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1. INTRODUCTION

In [1] and [2] D.D. Anderson and D.F. Anderson studied com-
mutative-integral domains that are graded by a torsion-free abelian group
and that satisfy a certain arithmetical property (such as being a Krull
domain, GCD-domain, UFD, ...). Actually for their purposes, it is better to
look at these rings as rings graded by a torsion-free cancellative abelian
monoid. Their attention was focused on proving that the arithmetical
structure is determined by graded information, in particular the structure
of the grading monoid. In this way they generalized several (twisted)
monoid ring results of (see for example) R. Gilmer [7] and L. Chouinard
[31

An obvious next step is to find a concrete description of torsion-free
cancellative abelian monoid graded rings that have a particular arithmeti-
cal structure. For example, are such rings automatically twisted semigroup
rings? In [13] P. Wauters answered this question for factorial domains in
case the grading monoid has no non-trivial units. It turns out that such
rings are often polynomial rings. In [4] the authors studied this question
for such graded domains which are Dedekind: these rings are either poly-
nomial rings or twisted group rings over a field. In this paper we consider
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graded domains that are Priifer domains. We obtain a complete description
in case the grading monoid has no non-trivial units. When the grading
monoid is a group, which is proved to be the only other possible case, we
obtain a complete result in case the ring is of dimension one and has no
non-trivial idempotent ideals; such rings are called almost Dedekind
domains (cf. [6]).

2. PRELIMINARIES

All semigroups S are abelian, torsion-free, and cancellative, so they are
subsemigroups of a torsion-free abelian group. We use the multiplicative
notation for semigroups and in case S is a monoid, its identity is denoted
by e. However, in the case of the natural numbers N, or the integers Z
or the rationals Q, we use the additive notation and the identity is
denoted by 0. The maximal subgroup (or unit group) of a monoid S is
denoted by %(S). For the terminology on semigroups we refer to [7, 8].
All rings R are associative and commutative and contain an identity,
denoted by 1. The subgroup of multiplicative invertible elements is
denoted by %(R). A ring R is said to be graded by a monoid S, if R is
the direct sum of some additive subgroups R,, s€S, such that for all s,
teS:R,R,cR,. If Sis a group and equality holds for all s, t€ S, then
R is said to be strongly S-graded. A graded ring R is called a twisted
monoid ring if each R, is a free R,-module of rank one; ie., as an
R,-module the ring contains a basis, say {5]seS}, and there exists a
2-cocycle y: Sx S — %(R) such that 5/=1y(s, t) 51, for all 5, 1€ S. Such a
twisted semigroup ring is denoted by A‘[S], where 4 =R,. In case the
cocycle is trivial, then the ring is simply called a monoid ring and is
denoted by A[S1]. ,

The support of a graded ring R is defined as Supp(R)=
{seS| R, {0}}. We shall assume throughout that Supp(R)# {e}, that
is, the support is non-trivial. An element of R;, seS, is called a
homogeneous element, and /#(R) denotes the set of all homogeneous
elements of R. When R is a domain, we put Q%(R)= R(h(R)\{0})~", the
graded quotient ring of R. Clearly, Q%(R) is a G-graded domain, where
G is the quotient group of S, and it can easily be deduced that Q%(R)=
Q![G], a twisted group ring over the field Q,=(Q%(R)).. The total
quotient ring of R is denoted by Q(R). Whenever T<S, we put
Rir1=@®,cr R,. It is clear that, if T is a monoid ideal of S, then Rpr
is an ideal of R. If I is an ideal of R, then (I), denotes the ideal
generated by all homogeneous elements of I. An ideal I is said to be
homogeneous if I=(I),. Finally, if the symbol = is used in connection
with graded objects, it always means a graded isomorphism. For further
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terminology on graded rings we refer to [107], and for monoid rings we
refer to [7].

-We will use the following equivalent forms of the definition of a Priifer
domain.

