for the real part of the trace 
of the plaquettes and that the other degrees of freedom are uniformly distributed with respect to 
the Haar measure. Such a distribution must exist and it can be measured for example by Monte 
Carlo simulations. For definiteness let us consider compact U(1) gauge theory with a single pla-
quette P0 as the live domain. The plaquette variables UP = eiθP ∈ U(1) can be represented with 
a single real parameter θP ∈ [0, 2π ] and the real part of the trace is cosθP . Our goal is to obtain 
an approximation to the distribution p

(
cos θP0

)
, or equivalently p

(
θP0

)= Z
(
θP0

)
/Z, where

Z(θP0) = e−S[UP0 ]
∫ ∏

P 	=P0

dUP e−S[UP ]∏
C

δ

( ∏
P ′∈∂C

U ′
P − 1

)
, (9)

Z =
∫

dUP0 Z(θP0). (10)

To obtain a finite number of integrals we now make the approximation that all plaquettes which 
do not share a cube with P0 are independently distributed according to some distribution p(θ). 
Clearly this neglects some correlations among the plaquettes but this can be improved by taking 
a larger live domain. Again, let C denote an elementary cube with boundary ∂C and P denote a 
plaquette. We define

UC ≡
∏

P∈∂C

UP , (11)

C0 ≡ {C | P0 ∈ ∂C}, (12)

PC ≡ {P | ∃C ∈ C0 : P ∈ ∂C, P 	= P0}, (13)

i.e. C0 is the set of all cubes containing P0, and PC is the set of plaquettes, excluding P0, making 
up C0. The sought distribution is then determined by the self-consistency equation

p
(
θP0

)=
e
−S
[
UP0

] ∫ ∏
P∈PC

dUP p (θP )
∏

C∈C0

δ (UC − 1)

∫
dUP0 e

−S
[
UP0

] ∫ ∏
P∈PC

dUP p (θP )
∏

C∈C0

δ (UC − 1)

. (14)

This self-consistency equation is solved by iterative substitution: given an initial guess for the 
distribution p(0)

(
θP0

)
, it is a straightforward task to integrate out the external plaquettes and 

obtain the next iterate p(1)
(
θP0

)
from eq. (14), and to iterate the procedure until a fixed point is 

reached, i.e. p(n+1)
(
θP0

)= p(n)
(
θP0

)
. This is a functional equation, which is solved numerically 

by replacing the distribution p by a set of values on a fine grid in θP or by a truncated expansion 
in a functional basis. In this paper we have chosen to discretize the distribution on a grid. As 
mentioned above, this can be done in a completely analogous way also for spin models and for 
different types of actions. In Fig. 2 we compare the distributions of plaquettes in the 4d U(1)

lattice gauge theory with the Wilson action close to the critical coupling (left panel) and with the 
topological action at the critical restriction δc (right panel), obtained by Monte Carlo on an 84

lattice and by the mean distribution approach with the normalized action eβ cos θP . Below we give 
more details for a selection of models along with numerical results.
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Fig. 2. The distribution of plaquettes angles p(θP ) in the 4d U(1) lattice gauge theory with the Wilson action close to the 
critical coupling (left panel) and with the topological action at the critical restriction δc (right panel) obtained by Monte 
Carlo on an 84 lattice and by the mean distribution approach, together with the Haar measure.

3. Spin models

We will start by applying the method to a few spin models, namely Z2, Z4 and the U(1) sym-
metric XY -model and we will explain the procedure as we go along. Afterwards, only minor 
adjustments are needed in order to treat gauge theories. We will derive the self-consistency equa-
tions in an unspecified number of dimensions although graphical illustrations will be given in 
two dimensions for obvious reasons.

