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Isoxazolines are a novel class of parasiticides that are potent inhibitors of g-aminobutyric acid (GABA)-
gated chloride channels (GABACls) and L-glutamate-gated chloride channels (GluCls). In this study, the
effects of the isoxazoline drug fluralaner on insect and acarid GABACl (RDL) and GluCl and its para-
siticidal potency were investigated. We report the identification and cDNA cloning of Rhipicephalus (R.)
microplus RDL and GluCl genes, and their functional expression in Xenopus laevis oocytes. The gener-
ation of six clonal HEK293 cell lines expressing Rhipicephalus microplus RDL and GluCl, Ctenocephalides
felis RDL-A285 and RDL-S285, as well as Drosophila melanogaster RDLCl-A302 and RDL-S302, combined with
the development of a membrane potential fluorescence dye assay allowed the comparison of ion
channel inhibition by fluralaner with that of established insecticides addressing RDL and GluCl as
targets. In these assays fluralaner was several orders of magnitude more potent than picrotoxinin and
dieldrin, and performed 5-236 fold better than fipronil on the arthropod RDLs, while a rat GABACl
remained unaffected. Comparative studies showed that R. microplus RDL is 52-fold more sensitive than
R. microplus GluCl to fluralaner inhibition, confirming that the GABA-gated chloride channel is the
primary target of this new parasiticide. In agreement with the superior RDL on-target activity, fluralaner
outperformed dieldrin and fipronil in insecticidal screens on cat fleas (Ctenocephalides felis), yellow
fever mosquito larvae (Aedes aegypti) and sheep blowfly larvae (Lucilia cuprina), as well as in acaricidal
screens on cattle tick (R. microplus) adult females, brown dog tick (Rhipicephalus sanguineus) adult
females and Ornithodoros moubata nymphs. These findings highlight the potential of fluralaner as a
novel ectoparasiticide.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The dominant inhibitory neurotransmitter of vertebrates is the
zwitterionic amino acid g-aminobutyric acid (GABA; Krnjevi�c,
2004, 2010). GABA released from synaptic vesicles engages either
metabotropic G protein-coupled receptors (Marshall and Foord,
2010), or receptors that act as chloride-conducting ligand-gated
ion channels belonging to the cystine loop superfamily (Sine and
Engel, 2006). GABA-mediated chloride influx into cells leads to
hyperpolarization of the membrane and generates an inhibitory
postsynaptic potential, which decreases the probability of the
de (T. Ilg).
d should both be considered
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occurrence of action potentials (Macdonald and Olsen, 1994;
Hevers and Lüddens, 1998). GABA-gated chloride channels
(GABACls) in vertebrates are pentamers of a (a1ea6), b (b1eb3) and
g (g1eg3) subunits, typically in the arrangement (ax)2(bx)2gx.
Further variation is generated by the minor subunits d, ε, p and q,
that can replace g in the pentamers, and by r1er3-containing re-
ceptors, that are found specifically in the retina. Altogether 19
GABACl subunit genes have been identified in mammals, and
additional complexity is generated by alternative mRNA splicing
(Sieghart, 2006; Whiting, 2006; Olsen and Sieghart, 2009, D’Hulst
et al., 2009). GABACls are ubiquitously expressed in the central
nervous system (CNS) of vertebrates, and a multitude of psycho-
active drugs and convulsants act at this molecular target, such as
barbiturates, benzodiazepines, steroids, and picrotoxinin (Fig. 1)
(Hevers and Lüddens,1998; Glykys andMody, 2007; Bateson, 2009;
Winsky-Sommerer, 2009; Mirza and Munro, 2010; Sigel and
Steinmann, 2012).
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Fig. 1. Chemical structures of chloride channel agonists and antagonists.
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Insects and other invertebrates also possess GABACls
(Gerschenfeld, 1973). These receptors are not only present in the
CNS, where they generate inhibitory potentials for the correct
integration of neuronal signals, but also at peripheral neuromus-
cular sites, where they promote muscular relaxation (Lummis,
1990; Rauh et al., 1990; Schuske et al., 2004). About 30 years ago,
it was discovered that GABACls are the molecular targets for the
insecticides lindane and cyclodiene derivatives (Ghiasuddin and
Matsumura, 1982), a contention confirmed by a large number of
subsequent biochemical and electrophysiological studies (Sattelle,
1990; Rauh et al., 1990; Casida, 1990).