ProrosiTION 2.1.  The following are equivalent:

R is a Prifer domain;
the localization Rp is a valuation ring for each prime ideal P of R;
3. the localization R, is a valuation ring for each maximal ideal M
of R;
. each non-zero finitely gencrated ideal of R is invertible;
5 Ris integrally closed and for each a, be R : (a, b)* = (a?, b?).

For more information on Priifer domains we refer to [6]. The next two
lemmas play an essential role in our investigations.

LEMMA 2.2. Let R be an integrally closed domain and let D be a domain,
containing R, which is integral over R. If D is a Priifer domain, then R is
Priifer too.

Proof. Let P be a prime idecal of R. Then there exists a prime ideal Q
of D such that P=0 n R. It then follows from [6, Proposition 12.7] that
Rp=Dyn Q(R). So Rp, as an intersection of a valuation ring and a field,
is also a valuation ring. Hence R is Priifer,, |

LemyA 2.3, Let G be a torsion-free abelian group. If R is a G-graded
Priifer domain, then S=Supp(R) is a torsion-free cancellative monoid of
torsion-free rank one. Moreover, S is isomorphic with either a subgroup
of the additive group of rational numbers Q or a submonoid of Q without
non-trivial units.

Proof. Since R is a domain and 1€ R,, S is obviously a submonoid of
G. Note that, as mentioned in the introduction, we always assume that
S = Supp(R) is non-trivial. Moreover, if Q= Q%(R), then Q= Q![G]. Let
F be a maximal free subgroup of G. Then Q'[G] is integral over Q[ F] =
0.[X,|ieI], a polynomial ring over Q. in rank(F) variables. Since a poly-
nomial ring over a field, as a factorial domain, is integrally closed, it
follows from Lemma 2.2 that Q:[F] is a Priifer domain. It then follows
from [6, Proposition 23.5] that |I| =1. Hence G, and thus also S, has
torsion-frec rank one. Hence S is a submonoid of Q, and if S is not a
subgroup, it then follows from [7, Theorem 2.9] that S has no non-trivial
units. ] '
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3. PrROFER DoMmains: THE Monoib Casg
We now investigate the case when S has no non-trivial units.

LemMma 3.1. Let R be a graded Priifer domain with Supp(R)=S a
torsion-free cancellative monoid without non-trivial units. Then R; is a
divisible R,-module, for each se S\ {e}.

Proof. Let seS\{e} and r,eR\{0}. Choosc O#aecR,; then
(a,r)?=(a? r?). Hence, there exist f, ge R such that ar,=a’*f+rlg.
Comparing homogeneous components in R, as s is not invertible and S is
cancellative, one obtains ar, = a?f, and thus r,=af,. This shows that each
R, is a divisible R,-module. |I

The next three lemmas deal with the special case that S=N.

LeMMA 3.2. Let R be a graded Priifer domain with Supp(R)=N and R,
a field. Then M=Y,.o R, is a homogeneous maximal ideal of R with

Nnso (MRy)" = {0}

Proof. Clearly R/M =R, is a field. Assume g=a~'be(),.o (MRy,)",
a¢ M. Then, for each n> 0, there exists a, € R\ M such that gx,e A", and
hence aqx,=bx,e M". We may assume that for each #>0, (a,)o=1.
Now let b=b,+b;,+ --- +b;,4; then for ecach n>0, since M" is
homogeneous, b,e M™. Thus ),. o M"# {0}, while M"= Y, ., R;; thisis
a contradiction. |

LEMMA 3.3. Let R be a graded domain with Supp(R)=N and R, a field.
If R is a Priifer domain, then R~ Ry[X], a polynomial ring.