Let us start with an Abelian spin model with a global ZN symmetry. The partition function is 
given by

Z =
∑
{s}

exp

⎛
⎝β
∑
〈i,j〉

Re sis
†
j

⎞
⎠ , (15)

where si = ei 2π
N

ni , ni ∈ {1, · · · , N}(∈ ZN). In the usual mean field approach we would self-
consistently determine the mean value of si by letting one or more live sites fluctuate in an 
external bath of mean valued spins. However, Batrouni [3,7] noticed that by self-consistently 
determining the mean value of the links, or internal energy, Uij ≡ sis

†
j , much better estimates 

of for example the critical temperature could be obtained for a given live domain. Thus, we first 
change variables from spins to links. The Jacobian of this change of variables is a product of 
lattice Bianchi identities, δ (UP − 1), one for each plaquette.1 This can be verified by introduc-

ing the link variables Uij via 
∫

dUij δ
(
Uij sj s

†
i − 1

)
and integrating out the spins in a pedestrian 

manner. Since the Boltzmann weight factorizes over the link variables, all link interactions are in-
duced by the Bianchi identities and hence the transformation trivially solves the one dimensional 
spin chain where there are no plaquettes.2

As mentioned above, each δ-function can be represented by a sum over the characters of all the 
irreducible representations of the group. For ZN this is merely a geometric series, δ (UP − 1) =

1 On a periodic lattice there are also global Bianchi identities but they play no role here.
2 Up to a global constraint in the case of periodic boundary conditions.
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Fig. 3. Two choices of domains of live links for 2d spin models. The live links are denoted by the solid lines, whereas the 
dashed lines denote links which are assumed to take mean values or to be distributed according to the mean distribution. 
The left panel shows the unique domain with one live link and the right panel shows one of many domains with nine live 
links.

1
N

∑N−1
n=0 Un

P . Since only the real part enters in the action it is convenient to reshuffle the sum so 
that we sum only over real combinations of the variables,

δ (UP − 1) ∝ 1 + U
N/2
P δN

even +

⌊
N−1

2

⌋∑
n=1

(
Un

P + U−n
P

)
, (16)

where δN
even is 1 if N is even and 0 otherwise.

The next step is to choose a domain of live links. In this step, imagination is the limiting 
factor; for a given number of live links there can be many different choices and it is not known to 
us if there is a way to decide which is the optimal one. The simplest choice is of course to keep 
only one link alive but in our 2d examples we will make use also of a nine-link domain [7] to 
see how the results improve with larger domains. These two domains are shown in the left (one 
link) and right (nine links) panels of Fig. 3. In the case of a single live link, there are 2(d − 1)

plaquettes and thus there are 2(d − 1) δ-functions of the type in eq. (16).

3.1. Mean link approach

Let us for simplicity consider the case of one live link, denoted U0. The external links, denoted 
Uk by some enumeration ij → k, are fixed to the mean value by demanding that Un

k = U−n
k =

〈U〉n, ∀k 	= 0. Each plaquette containing the live link also contains three external links, and the 
δ-function eq. (16) becomes

δ (UP − 1) ∝ 1 + 〈U〉3N/2 (−1)n0δN
even + 2

⌊
N−1

2

⌋∑
n=1

〈U〉3n cos
2πn0n

N
. (17)

For large N it is best to perform the sum analytically to obtain (for N = 2M)

δ (UP − 1) ∝ 1 − (−1)n0 〈U〉3M

1 + 〈U〉6 − 2 〈U〉3 cos πn0
. (18)
M



8 O. Akerlund, P. de Forcrand / Nuclear Physics B 905 (2016) 1–15
For U(1) we define πn0
M

= θ0 as M → ∞ and since 〈U〉 < 1 we get

δ (UP − 1) ∝
(

1 + 〈U〉6 − 2 〈U〉3 cos θ0

)−1
, (19)

which can efficiently be dealt with by numerical integration. The partition functions for the single 
live link for Z2, Z4 and U(1)3 spin models then become

ZZ2 ∝
∑

U0=±1

eβU0
(

1 + 〈U〉3 U0

)2(d−1)

, (20)

ZZ4 ∝
3∑

n0=0

eβ cos
πn0

2

(
1 + 〈U〉6 (−1)n0 + 2 〈U〉3 cos

πn0

2

)2(d−1)

, (21)

ZU(1) ∝
δ∫

−δ

dθ eβ cos θ
(

1 + 〈U〉6 − 2 〈U〉3 cos θ
)−2(d−1)

. (22)

In the U(1) case, eq. (22) applies both to the standard action (β ≥ 0, δ = π) and to the topological 
action (β = 0, δ ≤ π).

