
Theoretical Computer Science 410 (2009) 1093–1098

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

An approximation algorithm to the k-Steiner Forest problem
Peng Zhang a,∗, Mingji Xia b
a School of Computer Science and Technology, Shandong University, Jinan 250101, China
b State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences, P.O. Box 8718, Beijing, 100080, China

a r t i c l e i n f o

Keywords:
k-Steiner Forest
Greedy
Set k-cover
Approximation algorithm

a b s t r a c t

Given a graph G, an integer k, and a demand set D = {(s1, t1), . . . , (sl, tl)}, the k-Steiner
Forest problem finds a forest in graph G to connect at least k demands in D such that
the cost of the forest is minimized. This problem was proposed by Hajiaghayi and Jain in
SODA’06. Thereafter, using a Lagrangian relaxation technique, Segev et al. gave the first
approximation algorithm to this problem in ESA’06, with performance ratio O(n2/3 log l).
We give a simpler and faster approximation algorithm to this problem with performance
ratio O(n2/3 log k) via greedy approach, improving the previously best known ratio in the
literature.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Given a graph G = (V , E)with costs on edges, an integer k > 0, and a demand set D = {(s1, t1), . . . , (sl, tl)}, where each
demand (a.k.a. source–sink pair) is distinct but vertices in different demands are not required to be distinct, the k-Steiner
Forest (k-Forest for short) problem asks to find a forest in graph G to connect at least k demands in D, such that the cost of
the forest is minimized. k-Forest was proposed by Hajiaghayi and Jain when they studied the Prize-collecting Generalized
Steiner Tree problem in [9].
If we remove the given parameter k in k-Forest, then we get the classical Steiner Forest problem. The currently best

approximation ratio for Steiner Forest is 2(1−1/l), due to Agrawal, Klein and Ravi [1] and Goemans andWilliamson [6]. On
the other hand, k-Forest also captures the classical rooted k-MST and rooted k-Steiner Tree problems. If in k-Forest we set
D = {(r, v) : ∀v ∈ V −{r}}where r is the given vertex used as the root, then k-Forest reduces to the rooted k-MST problem.
Similarly, if in k-Forest we set D = {(r, v) : ∀v ∈ R − {r}} where R is the set of vertices required to be connected and r is
the given vertex used as the root, then k-Forest reduces to the rooted k-Steiner Tree problem. Garg [5] showed that in fact
the unrooted k-MST problem is equivalent to the rooted k-MST problem, and gave a 2-approximation algorithm to k-MST,
which is also the currently best known approximation to k-MST. On the other hand, both k-MST and k-Steiner Tree have
been studied using the Lagrangian relaxation technique by Chudak, Roughgarden and Williamson [3].
Although the basic Steiner Forest problem [1,6] and the Prize-collecting Steiner Forest problem [9] (which is called the

Prize-collecting Generalized Steiner Tree problem therein) can be well approximated, it is difficult to approximate k-Forest.
Hajiaghayi and Jain [9] proved that if k-Forest can be approximated within α, then the Densest k-Subgraph problem can
be approximated within α2. On the other hand, the best known performance ratio for Densest k-Subgraph is O(n1/3−ε) for
some small ε > 0 and the improvement is known to be difficult [4,10]. It is pointed out in [9] that obtaining performance
ratio better than O(n1/6−ε) for k-Forest requires substantially new ideas.
Segev et al. [12] gave the first non-trivial approximation algorithm to k-Forest, with performance ratio O(n2/3 log l). Their

approach is the Lagrangian relaxation technique. In fact, since the seminar work of Jain and Vazirani [8] for the Facility

∗ Corresponding author.
E-mail addresses: algzhang@gmail.com (P. Zhang), xmjljx@gmail.com (M. Xia).

0304-3975/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2008.10.033

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81113014?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:algzhang@gmail.com
mailto:xmjljx@gmail.com
http://dx.doi.org/10.1016/j.tcs.2008.10.033

1094 P. Zhang, M. Xia / Theoretical Computer Science 410 (2009) 1093–1098

Location and the k-Median problems, in which the Lagrangian relaxation technique was introduced to the design and
analysis of approximation algorithm at the first time, the study about approximating the prize-collecting version and k-
version of many optimization problems has attracted more attention (see, for instance, [3,8,11]).