Proof. Let O#r,eR,; then r R, SMR,,. Assume r R, S M?R,,;
then there exists « € R\M such that r,a e M?; this is a contradiction since
ao#0 and M? is homogencous. Thus MZR, cr R, S MR,,. It then
easily follows that r,R,, is (MR,,)-primary. From [6, Theorem 17.3],
ri Ry, =M*R,, for some non-zero k. Consequently ry Ry, = MR,,. There-
fore, if ae R,, then aer,R,, and there exist «€ R\M, fe R, such that
aa= Pr,. Comparing the lowest degree components, one gets aga = fory,
with o, a unit in Ry. Thus a=(foxg ') ri€ Rory and R, = Reyr,. Now, for
n>2, "Ry =(rRy)"=(MR,,)", from which it follows in an analogous
way as above.that R,= Ror}. Consequently R=3%",_» Ror{, a polynomial
ring over a field. |I

ProPoSITION 3.4. Let R be a graded domain with Supp(R)=N. Then R
is a Priifer domain if and only if Ry is a Priifer and R= Ry + XQ(R,)[X].
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Proof. Assume R is a Priifer domain. Clearly R, is a domain which is
a homomorphic image of R, and thus R, is a Priifer domain. From
Lemma 3.1 it follows that Ry 10y = Q(Ro) + 2,50 R,. As a homogeneous
localization of R, this is again an N-graded Priifer domain, with compo-
nent of degree zero a field. Therefore, by Lemma 3.3, R, = Q(R,) X", n>0,
for some Xe R,. Hence R=Ry+3Y,.0 O(Ry) X".

For the converse let M be a maximal ideal of R. We prove that R,, is a
valuation ring. If (M), = {0}, then R,;=(Q(R,)[X, X~']1),,, where M’ is
the maximal ideal MQ(R,)[X, X ~']; clearly R,, is then a valuation ring. In
case (M),#0, then one easily verifies that M =p+ XQO(R,)[X], where
p=Mn R,. Replacing R by the localization Ry, , we may assume that R,
is a valuation ring (or a field). We have to show that for every xe Q(R)
either a € Ry, or a '€ R,,. For this write a = (fo+ f)(go+ g) %, where f;,
go€ Ry and f, g€ XQ(R,)[X]; we also may assume that not both f; and g,
are zero. In case fo¢ p, then a~'e R,, and if g, ¢ p, then x€ R,,. Suppose
(80) S (fo) € p; then a= (1 + f5 ') f5 (go+£)]~". Since 1 + f5'fe R\M
and fy '(go+ g) € R, we get that «—' € R,,. In a similar way, (fy) = (go)Sp
implies that e € R,,. This shows that R,, is a valuation ring. |J-

We now come to the main theorem of this section. Recall (cf. [7]) that
a submonoid S of Q is called a Priifer monoid if S is the union of an
ascending sequence of cyclic submonoids. *

THEOREM 3.5. Let R be a graded domain with Supp(R)=S and
u(S)={e}. Then R is a Priifer domain if and only if the following conditions
are satisfied:

1. S is isomorphic with a Priifer submonoid of Q;
2. R, is a Priifer domain,

3. R=R.+Q(R.)[S\{e}], where the latter is considered as a
subring of the twisted monoid ring Q(R,)' [S].

Proof. For seS we denote by {s)» the submonoid of S generated
by 5. Assume R is a Priifer domain. Let ae S\{e}. Then R=R(,5;®
Zses\cay Rs» @ direct sum of Rp,5;-modules. Consequently cach ideal of
Ry (ay7 is contracted from R. Therefore, by [7, Theorem 13.1], Rr¢oyyis a
Priifer domain too and N-graded. It then follows from Proposition 3.4 that
R, is a Priifer domain and that there exists r, € R, such that R,= Q(R,)r,.
ThCI‘CfOI‘C, R= Re + ZaeS\(e} Q(Re) rg= Re + Q(Re)l [S\{e}]

Further, it follows from Lemma 2.3 that S is a submonoid of Q. Then [7,
Theorem 2.9] yields that we may assume that S is a submonoid of Q*, the
non-negative rational numbers. We assert that § is an integrally closed
monoid. Indeed, suppose g”€ S, with es#:g=s5"'reG, where G is the
quotient group of S and s, 1€ S. Note that g" #¢, since G is torsion-free.
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Then g"e R=Ry+ Q(R,)' [S\{0}] and g"=2g"u, where 0#ueQ(R,).
Since R is integrally closed, ge R and therefore geS; this proves the
assertion. Moreover, SNN# {0}; if 0£aeSnN, then Q% is integral
over aN & S. Consequently Gn Q™ is integral over Sand so S=Gn Q™.
It follows from [7, Corollary 2.8] that G is the union of an ascending
sequence of cyclic subgroups grp{g;> with g,>0 for cach i Since
S=GnQM, it follows that S={) (grp{(g;>nQ*)=U {g;> and {(g;> <=
{ g+ for each i. So S is a Priifer submonoid of Q and we have proved
that the three conditions are necessary.