3.2. Mean distribution approach

In the mean distribution approach we sum over the external links assuming they each obey a mean 
distribution p(U), for which a one-to-one mapping to the set of moments {〈Un〉} exists. The 
difference between the two methods becomes apparent when expressed in terms of the moments, 
which are obtained by integrating the distributions of the external links against the δ-function 
given by the Bianchi constraint in eq. (16)∑

{U1,U2,U3}
p(U1)p(U2)p(U3)δ(UP − 1) = 1 +

〈
UN/2

〉3
U

N/2
0 δN

even

+ 2

⌊
N−1

2

⌋∑
n=1

〈
Un
〉3 cos

2πn0n

N
. (23)

Comparing to eq (17), we see that for N ≤ 3 there is only one moment and the two methods are 
thus equivalent, but for larger N the mean link approach makes the approximation 〈Un〉 = 〈U〉n
whereas the mean distribution approach treats all moments correctly.

Thus, for small N we do not expect much difference between the two approaches, and this is 
indeed confirmed by explicit calculations. For U(1), however, there are infinitely many moments 
which are treated incorrectly by the mean link approach and this renders the mean distribution 
approach conceptually more appealing.

By using the Bianchi identities, one link per plaquette can be integrated out, giving

ZU(1) =
δ∫

−δ

dθ eβ cos θ

⎛
⎝ δ∫

−δ

dθ1dθ2 p(θ1)p(θ2)

2∑
n=−2

p(2πn − θ − θ1 − θ2)

⎞
⎠

2(d−1)

. (24)

3 The U(1) Wilson action is defined by δ = π , β 	= 0 and the topological action by δ < π , β = 0.
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Fig. 4. (Left) Mean-field and mean-link approximation in the 2d Ising model for two choices of live domains. (Right) 
Mean-link and mean-distribution in the 2d Z4 model. In the Ising case, mean-link and mean-distribution are equivalent.

Fig. 5. The mean link in the 2d XY spin model as a function of the Wilson coupling β (left panel) and of the restriction 
δ (right panel) from Monte Carlo, from the mean link and from the mean distribution methods.

It is often convenient not to work solely with distributions of single links, but also of multiple 
links, which are defined in the obvious way,

pN(	) ≡
∫ N∏

i=1

dθi p(θi)δ

(
N∑

i=1

θi − 	

)
, (25)

and can efficiently be calculated recursively. The above partition function then simplifies slightly 
to

ZU(1) =
δ∫

−δ

dθ eβ cos θ

⎛
⎝ 2δ∫

−2δ

d	p2(	)

2∑
n=−2

p(2πn − θ − 	)

⎞
⎠

2(d−1)

. (26)

In Figs. 4 and 5 we show results for 2d Z2, Z4 and U(1) spin models, the latter for the 
Wilson action S = β

∑
〈ij〉 Re sis

†
j and the topological action eS =∏〈ij〉 	 

(
δ − |θi − θj |

)
. Note 

the remarkable accuracy of the mean distribution approach in the latter case, even when there is 
only one live link.
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Fig. 6. The mean plaquette in the 4d U(1) gauge theory as a function of the Wilson coupling β (left panel) and the 
restriction δ (right panel) from Monte Carlo, and from the mean plaquette and the mean distribution methods.