1.1. Our results and techniques

We give a simple greedy approximation algorithm to this problem with performance ratio O(n2/3 log k), improving the
previously best known ratio O(n2/3 log l) [12]. The optimal solution to k-Forest consists of several disjoint trees, and thus
is a forest. Intuitively, a ‘‘good’’ tree in a solution to k-Forest connects some demands by as small as possible cost. In other
words, to find a cost-effective tree connecting some demands is a core problem to k-Forest. The cost-effectiveness of a tree
in [12] (which is referred to as the density of a tree therein) is defined as the ratio of the cost of the tree and the number
of demands connected by this tree. Segev et al. gave a constructive method to find a tree with cost-effectiveness not much
larger than that of the most cost-effective tree, and the cost of the found tree not exceeding ∆ much more, where ∆ is a
budget guessed by means of exhaustive searching such that OPT ≤ ∆ ≤ 2 ·OPT , giving OPT as the optimum of the instance
of k-Forest. Then they gave a greedy prize-collecting algorithm for the Prize-collecting Steiner Forest problem. Since the
prize-collecting algorithm possesses the so-called Lagrangian Multiplier Preserving [7] property, k-Forest can be solved by
reducing to Prize-collecting Steiner Forest in the framework of Lagrangian relaxation.
We consider k-Forest in the framework of Set k-Cover, which is the k-version of the Set Cover problem. Formally, Set

k-Cover finds a sub-family of the given set family S = {S1, S2, . . . , Sm} to cover at least k elements in the given grounding
set U = {e1, e2, . . . , en}. Slavík [13] gave a greedy approximation algorithm for Set k-Cover with performance ratio Hk,
where Hk = 1 + 1

2 +
1
3 + · · · +

1
k is the k-th harmonic number. The greedy algorithm for Set k-Cover finds the most cost-

effective set in each iteration to cover some elements still remaining in U , until at least k elements are covered. In [13] the
cost-effectiveness of a set S is carefully defined as the ratio of the cost of S and the number of elements validly covered by S.
Given k′ being the number of elements that need to be covered currently, the number of elements validly covered by S is k′
if S covers more than k′ new elements, and is the number of new elements covered by S otherwise.
We first prove a coupling lemma which shows that the greedy algorithm coupled with an α-approximation algorithm

for finding a cost-effective covering set gives an αHk-approximation to the Set k-Cover-like problem. This is very useful
for the problems that can be cast in the framework of Set k-Cover but it is not known how to find the most cost-effective
covering set in polynomial time. One can see that k-Forest can be cast in the framework of Set k-Cover. We define the cost-
effectiveness of a covering tree T as the ratio of the cost of T and the numbers validly covered by T , the same as that in
[13]. Our newly defined cost-effectiveness of covering tree is different from that in [12]. Then, by implanting the newly
defined cost-effectiveness into the constructive method proposed in [12], we give a polynomial time α-approximation
algorithm to find a cost-effective covering tree. This eventually leads to an αHk-approximation algorithm to k-Forest, where
α = O(n2/3). Our global approach is greedy, which is completely different from that (the Lagrangian relaxation technique)
of [12]. Although our algorithm relies on the constructive method proposed therein, we would like to point out that the
coupling lemma and the constructive method armed with our cost-effectiveness of covering tree are the key to the success
of our algorithm. Our algorithm is of two nested loops and is simpler and faster, while the algorithm in [12] has three nested
loops. More importantly, our method gives an improved performance ratio to the problem k-Forest. We believe that our
method is of independent interest and may find more applications.