Conversely, because of Proposition 3.4, the ring R is the direct limit of
Priifer domains, and thus Priifer. |

Remark.

1. It is clear that, in the preceding theorem, R is of dimension one if
and only if R,=Q(R,), i.e, R, is a field.

2. We give an example, taken from [2], to show that therc exist
twisted monoid rings which are Priifer and which are not monoid rings. So
the conditions in the preceding theorem are most accurate. Let S be a
Priifer submonoid of Q and R=k[X,|seS], a polynomial ring over the
field k. Clearly R is a unique factorization domain and S-graded with
deg(X .- XT)=s57---57. Then Q=QFf(R)=Q.[G], where G is a sub-
group of Q, is also a unique factorization domain. Since G has torsion-frec
rank one, Q= Q.[Z]' [G/Z] is integral over Q.[Z]. Therefore Q is of
dimension one, and thus a principal ideal domain and certainly a Priifer
domain. But the cocycle on G is not trivial, since it follows from Gilmer’s
result [7, Theorem 13.8] that Q.[G] is not a principal ideal domain.

3. Let R be an S-graded ring, S a monoid without non-trivial units. If
R is a Dedekind domain, i.e., a Noectherian Priifer domain, then it is
proved in [4] that R is a polynomial ring over a field. So in that case there
is no twist.

4, PRUFER DoMAINS: THE Group CASE

We have already proved that if R is a G-graded Priifer domain, then G
has torsion-free rank one and is therefore isomorphic with a subgroup of
Q. We start with a gencral lemma.

LEMMA 4.1. If V is a valuation ring with maximal ideal M, then
VINE., M" is either a discrete rank one valuation ring or a field.

Proof. Put S=V/N\Z ., M". First note that, by [6, Theorem 17.1],
®  M"is a prime ideal of V. If M = M?, then S is a field. If not, then
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S has rank one; indeed, if P is a prime ideal of V with Pc M, then
Pc (N2, M", because otherwise there exists ne N, such that M"< P
and so M =P. Moreover, it follows from [6, Theorem 17.3(b)] that
each (M/N;., M")-primary ideal of S is a power of M/N\J., M".

Conscquently, S is discrete. ||
We first handle the case when R is Z-graded.

Lemma 4.2, Let R be a Z-graded Priifer domain. If Ry R_,=R, (ie., R
is strongly Z-graded), then R= Ry[X, X~ '] and R, is a field.

Proof. Let M be a maximal ideal of R;. Then

Rpoar= (Ro)ar + E Ri(Ro)as

k+#0

is also a Priifer domain, with part of degree zero a valuation ring. So, to
prove the lemma we may assume R, is a valuation ring. Let k> 1. Since
R,R_, =Ry, write 1=3%'_, a;b;, with a,e R, and b,eR_,. If r,eR,,
then r,=X!_, a;(b;ry)e Rya,+ --- + Roa;. SOy R_, S Roa;R_; + --- +
Rya;R_; and thus, say, r,R_, = Rya, R_,. Consequently r, e Rya, R, R_,.
S Rya, and R, = Rya,. S0 R=R\[Z] = Ro[X, X~ '] and it follows from
{7, Theorem 13.4] that R, is a field. ||

THEOREM 4.3. Let R=3%, , R, be a Z-graded Priifer domain with
Supp(R)=Z. Assume the following conditions are satisfied:

1. R has no homogeneous idempotent maximal ideals;
2. the Krull dimension of R, is at most one;
3. Ry has no idempotent maximal ideals.