4. Gauge theories

To extend the formalism from spin models to gauge theories, we merely have to change from 
links and plaquettes to plaquettes and cubes. The partition function for a U(1) gauge theory 
analogous to eq. (22) becomes

ZU(1) =
δ∫

−δ

dθ eβ cos θ
(

1 + 〈U〉10 − 2 〈U〉5 cos θ
)−2(d−2)

(27)

in the mean plaquette approach and

ZU(1) =
δ∫

−δ

dθ eβ cos θ

⎛
⎝ 4δ∫

−4δ

d	p4(	)

3∑
n=−3

p(2πn − θ − 	)

⎞
⎠

2(d−2)

(28)

in the mean distribution approach. Results for d = 4 are shown in Fig. 6 for the Wilson action 
(left panel) and for the topological action (right panel).

Another nice feature of the mean distribution approach is that other observables become avail-
able, like for instance the monopole density in the U(1) gauge theory, under the assumption that 
each plaquette is distributed according to the mean distribution p. A cube is said to contain q
monopoles if the sum of its outward oriented plaquette angles sums up to 2πq . Given the distri-
bution p(θ) of plaquette angles the (unnormalized) probability pq of finding q monopoles in a 
cube is given by

pq =
∫ 6∏

i=1

dθi p(θi)δ

(
6∑

i=1

θi − 2qπ

)
, q ∈ {−2,−1,0,1,2} (29)

and the monopole density nmonop is given by

nmonop = 2p1 + 4p2

p0 + 2p1 + 2p2
. (30)

In Fig. 7 we show the monopole densities for 4d U(1) gauge theory as obtained by Monte Carlo 
simulations and by the mean distribution approach. Note that the monopole extends outside of 
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Fig. 7. The monopole density in the 4d U(1) gauge theory as a function of the Wilson coupling β (left panel) and the 
restriction δ (right panel) from Monte Carlo and the mean distribution method.

the domain of a single live plaquette, which was used to determine the mean distribution p. The 
left panel shows results for the Wilson action and in the right panel the topological action is used.

We can also treat SU(2) Yang–Mills theory without much difficulty. For the mean plaquette 
approach we need the character expansion of the δ-function

δ (UC − 1) ∝
∞∑

n=0

(n + 1)
sin(n + 1)θC

sin θC

, (31)

where θC is related to the trace of the cube matrix UC through TrUC = 2 cos θC .
In the mean plaquette approach we again make the substitution UC → U0 〈U〉5 in the case of 

a single live plaquette. The above delta function then becomes

δ
(
U0 〈U〉5 − 1

)
∝

∞∑
n=0

〈U〉5n (n + 1)
sin(n + 1)θ0

sin θ0

∝
(

1 + 〈U〉10 − 2 cos θ0 〈U〉5
)−2

. (32)

For SU(2), the analogue of a restriction δ on the plaquette angle is a restriction on the trace of the 
plaquette matrix to the domain [2α, 2], where −1 ≤ α < 1. If we define a0 ≡ 1

2 TrU0 = cos θ0 the 
approximate SU(2) partition function can be written4 in a way very similar to the U(1) partition 
function (27)

ZSU(2) =
1∫

α

da0

√
1 − a2

0 eβa0
(

1 + 〈U〉10 − 2 〈U〉5 a0

)−4(d−2)

, (33)

from which 〈U〉 can be easily obtained as a function of α and β .
The mean distribution approach works in a completely analogous way as for U(1), but let us 

go through the details anyway, since there are now extra angular variables to be integrated out. 
The starting point is again an elementary cube on the lattice. Five of the cubes faces have their 
trace distributed according to the distribution p(a0) and we want to calculate the distribution of 

