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Let C, [0, co) be the set of all functions SE C[O, co) satisfying a growth- 
condition of the form If(t)] < Aemt (A E R+, m E N). Then forfE C,[O, co) 
and x E [0, co) the well-known Szasz-Mirakjan-operator is defined by 

O” (nx)” k 
S,(fi x) := emnx v - 

d-1 &k! n’ 

It is known (Grof [ 11; Hermann [3]) that 

THEOREM 1. (S,),, N is a sequence of linear positive operators from 
C, [0, 03) into C[O, a3) with the property 

lim S,(A x) =f(x)for aZZf E C, [0, oo), 
n-r* 

uniformly on every interval [x1,x,], 0 <x, < xz < -33. 

The actual construction of the operators S, requires estimation of infinite 
series which in a certain sense restricts their usefulness from the 
computational point of view. Thus the question arises, whether S,(J x) 
cannot be replaced by a finite partial sum provided this will not change 
essentially the degree of convergence. In connection with this question Grof 
[2] introduced and examined the operator 

S,,,(f; x) := epnx $+ $$- . f(3 

for which the following result (cf. Grof [2; p. 1141) is valid. 

(2) 

THEOREM 2. Let N(n) be a sequence of positive integers with 
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lim n+m @W/n) = *. Then (LJnEN is a sequence of linear positive 
operators from C, [0, 00) in C[O, 00) with the property 

lim S,,,(f; x) = f(x) 
n-m 

for all f E CA [0, co) and allx E [0, ~0). 

However, Grof does not investigate what happens, if the sequence N(n)/n 
does not tend to infinity. In particular he gives no answer to the question 
whether we cannot do without that assumption. 

In the present paper we follow a course which is a little different from the 
one of Grof. Now, for f E C,[O, m) and x f [0, a~) we define 

S&f; x) := eenx C 

where C,,,[O, co) denotes the set of all functions f E C[O, 00) satisfying a 
growth-condition of the form If(t)1 <A + Bt2” (A, B E R t; m E Id). It is our 
aim to prove. 

THEOREM 3. Let 6 =6(n) be a sequence of positive numbers with 
lim n+cc n1’2 6(n) = co. Then (Sn,S)nEN is a sequence of positive linear 
operators from C,[O, 00) in C[O, a~) with the property 

lim S,,,(f;x)=f(x) for allf E C,[O, 00) 
n+m 

uniformly on every interval [x1, x2], 0 <x1 < x2 < co. 

To prove Theorem 3 we need 

LEMMA 4 (cf. Rathore [5, pp. 23-251; Lehnhoff [4]). Let 0 <x, < 
x2 ( 00. Then for every m E N there exists a positive constant C(m, x,, x2) 
such that 

S,((t - X)2m; x) < 
Ch x1, x2) 

nm 
djkmly for all x E [x, , x2]. 

PROOF OF THEOREM 3. For f E C,[O, co) constants A, B E IR’ and 
m E N exist with 

If(t)l <A + Bt2m <A + B22m {(t - x)‘“’ + xZm} 

= (A + Bag) + B 22m(t -x)? 
A, 

Thus it follows 

S”,,(fi x) = S,(A x) - R,(J x) 

640/42/3-6 
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with 

<eenx F %{A, + B 2yt - xp} 
k=&S)j+1 * 

<Axe-nx 1 (4” 7 + 2*“BS,((t - x)Zm; x) 
I(kln)-xl>6 * 

< {6-2m(A + B(2x)2m) + B 22m} C(m, Xl, x2) 
nm 

=0(l), n-+co 

uniformly on [x,, x2], because 

lim n1126(n) = co 0 (6(n))-’ = o(n1’2), n -3 00. I 
n-m 

The operators S, and S,,, have the same approximation properties, if and 
only if 

R,(fl x> = S,(A x> - S,,,(A x) = 0(1/n>, n-+ a2, (4) 

uniformly on every interval [x1,x2], 0 <x, <x2 < 00 for all functions 
fE CM[O, co). 

SupposefE C,[O, co), then constants A, B E Rt and m E N, m > 2, exist 
such that If(t)] <A + Bc~~, t > 0. Thus as in the proof of Theorem 3 we 
obtain 

IR,(f; x)1 < (A + B(2~)~“7-‘~ “(“‘,“:’ x2) + B22m c(m’--’ x2) (5) 

for every fixed s E N. 
Because of (5) relation (4) holds, if 

for any fixed s E N. (‘5) 

If 6(n) = nPa (a < i) it is easy to verify that relation (6) is valid for every 
fixed s E N, s > l/(1 - 2a). 

Now, let us take the case 6(n) = 1. Then for any b > 0 one can consider 
the corresponding operators of the form (3) 

S,(J x) := emnx 
bW+l)l tnx)” k 

- 
kti0 fi-1 k! n (7) 
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as positive linear operators from C[O, b + l] in C[O, b] with the convergence 
property 

& II %z<f; .> -f(x[0,61 = 0 for allfE C[O, b + 11. 

Up to this point we always required 6 independent of x. At the end of this 
paper we briefly deal with the case 6(x) = 1 -x and the corresponding 
operators 

j-E C[O, l],xE 10, 1) (8) 

for which the following theorem holds. 

THEOREM 5. (f?n)neN is a sequence of positive linear operators from 
C[O, l] in C[O, l] with the property 

)rl S,(fi x) =f(x) for all f E C [ 0, I] 

uniformly on every compact subinterval of [0, 1). 

Proof. Putting 

f*(x) :=f(x) for O<x< 1, 

: = f(l) for x>l, 

we have 

with 

R,(x) = eenx kTn !?!$< ecnx c (nx>” 
1(/c/n)-Xl>]-x k! 

< (1 -x)-IS S,((t - x)ZS; x) 

C(s, 0, 1) 
’ (1 -x)‘~ ns 

for O<x< 1. I 
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