Then Ry is a field and thus R~ R,[ X, X~ '].

Proof. Assume R, is not a field. As in the proof of the preceding lemma,
we may assume that R, is a valuation ring with maximal ideal, say M.

First we claim that R,R_,# R, for all n: indeed, if there exists ne N,
such that R, R_,=R,, then put T=3Y _, R,,. Clearly, R is integral over
T. Moreover T is integrally closed: let a=ag,+ -+ +a;,,), and
B=Bu+ -+ + B+ vy clements of T and assume a~'f is integral over 7.
Since a~'fe Q(R) and o~ ! is integral over R, a Priifer domain, it follows
from Proposition 2.1 that a~'feR. So f=a(ry, + --- +ry,) with r;e R for
k,<i<k,. Comparing the lowest degree components, one gets f§, '=«, ry,
and thus ky=(t—s)n and ry € T. Now f—ar,_g,=a(ry,+ --- +ry). So,
by induction, one obtains r,, & T for all i and finally « ~'f e T. Therefore, by
Lemma 2.2; T is Priifer. Since T is strongly Z-graded, it follows from
Lemma 4.2 that R, is a ficld, a contradiction.
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Since R, is a valuation ring of dimension at most one and has no non-
trivial idempotent maximal ideals, it follows that 2., Af" = {0}. Hence,
by Lemma 4.1 and the assumptions, (Ry),, is a discrete rank one valuation
ring. Moreover, Ry, has no homogencous idempotent maximal ideals.
Indecd, suppose P = (P), is an idempotent maximal ideal of R, ,, (note
that P~ Ry= M and that Pn R is a homogencous maximal ideal in R).
Then, if ae PnR, there exists ge R)\M such that gxe(Pn R)%. But
M+qgR,=R, and thus MoR+qxR=aR. Now MaR<(PnR)* and
gxR S (P n R)? so that aR < (P n R)2 Thereforc P R= (P n R)? which is
in contradiction with our assumptions.

So we have proved that R=Y, , R, is a Z-graded Priifer domain
with R, a discretc rank one valuation ring with non-zero maximal
ideal M=aR, and R,R_,=a"Ry,, n=1 and all R,R_,<aR,. Since
Supp(R)=Z it follows that Qf(R)=Q(Ro)[X,X '] and one can
choose Xe R, such that Ry,R_,=XR_,. Since R is cmbeddable in its
graded quotient ring, it has the form R=Ro+3}, ., M,X" where
M,={qeO(R,) | gX"€ R,}. Obviously, all M, are fractional Ry-idecals.
Therefore M;=a "R, for all ieZ, where n,eZ. We then obtain that
M_,=R_,X=R,R_,=Rya" and M,=(Roa")(M_,)~'=R,. If we put
—n_;=m; for i>0, then R has the form

R= ... +Roam;X—J_*_Roamzx—Z_*_Roanx—l
+ Ro+ RoX + Roa X2+ Rya= X3 + ---.

Now put .#=Rya+3, .o R, Then obviously .# is a homogeneous
maximal ideal of R and so R_, is a valuation ring.

We claim R is a gr-valuation ring, ie., all homogeneous ideals are
linearly ordered. For let I and J be homogeneous ideals of R, then, say,
IR ,<JR ,. So, if ie h(I), then there exists a ¢ .# such that aie J. Since we
may assume oo =1 and since J is homogeneous, we get ay,i=ieJ and thus
Ic J. This proves the claim.

Consequently, either (X)=(a) or (a)< (X). But the first inclusion
implies X €aR, X, a contradiction. So the second inclusion is satisfied and
consequently ae Rya” and n=1. Similarly, for i> I, either (R;)< (a) or
(a) = (R;): the first case is impossible and so the second inclusion is true,
whence Rya=R;R_; and m,;=n,+ 1. So R has the form

R= . +R0an3+lx-3+Roanz+lX—Z+R0aX—l
+ Ro+ RoX+ Roa ™X 24+ Roa™ X3+ ... (1)
Since R is intcgrally closed, for each i>0, (a7'X)' ¢ Rya—"X', whence

n<i—1. (2)
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Morcover, from the inclusions R_ R;, € R; (i=1), RiIR,SR;,, (i=1),
and R,R,S R, ; (i, je Z), we get the following incquality for each i, j>0:

mtn S, <n+n+ L (3)

We observe that condition (3) is necessary and sufficient for R, of the form
(1), to be a ring.