The cloning of a GABACl (RDL) subunit gene from the cyclodiene
resistance locus, rdl, of Drosophila melanogaster confirmed at the
molecular biology level that this ion channel is the cyclodiene
target (ffrench-Constant et al., 1991). The corresponding gene,
dmrdl, displayed in a dieldrin-resistant D. melanogaster isolate a
single point mutation leading to an amino acid exchange
A302 ➔ S302, conferring high level resistance to the cyclodiene
insecticide class (ffrench-Constant et al., 1993a, b). The rdl gene and
the resistance mutation have been identified in several insect or-
ders (ffrench-Constant, 1994; ffrench-Constant et al., 2000). Ho-
mozygous disruption of the rdl locus is lethal in D. melanogaster
(Stilwell et al., 1995). The recombinant homomers of the rdl protein
product, expressed either in Xenopus laevis oocytes or in cell cul-
ture, are considered good, albeit not perfect, models of native insect
receptors (Buckingham et al., 2005). Other GABACl subunit gene
candidates have been reported and may contribute in vivo in
localized areas to insect GABA and insecticide pharmacology (Hosie
et al., 1997; Raymond and Sattelle, 2002; Buckingham et al., 2005).

A large set of compound binding studies have confirmed that
lindane, cyclodienes such as dieldrin (Fig. 1), picrotoxinin (Fig. 1),
and other convulsants, such as 3,3-bis(trifluoromethyl)bicyclo
[2.2.1]heptane-2,2-dicarbonitrile (BIDN), 40-ethynyl-4-n-propylbi-
cycloorthobenzoate (EBOB) and tert-butylbicyclophosphor-
othionate (TBPS), bind to a common allosteric site on insect
GABACls (RDL) within the chloride channel lumen, and that their
binding leads to a channel block (reviewed by Hosie et al., 1997;
Bloomquist, 1998, 2001). The phenylpyrazole insecticides, such as
fipronil (Fig. 1) also bind to native and recombinant insect RDLs,
and inhibit GABA-induced chloride currents (Cole et al., 1993;
Buckingham et al., 1994; Hosie et al., 1995; Gant et al., 1998).
Fipronil displaces 3H-EBOB and 3H-BIDN or 3H-TBPS from their
insect brain binding sites indicating that this compound binds at or
near the dieldrin binding site. This suggestion is supported by the
observation that cyclodiene resistance in housefly leads to a partial
resistance to fipronil (Bloomquist, 1993).

Initially, it was thought that the macrocyclic lactones of the
avermectin and milbemycin classes, that are insecticidal, acaricidal
and nematocidal compounds (Shoop et al., 1995; Geary, 2005), also
address primarily GABACls as molecular targets (Wang and Pong,
1982; Martin and Pennington, 1989; Holden-Dye and Walker,
1990; Bermudez et al., 1991). However, further studies revealed the
predominant role of glutamate-gated chloride channels (GluCls) for
the macrocyclic lactone mode of action. Avermectins and milbe-
mycins potentiate on GluCls the agonistic effect of glutamate, or
activate directly these ion channels, and it is now well-established
that these ligand-gated chloride channels represent a secondmajor
parasiticide target class (Cully et al., 1994, 1996; reviewed by
Wolstenholme and Rogers, 2005; Wolstenholme, 2012). Interest-
ingly, in addition to its RDL blocker action, fipronil is also acting as a
potent inhibitor of insect GluCl. It has been proposed that this
additional GluCl inhibition activity contributes to the insecticidal
activity of this phenylpyrazole drug (Ikeda et al., 2003; Zhao et al.,
2004; Zhao and Salgado, 2010; Narahashi et al., 2010).

Taken together, a large number of experimental studies and
reviews have emphasized the prominent roles of RDLs and GluCls
for the parasiticidal action of antiparasitic drugs and promote these
ion channels as prime targets, also for the identification of novel
pesticides (reviewed in Raymond and Sattelle, 2002; Bloomquist,
2003; Buckingham et al., 2005; Raymond-Delpech et al., 2005;
Narahashi et al., 2010; Ozoe, 2013). The viability of this contention
has recently been confirmed by the introduction of two novel
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classes of pesticidal substances, the insecticidal and acaricidal iso-
xazolines (Ozoe et al., 2010; Lahm et al., 2013; García-Reynaga et al.,
2013), and the meta-diamide insecticides (Nakao et al., 2013),
which were both shown to address primarily the RDL.

Insect and acarid ectoparasites cause vast damage and distress
to livestock, companion animals and humans. In the case of com-
panion animals, the cat flea Ctenocephalides (C.) felis is the
commercially most important ectoparasite (Rust and Dryden 1997;
Rust 2005), while the cattle tick Rhipicephalus (R.) microplus is
responsible for large economical losses to livestock operations
worldwide due to direct damage and transmitted diseases (de
Castro, 1997; Guerrero et al., 2012). Therefore, these two
arthropod species are amajor focus of veterinary research aiming at
novel ectoparasiticides.