2. The coupling greedy algorithm for set k-cover

Slavík [13] proposed a greedy algorithm for the Set k-Cover problem, which is denoted by algorithm A in our setting.
Given the grounding set U = {e1, e2, . . . , en} and set family S = {S1, S2, . . . , Sm} with each set S ∈ S having cost c(S),
algorithmA repeatedly finds the most cost-effective set Sj in each iteration j, until the found sets cover at least k elements
in U . Denote by Cj the set of covered elements at the beginning of iteration j. For a set S ∈ S, define new(S) = |S \Cj|, that is,
new(S) is the number of elements newly covered by set S. Suppose that at the beginning of iteration j the number of elements
needs to be covered is k′. Then the cost-effectiveness of S is defined as cost-efv(S) = c(S)

val(S) , where val(S) = min{k
′, new(S)}

is the number of elements validly covered by S. Note that in the traditional greedy algorithm (see [14], page 16) for Set
Cover, the cost-effectiveness of a set S is defined as cost-efn(S) = c(S)

new(S) . We remind the readers that the function new(·)
and val(·) are defined with respect to the set of elements currently covered byA.
If the most cost-effective set S can be found in polynomial time, then algorithm A gives an Hk-approximation for Set

k-Cover. There are many problems which can be cast in the framework of Set k-Cover. But for these problems the most
cost-effective set cannot be found (or it is not known how to find it) in polynomial time, usually due to that the family of
sets is of exponential size. This motivates us to couple the greedy algorithmAwith an approximation algorithm to find the
most cost-effective covering set.

Lemma 1 (The Coupling Lemma). If the greedy algorithm A for Set k-Cover is coupled with an algorithm H , where H in
polynomial time finds an α-approximation to the most cost-effective covering set S∗j in each iteration j of A, then A outputs
an αHk-approximation to the problem Set k-Cover in polynomial time.

P. Zhang, M. Xia / Theoretical Computer Science 410 (2009) 1093–1098 1095

Fig. 1. An example illustrating the sum of val(Ou) is greater than or equal to k′ .

Proof. Without loss of generality, suppose that by reordering the elements in U , the elements covered by algorithm A in
the executing process ofA are e1, e2, . . . , ek̂, breaking ties arbitrarily. Notice that k̂ ≥ k. Before giving the detailed analysis,
we first introduce some notations. Denote by OPT the optimum of Set k-Cover, and let O = {O1, . . . ,Or} be an optimal
solution. Denote by Aj the set found by algorithm H in the j-th iteration of A. For each element ei covered by Aj, define
price(i) = c(Aj)

val(Aj)
. Then we know that A(I) =

∑
j c(Aj) =

∑k
i=1 price(i), where A(I) is the value of the approximate solution

found byA.
We argue that for every 1 ≤ i ≤ k, price(i) ≤ α

k−i+1OPT . This will give the performance ratio αHk for the coupled greedy
algorithmA. Recall that k′ is the number of elements that need to be covered at the beginning of iteration j. For clarity, let
aj = val(Aj). Since the prices are the same for all elements ek−k′+1, . . . , ek−k′+aj , and

1
k′ ≤

1
k−i+1 for each i ranging from

k − k′ + 1 to k − k′ + aj, we only need to show that price(i) ≤ α
k′OPT , where i = k − k

′
+ 1 is the ‘‘first’’ element covered

by Aj. We already have that price(i) =
c(Aj)
val(Aj)

≤ α ·
c(S∗j)

val(S∗j)
because Aj is an α-approximation to S∗j . By the optimality of S

∗

j ,
c(S∗j)

val(S∗j)
≤

c(Ou)
val(Ou)

for each set Ou ∈ O satisfying that val(Ou) 6= 0. So we get

c(S∗j)

val(S∗j)
≤

∑
Ou∈O : val(Ou)6=0 c(Ou)∑
Ou∈O : val(Ou)6=0 val(Ou)

≤
OPT
k′
,

where the last inequality holds since
∑
Ou∈O : c(Ou)6=0 val(Ou) ≤ OPT , and at the beginning of iteration j, there are at least k

′

elements in (
⋃
Ou∈O Ou) \ Cj (see Fig. 1), resulting in

∑
Ou∈O : val(Ou)6=0 val(Ou) ≥ k

′. The proof is completed. �

We give two remarks about the coupling lemma. First, the function val(·) plays an important role in the proof of the
coupling lemma, since we define price(i) = c(Aj)

val(Aj)
for every element i covered by Aj, and this, in turn, guarantees the

performance ratio αHk for the coupled greedy algorithm. Secondly, for the problem that can be cast into the framework
of Set k-Cover, the coupling lemma gives a general framework to obtaining an αHk-approximation to the problem.
Our proof of the coupling lemma is based on the proof of the greedy algorithm for Set Cover in [14], and is different

to the original proof of Slavík [13]. We should point out that Alfandari and Paschos [2] considered coupling the classical
greedy algorithm for Set Cover with an approximation algorithm of finding an approximate covering set with respect to
cost-effectiveness cost-efn(S), instead of cost-efv(S).