If all n,=0, then R< Ry[X, X~!]. Since any overring of a Priifer domain
is Priifer again (cfr. [6, Theorem 26.1]), it follows from Proposition 3.4
that R, is a field, contrary to our assumption. If all n,=i— 1, then it is easy
to see that R can be embedded in Ro[a~'X, (a~'X)~!], which as above
yields a contradiction. So we may assume there exists iy;>1 with
O<ny<ip—1.

We assert that R has gr-Krull dimension one. R is then a gr-valuation
ring of gr-dimension one with unique gr-maximal ideal .#. Since by
assumption ./ % .#? and since &, .#" is a homogeneous prime ideal of
R, it follows that N2, , .#/"={0}. Hence, R is a gr-(discrete rank one
valuation ring) and by a result of M. Van den Bergh [12, Theorem 3.3]
this is a contradiction.

We now prove the assertion. First we claim that if aei(R)n.# and
if R'=R(p 50 then R'=0Q%(R)=Q(Ro)[X, X ']: if aeR,, then
this is clear. If aeR_,, then it follows that a~'XeR'. But then
attly—hb(gTlx)o—l=gu~P+2x-1ec R and so X 'eR’ Since also
a”'XeR'; we obtain a7 'eR and Q(R,)SR. Therefore R =
O(R,)[X, X ']. If xeR,, then X~ 'eR'. But then (X~ !)* X?q "=
a~™eR and so a~'eR’ and R’ is again Q(R,)[X, X~ ']. Finally, let
o« € R;, |i| > 1. By an analogous argument as in the first part of the proof,
RW=% _, R, is also a Z-graded Priifer domain with component of
degree one R{?= R,. By the above, R}, .0y = Q5(R) = Q(R,)[X, X~'1.
Then certainly R =Q(R,)[X, X !]. Now let Q be a homogeneous
prime ideal of R with Qc.#. Then Qf(R/Q)= R,r\0)/Crrro)=
O(RYLX, X"]/Q,,(R\Q,, where the second equality follows from the
foregoing. Since Q(Ro)[X,X~'] is a graded field and Q,z\p, is 2
homogencous prime ideal of Q(Ro)[ X, X~'], it follows that Q, .z o,= {0}
and thus Q= {0}. Therefore R has gr-Krull dimension one. This ends the
proof. [

Remark. Note that the ring R defined by (1), with n,=i—1forall i>?2
and R, a rank one discrete valuation ring with maximal ideal aR,, is a
gr-Priifér domain (the definition is the graded version of Proposition 2.1).
Morcover, its graded quotient ring is Priifer, but R itself is not Priifer.

CorROLLARY 44. Let R be a G-graded Priifer domain where
Supp(R) =G is a torsion-free abelian group. If the Krull dimension of R, is



PRUFER DOMAINS 317

at most one and if R has no homogeneous idempotent ideals, then R=k'[G],
a twisted group ring of a subgroup of Q over a field. Conversely, such a ring
is also Priifer.

Proof. Tt follows from Lemma 2.3 that G is isomorphic with a subgroup
of 0. Let ge G\ {e}. Then R=Ry,,,(,31® X 4 c6\erpce> Ri» @ direct sum of
Rp,pcgyy-modules. Then by [7, Theorem 13.1], Rip¢gsy is Priifer and
thus by Theorem 4.3 R, is a field and R, = R,r,. Thercfore R~k'[G].