4 The SU(2) Wilson action is defined by α = −1, β 	= 0 and the topological action by α > −1, β = 0.
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the sixth face compatible with the Bianchi identity UC = 1. In other words, taking U6 as the live 
plaquette, we want to evaluate

p̃(a0,6) ∝
∫

d�6

∫ 5∏
i=1

{
dUi p

(
a0,i

)}
δ

(
6∏

i=1

Ui − 1

)∣∣∣∣∣
TrU6=2a0,6

, (34)

where we have decomposed U6 = �6Û6�
†
6 with Û6 a diagonal SU(2) matrix with trace 2a0,6, 

i.e. �6 is the angular part of U6. To facilitate the calculation we recursively combine the product 
of four of the plaquette matrices into one matrix, U1U2U3U4 → Ũ , by pairwise convolution of 
distributions (with p1(a0) ≡ p(a0))

p2i (ã0) ∝ 1√
1 − ã2

0

∫
d�̃dU1dU2pi

(
a0,1
)
pi

(
a0,2
)
δ
(
U1U2Ũ

† − 1
)∣∣∣∣

TrŨ=2ã0

∝ 1√
1 − ã2

0

1∫
αi

da0,1

√
1 − a2

0,1da0,2

√
1 − a2

0,2 pi(a0,1)pi(a0,2)

×
1∫

−1

d cos θ12 δ

(
ã0 − a0,1a0,2 −

√
1 − a2

0,1

√
1 − a2

0,2 cos θ12

)

= 1√
1 − ã2

0

1∫
αi

da0,1da0,2 pi

(
a0,1
)
pi

(
a0,2
)
χ|ã0−a0,1a0,2|≤

√
1−a2

0,1

√
1−a2

0,2
, (35)

where α1 ≡ α, α2i = max(2αi − 1, −1) and χA is the characteristic function on the domain A. 
The domain of integration in the (a0,1, a0,2)-plane is simply connected with parametrizable 
boundaries and comes from the condition that the argument of the delta function has a zero 
for some cos θ12 ∈ [−1, 1]. We then obtain for the sought distribution

p̃(a0,6) ∝
∫

d�6

∫
dU5 p

(
a0,5
)∫

dŨ p4 (ã0) δ
(
ŨU5U6 − 1

)∣∣∣∣
TrU6=2a0,6

, (36)

where it is now easy to integrate out Ũ = U
†
6 U

†
5 . If we denote by θ56 the angle between U5 and 

U6, the angular integral over �6 contributes just a multiplicative constant and we obtain

p̃(a0,6) ∝
1∫

α

da0,5

√
1 − a2

0,5

1∫
−1

d cos θ56 p(a0,5)p4

×
(

a0,5a0,6 −
√

1 − a2
0,5

√
1 − a2

0,6 cos θ56

)
, (37)

which can be evaluated numerically in a straightforward manner. In the end, since there are 
2(d − 2) cubes sharing the plaquette P0, and since the a priori probability for P0 to have trace 

2a0 is 
√

1 − a2eβa0 , with respect to the uniform measure, we obtain for one live plaquette
0
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Fig. 8. The average plaquette for the SU(2) gauge theory as a function of the Wilson coupling β (left panel) and the 
restriction α (right panel) from Monte Carlo simulation, the mean plaquette method and the mean distribution method. 
For comparison the mean link result obtained with the formalism in [1] is also shown in the left panel.

ZSU(2) =
1∫

α

da0

√
1 − a2

0p(a0) =
1∫

α

da0

√
1 − a2

0eβa0 p̃(a0)
2(d−2)

=
1∫

α

da0

√
1 − a2

0eβa0

×
⎛
⎝ 1∫

α

dx
√

1 − x2p(x)

1∫
−1

d cos θ p4

(
a0x −

√
1 − a2

0

√
1 − x2 cos θ

)⎞⎠
2(d−2)

,

(38)

which also defines the functional self-consistency equation for p(a0).
Results for the Wilson and topological actions can be seen in Fig. 8 in the left and right panels, 

respectively.5

For SU(3) one can proceed in an analogous manner, only the angular integrals are now more 
involved and the trace of the plaquette depends on two diagonal generators so the resulting dis-
tribution function needs to be two dimensional.