3. Approximating k-forest

3.1. Finding cost-effective covering tree

Then we turn back to the k-Forest problem. k-Forest can be viewed as a Set k-Cover-like problem in which the grounding
set U = {d1, d2, . . . , dl}where each di = (si, ti) denotes a demand, and the set family S is the collection of all such edge set
Ej that the edges in Ej form a tree in Gmet some demands from U . In general S has exponential size.
In the framework of Set k-Cover for k-Forest, one of the key issues is to find the most cost-effective covering tree.

Since there are exponential trees in G, it is obvious that one can not hope to find the most cost-effective covering tree
by enumerating them one by one. Then we try to find an approximately optimal covering tree. Denote by Fj the collection

1096 P. Zhang, M. Xia / Theoretical Computer Science 410 (2009) 1093–1098

of trees selected by the algorithm at time j (actually, at the beginning of iteration j), and by Rj the set of demands not yet
connected at time j. Let Cj = D\Rj be the set of demands already connected by the algorithm at this point. For succinctness,
when the time j is clear in the context, Fj, Cj, Rj are also written as F , C, R, respectively. For a tree T in G, we define new(T) to
be the number of demands in R connected by T , similarly to that in the setting of Set k-Cover. Since the goal is to connect at
least k demands in D, given the already connected demands set C and selected tree collection F , adding T to F may connect
more than k demands. The quantity that is beyond k is useless for the goal. Under this consideration, the function val(·) is
defined as

val(T) = min{k′, new(T)},

where k′ = k − |C |. That is, val(T) is the number of demands validly connected by T . Then the cost-effectiveness of tree T
is defined as

cost-efv(T) =
c(T)
val(T)

.

The problem of finding the most cost-effective covering tree is to find a tree T such that cost-efv(T) is minimized over all
possible trees in G. Similarly, we also define the cost-effectiveness of a tree T with respect to the function new(·) as

cost-efn(T) =
c(T)
new(T)

.

Given the unconnected demand set R, suppose that T ∗ is themost cost-effective covering treewith respect to the function
cost-efv(·). For clarity, T ∗ is also called the optimal covering tree. Segev et al. [12] gave a constructive method to find a
covering tree, which is approximately optimal with respect to the function cost-efn(·) (which is referred to as the density
function therein). We adapt their method to make it fit our settings, that is, to find a covering tree which is approximately
optimal with respect to the function cost-efv(·). Before giving the algorithm, we first prove Lemma 2. We state the rooted
quota-MST problem here, which is used in the proof of Lemma 2. Given a graph G with costs on edges and each vertex
v ∈ V (G) having profit(v) ∈ Z+, a vertex r ∈ V (G), and a nonnegative quota Q , the rooted quota-MST problem asks to
find a spanning tree T̃ withminimized cost satisfying

∑
v∈V (̃T) profit(v) ≥ Q . If each profit(v) is polynomially bounded, this

problem can be reduced to the k-MST problem and thus can be approximated within factor 2 by the work of Garg [5]. In
Lemma 2, T ∗ is an optimal covering tree and is not known in advance.

Lemma 2. Given q = val(T ∗), an arbitrary vertex r ∈ T ∗, and an arbitrary tree T that contains r, then an augmented tree
T+ ⊇ T can be constructed in polynomial time such that at least one of the two properties

(1) |V (T+)| ≥ |V (T)| +
√
q/2, and

(2) val(T+) ≥ 3q/8

holds.