Conversely, k‘[G] is a direct limit of polynomial rings k[X, X~'] and is
therefore Priifer. ||

5. ALMOST DEDEKIND DOMAINS

A ring is called an almost Dedekind domain if its localization to each
maximal ideal is a discretec rank one valuation ring (the terminology is
justified because local Dedekind domains are precisely discrete rank one
valuation rings). One can prove that R is almost Dedekind if and only
if R is onc-dimensional Priifer without idempotent maximal ideal, or
equivalently if R is Priifer such that (>, A"= {0} for each proper ideal
A of R (clr. [6, Theorem 36.5]. From this it is clear that the part of degree
zero of a G-graded almost Dedekind domain is also almost Dedekind. We
then have

COROLLARY 5.1. Let R be a G-graded almost Dedekind domain where G
is a torsion-free abelian group. If Supp(R) is not a group, then R=k[X], a
polynomial ring over a field. Otherwise R=k'[G], a twisted group ring of a
torsion-free rank one group over a field.

Proof. Suppose Supp(R)=S and %(S)={e}. Then it follows from
Theorem 3.5 and the remark following it that R=k‘[S] where S is a
Priifer submonoid of Q. Then /=S\{e} is the maximum ideal of S and
M =Fk'[I] is a maximal ideal of R =k'[S]. Therefore R,, is a discrete rank
one valuation ring with defining valuation, say ». Then the mapping
w: (8> > Z defined by w(g)=v(g) is a group homomorphism, ie., a
valuation on {S). One casily verifies that S is the valuation monoid of v.
Hence S is a discrete rank one valuation monoid and so, since %(S) = {e},
S={(x), a cyclic monoid. When Supp(R) is a group, the result
immediately follows from Corollary 4.4. |

The converse of this corollary is not nccessarily valid. For example the
group ring Z,[U {a/p"|aeZ, neN}], where Z, is the ficld with p
clements, is not almost Dedekind by [9, Lemma 27]. We will now deter-
mine necessary and sufficient conditions for a group graded ring to be
almost Dedekind.
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LEMMA 5.2. Let G be a torsion-free abelian group and H a subgroup of
G such that G/H is a torsion group. If R is strongly G-graded and R is almost
Dedekind, then Ry is almost Dedekind.

Proof. If Pis a non-zero prime of Ry, then PRARy=P. I M is
an ideal of R, maximal with respect to M n R(,;=P, then M is a prime
ideal. Since Ry, is integrally closed and R is integral over Ry, it follows
from [6, Proposition 12.7] that (R(;1)p= R0 Q(Ryyy). Because Ry, is a
discrete rank one valuation ring, it follows from [6, Theorem 19.16] that
(Rpsy)p is a discrete rank one valuation ring too. |l

LEMMA 5.3. Let G be a torsion-free abelian group and H a subgroup of
G such that G/H is a torsion group. Suppose R= R.[G] is a twisted group
ring over a field R, and R![H] is Dedekind. If char(R,) | |G/H|, then R is
almost Dedekind.

Proof. We consider RI[G] as a strongly G-graded ring R;sq. Since
G/H is a torsion group, R is integral over R,y and so dim(R)=
dim(R,;) = 1. Let @ be a non-zero prime ideal of R. Note that if G’ is a
subgroup of G, then since R is strongly (G/G’)-graded, QN R is a
nonzero prime of Rys;. We will prove R, is a Dedekind domain.
Let {G,|iel} be a set of subroups such that for all iel, G,/H is
fnite and G=\),.; G;. Obviously, 0=U,., (@ Rs;) and therefore