In this study, we investigate the ectoparasiticidal activity and
parasite molecular target pharmacology of fluralaner (A1443, Ozoe
et al., 2010), a representative of the novel isoxazoline chemical
class. We report the gene identification, the gene cloning and the
functional expression in Xenopus oocytes of Rhipicephalus microplus
(cattle tick) RDL and GluCl subunits. Furthermore, Ctenocephalides
felis and D. melanogaster RDL subunit genes were prepared as wild
type and dieldrin-resistant forms. All RDL and GluCl genes were
stably expressed in HEK293 cells, clonal cell lines were selected
and, based on these ion channel transgenic HEK293 cell lines,
fluorescent membrane potential dye assays were devel-
oped.Xenopus oocyte two electrode voltage clamp electrophysi-
ology ion channel assays were employed to assess receptor
functionality. Using these assays, the pharmacology of insect and
tick RDL and GluCl homopentamers were established for the spe-
cific agonists GABA and glutamate, as well as for the antagonists
picrotoxinin, dieldrin, and fipronil in comparison with the novel
drug fluralaner. In a set of in vivo experiments, the ectoparasiticidal
activity of dieldrin, fipronil and fluralanerwas tested and compared
with imidacloprid and deltamethrin on four insect and three tick
parasite species.

2. Materials and methods

2.1. Reagents and cell lines

Bacterial cultures were grown in LuriaeBertani (LB) medium
modified with supplements as required by the bacterial back-
ground and the introduced resistance genes. Chemicals and salts
were from SigmaeAldrich or from Merck (Darmstadt, Germany),
unless stated otherwise. The FMP-dyes RED and BLUE were from
Molecular Devices. Dimethyl sulfoxide (DMSO) was from Acros
Organics, fipronil from Riedel-de-Haen, dieldrin and picrotoxinin
from Sigma, ivermectin (mixture of B1a and B1b) from Dr. Ehren-
storfer, deltamethrin from SigmaeAldrich or Riedel-de-Haen, and
imidacloprid from Riedel-de-Haen. Racemic A1443 (Ozoe et al.,
2010) was obtained from Nissan Chemical Industries, Ltd. The
HEK293 cell line and the WS-1 cell line (Wong et al., 1992) were
from ATCC.

2.2. General DNA and RNA techniques

Total RNA was extracted from R. microplus larvae,
D. melanogaster adult flies or C. felis adult fleas by a modification
of the guanidinium thiocyanate/phenol extraction method
(Chomczynski and Sacchi, 1987; Trizol, Sigma). Polymerase chain
reaction (PCR) products were cloned into pCR2.1-Topo or pCRII-
Topo, and introduced into Escherichia (E.) coli Top10 cells (Invi-
trogen). Subcloningwas performed into themammalian expression
vector pcDNA3.1(þ) using E. coli JM109 (Promega) as a host. Site-
directed mutagenesis was performed using the QuikChange XL kit
(Stratagene) with specific mutagenesis primer pairs. Other molec-
ular biology techniques are specifically indicated or were per-
formed essentially as described by Sambrook and Russell (2001).

2.3. Identification and isolation of GABA-gated Cl� channel and
glutamate-gated Cl� channel subunit genes from R. microplus

In the case of the R. microplus RDL, reverse transcription of total
RNA was performed using the Expand Reverse Transcriptase kit
(Roche) with total RNA (0.9 mg/50 ml) as template and the degen-
erate primer TTNACRTAIGADATYTTNGG derived from the
conserved RDL subunit polypeptide sequence PKISYVK. From the
reaction product,1 ml was used as a template for a polymerase chain
reaction (PCR) using the Expand High Fidelity kit (Roche) (40 cycles
of 30min at 94 �C, 30 s at 45 �C and 1min 30 s at 72 �C) and the two
degenerate primer AANATHTGGGTICCNGAYAC and TTNAICCAR
AAIGANACCCA, derived from the conserved GABACl subunit poly-
peptide sequences (N/K)IWVPDT and WVSFW(L/I)N, respectively.
From the 460 bp degenerate primer PCR fragment (KF881794), the
missing cDNA sequences of the R. microplus gene were then ob-
tained by rapid amplification (RACE) of cDNA ends using total RNA
from tick larvae as template and the SMART RACE cDNA Amplifi-
cation Kit (Clontech) with generic flanking 50- and 30-RACE primer
(Clontech), as outlined by themanufacturer. The 50-gene region and
the start codon was identified by 50-RACE (specific primer
CCGCATGAAAGTAGGCGCTCTTCTCGTTGG), and the 30-gene region
and the stop codon by 30-RACE (specific primer-1 TCCAGATCTA
CATCCCGGCCGGATTGATCG). The 50-RACE product yielded
KF881795. In the case of the 30-RACE, another specific primer 2
(TACCGCGCTCCTGGAGTACGCCACGGTAGG) was generated based
on the preliminary sequence of a product with primer1 (not
shown). The resulting 30-RACE product of primer 2 yielded
KF881796. Based on the deduced start and stop codon positions
in the 50- and 30-RACE product sequences KF881795 and
KF881796, respectively, the PCR primers GGGATCCACCATGAGA
CAAGCGATGGCGTTCAGTTGC and CCCGGGCTAGTCGTCGCCGA
CATCGTCCGGCAGAACG were then designed for the PCR amplifi-
cation of the full length genes from tick larvae cDNA. The restriction
enzyme sites introduced by the primers are underlined. The PCR
products were cloned into pCR2.1-Topo and sequenced, and a PCR
error-free R. microplus RDL subunit gene (rmrdl) was selected
(KF881797). The rmrdl open reading frame was subcloned into
BamHI/EcoRV-cut pcDNA3.1(þ) via the PCR-introduced BamHI/
SmaI restriction enzyme sites yielding pcDNA3.1(þ)-rmrdl.