Proof. Suppose that new(T) ≥ q/2. If new(T) ≤ k′, then we have val(T) = min{k′, new(T)} = new(T) ≥ q/2. If
new(T) > k′, since q = val(T ∗) = min{k′, new(T ∗)} ≤ k′, we know that val(T) = min{k′, new(T)} = k′ ≥ q. So T
itself is a tree satisfying property (2) in the lemma and we are done.
So in the following we deal with the case new(T) < q/2.
If |V (T ∗)\V (T)| ≥

√
q/2 then one can construct a quota spanning tree T̃ rooted at r by approximating the rooted quota-

MST instance on G, in which profit(v) = 1 for all v ∈ V (G) \ V (T), profit(v) = 0 for all vertices in V (T), and the quota is
√
q/2. Now T+ = T ∪ T̃ is a feasible tree satisfying the property (1) in the lemma. Such a tree T̃ must exist, since T ∗ itself is
a feasible quota spanning tree rooted at r .
Otherwise we have |V (T ∗) \ V (T)| <

√
q/2. Once again, a quota spanning tree T̃ rooted at r can be constructed by

approximating the rooted quota-MST instance on G, in which profit(v) for all v ∈ V (G) \ V (T) is equal to the number of
demands in R consisting of v and an additional vertex from T , all vertices in V (T) have zero profit, and the quota is 3q/8.
We argue that such a spanning tree T̃ must exist. Denote by D(T) the set of demands covered by a tree T . For 0 ≤ j ≤ 2,

define set Nj = {(si, ti) ∈ R ∩ D(T ∗) : |{si, ti} ∩ V (T)| = j}, that is, Nj is just the set of demands newly covered by T ∗ with
exactly j endpoints in V (T). Since even if all the vertices in V (T ∗) \ V (T) form demands newly covered by T ∗, there are at
most

(
|V (T∗)\V (T)|

2

)
≤
(
b
√
q/2c
2

)
≤ q/8 new demands entirely in V (T ∗) \ V (T), eventually we have that |N0| ≤ q/8. Notice that

new(T ∗) ≥ min{k′, new(T ∗)} = val(T ∗) = q and |N2| ≤ new(T) < q/2. So we have

|N1| = new(T ∗)− |N0| − |N2| ≥ q− |N0| − |N2| ≥ q−
q
8
−
q
2
=
3q
8
.

Since
∑

v∈V (T∗)\V (T) profit(v) ≥ |N1| ≥ 3q/8, T
∗ itself is a feasible tree to the rooted quota-MST instance.

Now we get a tree T+ = T ∪ T̃ with new(T+) ≥ 3q/8. Again, if new(T+) ≤ k′ then we have val(T+) =
min{k′, new(T+)} = new(T+) ≥ 3q/8. If new(T+) > k′ then we have val(T+) = min{k′, new(T+)} = k′ ≥ q since
q = val(T ∗) = min{k′, new(T ∗)} ≤ k′. So, we always have that val(T+) ≥ 3q/8 and hence T+ satisfies the property (2) in
the lemma.

P. Zhang, M. Xia / Theoretical Computer Science 410 (2009) 1093–1098 1097

The lemma follows sincewe can solve the two instances separately and preferably pick the output on the second instance
as the final output when the both instances are feasible, although T ∗ is unknown to us. �

We shall point out that although in the proof of Lemma 2we adapt the constructive method in [12], our result val(T+) ≥
3q/8 in Lemma 2 is stronger than that in [12], which is crucial to the success of our whole algorithm.

Algorithm B

input: Graph G, integer k′ > 0, and the uncovered demands set R.
output: A tree T covering some demands in R.

(denote by T ∗ an optimal covering tree)
(1) guess q = val(T ∗) from {1, . . . , k′} and an arbitrary vertex r ∈ T ∗ from V (G)
(2) if q < n2/3 then return the shortest path connecting any demand in R and stop
(else we have that q ≥ n2/3)

(3) let T ← {r}
(4) repeatedly extend T by Lemma 2 until val(T) ≥ 3q/8
(5) return T

For algorithmB we have Lemma 3.

Lemma 3. In polynomial time, algorithm B finds a covering tree T satisfying that cost-efv(T) ≤ α · cost-efv(T ∗), where
α = O(n2/3) and T ∗ is an optimal covering tree with respect to the function cost-efv(·).