=User (R[G,])an[g]’ put R,=(Rg1)pnrey Now for each i
Q(R [G,]) is a finite field extension of O(R! [H]) and R.[G,] is integral
over R.[H]. Therefore R:{[G,] is contained in the integral closure of
RI[H] in Q(R![G,]). Since, by [2, Proposition54], RI[G,] is itself
integrally closed in its own quotient field, it is thercfore cqual to that
integral closure and so it is Krull by [5, Proposition 1.3]. Moreover Rig;
also has dimension one, since it is integral over Rpy. Thus Rig is
Dedekind and Ry, as a direct limit of localizations of the R, is Priifer
of dimension one. So we only have to prove that R, is Krull. To do so, we
check the two conditions of [5, Proposition 8.6]: let R,= R;, i, je I. First,
condition (PDE) is trivially satisfied since all rings R; havc dlmensmn one.
Second we assert that, if g is a non-zero prime ideal of R,, then gR; is a
prime ideal of R; and thercfore a maximal divisorial ideal: to prove this,
we first note that (gn Rpyy) Ry is a semiprime ideal of Ryg;:
indeed, Ryg;3/(9 N Rpuy) Rgy is strongly (G;/H)-graded with component
of degreee Ry, /(gn Rym)=R[H]/(gn R,[H]) a domain; morecover
char(R[H]/qnR[,,])—char(R )11G;/H|. Tt follows, by a gencralization
of Maschke’s theorem (see, for example, [11, Theorcm 4.4]), that
(gn R[,,]) Rigpisa semlpnme ideal ofR[G] Moreover (g N Ryyq) Rpgy #0
and so (qn R;47) R; is a non-zero scmlpnme ideal of the discrete rank one
valuation ring R,. Thcrcforc (g~ Rpyy) R; is the unique maximal ideal of
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R; and since (9 Rpyq) R;SqR;< R, it follows that gR; is also cqual to
the unique maximal ideal of R;. This proves the assertion. By Fossum’s
result, Ry is then a Krull domain. ||

LEMMA 54. Let H be a torsion-free group and F a free subgroup such
that HJF is a p-torsion group, where p is a prime. Assume k is a field of
characteristic p. If K'[ H] is almost Dedekind, then k'[ H] is Dedekind.

Proof. We merely consider R=Kk‘[II] as a strongly H-graded ring with
part of degree zero a ficld. By [6, Theorem 37.2] we only have to prove
that cach non-zero element of A‘[ H] is contained in only finitely many
maximal ideals of k‘[H]. Now, if reR, then, using the Frobenius
homomorphism, one can find ne N such that '€ Ry =k[X, X~ ']. So 1
is contained in only finitely many maximal idecals A, ..., M, of R f;. Now
for cach i there is only onc prime P, of k'[HI] such that P,n Ry =M;
for, suppose P, N\ Rypq=Py,n Ry =M, Then for each re P; there exists
neN such that " eRqnP,=RynP,cP, and so reP,. Thus
P, =P, and so r is containcd in only finitely many maximal idcals of R. . |

We can now state the main theorem of this section.

THEOREM 5.5. Let R be a G-graded ring where G is a torsion-free abelian
group. Then R is an almost Dedekind domain if and only if either R=k[X],
a polynomial ring over a field, or R=Kk'[G], a twisted group ring of a
torsion-free rank one group G over a field, such that the following condition
is satisfied: if char(k)=p>0 and if G, is a subgroup of G such that the
p-primary component of G/F is Gy/F, then k'[G,] is Dedekind.

Proof. Il R is an almost Dedekind domain, then Corollary 5.1 yields the
first part of the theorem. Supposec now R=k'[G]. Then it follows from
Lemma 5.2 that Ry =k’[G,] is almost Dedckind and by Lemma 54,
k'[G,] is then Decdckind. The converse immediately follows from
Lemma 5.3. |

Remark. 1t follows from Corollary 5.10 in [2] that A‘[G,] is a
Dedekind domain if G, has the ascending chain condition on cyclic sub-
groups. However, the example in the remark following Theorem 3.5 shows
that the converse does not hold. However, in case of a group ring A[Gy],
i.e, the twist is trivial, it is known that k[G,] is Dedckind if and only if
G, has the ascending chain condition on cyclic subgroups, and thus
Go=Z. Hence ~

CoroLLARY 5.6 (R. Gilmer [7]). A monoid ring R[S] is an almost

Dedekind domain I and only if R is a field and one of the following
conditions holds:

481/150,2-5
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1. Sisa cych‘c monoid,
2. Sis agroup and char(R)=0;

3. S is a group, char(R)=p>0, and G, is the infinite cyclic group
(where G, is defined as in Theorem 5.5).
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