4.1. Glueball mass

Other non-local observables which can be estimated once the mean distribution has been 
determined are glueball masses. Since the glueballs couple to the plaquette, we can approximate 
the leading order behavior of the plaquette–plaquette, and thus glueball, correlator by calculating 
the correlation along a straight tube of cubes, depicted in the left panel of Fig. 9, where all 
plaquettes obey the mean distribution and the interactions are due to the Bianchi identities on 
the cubes. This reduces the problem to a one-dimensional one, and we can define a transfer 

5 Our results for the mean plaquette approach differ a little from those of [3], because we imposed the Bianchi constraint 
exactly rather than truncating its character expansion. Surprisingly, truncation gives better results.
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Fig. 9. Left: A tube of mean plaquettes to estimate the correlation between TrU0 and TrUt . The glueball mass is defined 
from the eigenvalues of the transfer matrix between Ui and Ui+1, defined in the text. Right: The masses of the ground 
state m0 and the first excited state m1 from the mean distribution approach together with the leading order strong coupling 
expansion for the groundstate mass, for SU(2) with the Wilson action.

matrix Ti,i+1 between the plaquettes Ui and Ui+1, whose eigenvalues will give estimates of the 
groundstate and excited states glueball masses. For SU(2), the transfer matrix is given by

T
(
a0,i , θi;a0,i+1, θi+1

)

=

N︷ ︸︸ ︷√
p(a0,i )

√
1 − a2

0,i sin θida0,idθip(a0,i+1)

√
1 − a2

0,i+1 sin θi+1da0,i+1dθi+1

×
∫ 4∏

j=1

{
dUi p

(
a0,i

)}
δ

⎛
⎝ 4∏

j=1

UjUiUi+1 − 1

⎞
⎠

=Np4(a0,ia0,i+1 − cos(θi − θi+1)

√
(1 − a2

0,i )(1 − a2
0,i+1). (39)

The square root of the measure factors da0 and dθ are to be understood in such a way that 
when a discrete integration rule is used to make T finite dimensional, the square root of the 
integration weights should be included in T . It is then straightforward to extract the eigenvalues 
λ0 > λ1 > · · · of T and to define the masses

mi = − log
λi+1

λ0
. (40)

In the right panel of Fig. 9 we show the first two masses, together with the leading order strong 
coupling expansion for the ground state mass msc = −4 log I1(β)

I2(β)
[8], as a function of β for the 

Wilson action. We find that in the strong coupling region, the mean distribution approach yields 
a result very close to the strong coupling expansion, and that the minimum mass obtainable is 
around m0 ≈ 3.5 in units of the lattice spacing. This means that the maximum correlation length 
which can be captured is around 0.3 lattice spacings. This is not too surprising, since only a single 
live plaquette was used to obtain these results. As usual, a larger live domain will systematically 
improve these results.
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5. Conclusions

It has been shown before [7] that determining a self-consistent mean-link gives a much better 
approximation than the traditional mean-field. Furthermore, the symmetry-invariant mean link 
can be generalized to a mean plaquette in gauge theories [3]. Here, we have shown that the 
approximation can be further improved by determining the self-consistent mean distribution of 
links or plaquettes. The extension from a self-consistent determination of the symmetry invariant 
mean link or plaquette to a self-consistent determination of the entire distribution of links and 
plaquettes is shown to improve upon the results obtained by Batrouni in his seminal work [3,4]. 
Especially appealing is the fact that the mean distribution approach yields a non-trivial result for 
the whole range of couplings and not just in the strong coupling regime, which is sometimes the 
case for the mean link/plaquette approach, or just in the weak coupling regime which is accessible 
to the mean field treatment of [1]. Indeed, the mean distribution approach gives a nearly correct 
answer when the correlation length is not too large, and by enlarging the live domain the exact 
result is approached systematically for any value of the coupling. As the domain of live variables 
is enlarged, the mean link/plaquette and the mean distribution results tend to approach each other 
but since determining the full mean distribution does not require much additional computer time 
it should always be desirable to do so.

Furthermore, another appealing feature of the mean distribution approach is that once the 
distribution has been self-consistently determined, other local observables, like the vortex or 
monopole densities, or even the glueball mass become readily available. Finally, the whole ap-
proach applies to non-Abelian models as well.
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