Proof. Suppose that algorithm B guesses the right q = val(T ∗) and r ∈ T ∗. If q < n2/3, the algorithm returns the shortest
path connecting a new demand in R as the covering tree T . Obviously in this case val(T) = 1. So we get

cost-efv(T) =
c(T)
val(T)

= c(T) ≤ c(T ∗) ≤ n2/3 ·
c(T ∗)
q
= α · cost-efv(T ∗),

where the first inequality holds since T ∗ connects at least one new demand.
Next we consider the case q ≥ n2/3. By the constructive proof of Lemma 2, we know that T is extended by approximating

the problem rooted quota-MST, which can be approximated with factor 2 by the work of [5]. Before new(T) ≥ 3q/8, at least
√
q/2 new vertices are added to T in each iteration of step 4. So the number of iterations is at most n

√
q/2+1 ≤ 2n

2/3
+1, and

T is extended at most 2n2/3+ 1 times from the trivial tree {r}, whose cost is zero. Thus we have c(T) ≤ (2n2/3+ 1) · 2c(T ∗).
By step 4 of the algorithm, we have

cost-efv(T) =
c(T)
val(T)

≤
c(T)
3q/8

≤
8
3
(2n2/3 + 1)

2c(T ∗)
q
= α · cost-efv(T ∗)

provided q ≥ n2/3.
Finally, trying all the possible 1 ≤ q ≤ k′ and r ∈ V (G) and picking the tree with minimal cost-efv(·) completes the

proof. �

3.2. The greedy algorithm for k-forest

Now we are ready to deduce the greedy algorithm for k-Forest. The algorithm is given as algorithm C. In each iteration
of algorithm C, the algorithm finds an approximate covering tree T and adds T to F , until at least k demands have been
connected. At last, the algorithm outputs F as the solution. As before, the notation k′ denotes the number of demands that
need to be covered at the beginning of iteration j.

Algorithm C

input: Graph G, demand set D = {(s1, t1), . . . , (sl, tl)}, integer k > 0.
output: A collection of trees F that connects at least k demands in D.

(1) let F ← ∅, C ← ∅, R← D
(2) while k′ = k− |C | > 0 do
(3) find a covering tree T by algorithmB
(4) let F ← F ∪ {T }, C ← C ∪ D(T), R← R \ D(T)
(5) end
(6) return F

In step 4 of algorithm C, the notation D(T) denotes the set of demands connected by T . For algorithm C, we have the
main theorem of this paper.

Theorem 4 (The Main Theorem). k-Forest can be approximated within factor O(n2/3 log k) in polynomial time.

1098 P. Zhang, M. Xia / Theoretical Computer Science 410 (2009) 1093–1098

Proof. By Lemma 3, in each iteration of algorithm C an approximate covering tree T is found in polynomial time, such that
cost-efv(T) ≤ α · cost-efv(T ∗) where α = O(n2/3) and T ∗ is an optimal covering tree at this point. By the coupling lemma,
algorithm C yields an αHk-approximation to k-Forest. Also, algorithm C is of polynomial time, since there are at most k
iterations in total. The theorem follows. �

It is clear that algorithm C has at most k iterations. In each iteration of algorithm C, algorithmB is called and has to try
O(kn) guesses. The time used in each guess of algorithmB is O(n2/3t), where t is the time used to build a quota-MST by the
algorithm in [5].1 So the total time complexity of algorithm C is O(k2n5/3t).

4. Discussion

Segev et al. proposed a separate construction method in [12] similar to the one in Lemma 2. For the details of the
construction the readers may refer to [12]. Using the method in [12], we are able to construct an approximately optimal
covering tree T such that cost-efv(T) ≤ O(

√
l) · cost-efv(T ∗). Then, by the coupling lemma, we know that k-Forest can also

be approximated within factor O(
√
l log k) in polynomial time.

We obtain an improved performance ratio O(n2/3 log k) for k-Forest via greedy approach, while the previous best known
ratio in the literature is O(n2/3 log l), obtained by Segev et al. [12] through the Lagrangian relaxation technique. Our global
framework is completely different from that in [12]. Another difference is that our algorithm is simpler and faster. We
believe that the coupling lemma for Set k-Cover has its own independent interest. To improve the performance ratio further
for k-Forest in the framework of Set k-Cover, it seems that entirely new constructive method for building a covering tree
is needed. Furthermore, the constructive method used in this paper does not take advantage of the special structure of the
underlying graph, implying that approximating the problem k-Forest in trees, which is also proposed by Hajiaghayi and Jain
[9], still remains open.

Acknowledgements

The authors are grateful to their supervisor Prof. Angsheng Li for advice and encouragement. The authors are partially
supported by NSFC Grants No. 60325206 and No. 60310213.

References

[1] A. Agrawal, P. Klein, R. Ravi, When trees collide: An approximation algorithm for the generalized Steiner problem on networks, SIAM Journal on
Computing 24 (3) (1995) 440–456.

[2] L. Alfandari, V. Paschos, Master-slave strategy and polynomial approximation, Computational Optimization and Applications 16 (2000) 231–245.
[3] F. Chudak, T. Roughgarden, D. Williamson, Approximate k-MSTs and k-Steiner trees via the primal-dual method and Lagrangean relaxation,
Mathematical Proramming 100 (2) (2004) 411–421.

[4] U. Feige, G. Kortsarz, D. Peleg, The dense k-subgraph problem, Algorithmica 29 (2001) 410–421.
[5] N. Garg, Saving an epsilon: A 2-approximation for the k-MST problem in graphs, in: Proceedings of the 37th Annual ACM Symposium on Theory of
Computing, STOC’05, 2005, pp. 302–309.

[6] M. Goemans, D. Willamson, A general approximation technique for constrained forest problems, SIAM Journal on Computing 24 (2) (1995) 296–317.
[7] K. Jain, M. Mahdian, E. Markaksi, A. Saberi, V. Vazirani, Greedy facility location algorithms analyzied using dual fitting with factor-revealing LP, Journal
of the ACM 50 (6) (2003) 795–824.

[8] K. Jain, V. Vazirani, Approximation algorithms for metric facility location and k-median problems using the primal-dual schema and lagrangian
relaxation, Journal of the ACM 48 (2) (2001) 274–296.

[9] M. Hajiaghayi, K. Jain, The prize-collecting generalized Steiner tree problem via a new approach of primal-dual schema, in: Proceedings of the 17th
Annual ACM–SIAM Symposium on Discrete Algorithms, SODA’06, 2006, pp. 631–640.

[10] S. Khot, Ruling out PTAS for graph min-bisection, densest subgraph and bipartite clique, in: Proceedings of the 44th Annual IEEE Syposium on the
Foundations of Computer Science, FOCS’04, 2004, pp. 136–145.

[11] A. Levin, D. Segev, Partial multicuts in trees, in: Proceedings of the 3rd International Workshop on Approximation and Online Algorithms, WAOA’05,
2005, pp. 320–333.

[12] D. Segev, G. Segev, Approximate k-Steiner Forests via the Lagrangian relaxation technique with internal preprocessing, in: Proceedings of the 14th
Annual European Symposium on Algorithms, ESA’06, 2006, pp. 600–611.

[13] P. Slavík, Improved performance of the greedy algorithm for partial cover, Information Processing Letters 64 (1997) 251–254.
[14] V. Vazirani, Approximation Algorithms, 2nd edition, Springer-Verlag, Berlin, Heidelberg, 2003.

1 The time complexity t is not explicitly given in [5]. Since the algorithm in [5] uses the Goemans–Williamson algorithm [6] as its underlying algorithm,
which has time complexity O(n2 log n), it is believed that for algorithmB the time used in step 4 dominates the time used in step 2 (O(n2)).

	An approximation algorithm to the k-Steiner Forest problem
	Introduction
	Our results and techniques

	The coupling greedy algorithm for set k-cover
	Approximating k-forest
	Finding cost-effective covering tree
	The greedy algorithm for k-forest

	Discussion
	Acknowledgements
	References