For the identification of the R. microplus GluCl gene, PCR was
performed using larval cDNA and the Expand High Fidelity kit
(Roche) (40 cycles of 30 min at 94 �C, 30 s at 45 �C and 1 min 30 s at
72 �C) and the two degenerate primers TGYAHIAGYAAR
ACIAAYACNGG and TCNARCCARAAIGANACCCA derived from the
conserved GluCl subunit polypeptide sequences C(N/T)SKTNTG and
WVSFWLD, respectively. The resulting 142 bp PCR fragment
TGTACGAGCAACACGAATACGGGCGAGTACAGCTGCTTGCGCGTGGA
CCTGGTGTTCAAGCGCGAGTTCAGCTACTACCTGATCCAGATCTACATC
CCGTGCTGCATGCTGGTCATCGTGTCCTGGGTATCCTTCTGGCTCG
allowed the design of nested primer pairs for 50-RACE (primers
ACACGATGACCAGCATGCAGCACGGGATG and CCAGGTCCACGCG
CAAGCAGCTGTACTCG) and 30-RACE (primers GCGAGTACAGCTGCT
TGCGCGTGGACCTG and ACATCCCGTGCTGCATGCTGGTCATCGTG).
By nested RACE reactions on tick larvae RNA, the missing cDNA
sequences of the R. microplus genewas then obtained (SMART RACE
cDNA Amplification Kit, Clontech) with generic flanking 50- and 30-
RACE primer (Clontech), as outlined by the manufacturer. The
nested RACE products were cloned into pCR2.1 and sequenced (50-
RACE, 890 bp, KF881798; 30-RACE, 818 bp, KF881799). Start and
stop codons were deduced from the 50- and 30-RACE product
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sequences, and the PCR primers GATCGATGGTACCATGAGCGTA
CATTCATGGCGCTTTTGTG and GTCTAGAGTCGACTTACTCGTCTTCCT
CGTCTTCCCGGAAGwere then designed for the PCR amplification of
the full length genes from tick larvae cDNA. The restriction enzyme
sites introduced by the primers are underlined. The PCR products
were cloned into pCR2.1-Topo and from the sequenced clones, a
PCR error-free R. microplus GluCl subunit gene version (rmglucl)
was selected (KF881800). The rmglucl open reading frames were
subcloned into KpnI/XhoI-cut pcDNA3.1(þ) via the PCR-introduced
KpnI/SalI restriction enzyme sites yielding pcDNA3.1(þ)-rmglucl.

2.4. Isolation and site-directed mutagenesis of RDL subunit genes
from C. felis and D. melanogaster

Reverse transcription of total RNA from C. felis and
D. melanogaster to cDNA was performed using the Expand Reverse
Transcriptase kit (Roche) with total RNA (0.9 mg/50 ml) as template.
For the isolation of the C. felis RDL subunit gene (cfrdl-S285), PCRwas
performed using cDNA and the Expand High Fidelity kit (Roche) (40
cycles of 30 min at 94 �C, 30 s at 45 �C and 1 min 30 s at 72 �C)
with the forward primers ATGAAGAATCCGGGCCGTCG and
GGCATGGCGGCGCTGACTCG and the corresponding reverse primer
CGCCCTCTATTTGTCTTCTCCCA. The resulting PCR products was
cloned into pCRII-TOPO, sequenced (KF881790) and subcloned
resulting in pcDNA3.1(þ)-cfrdl-S285. To change the serine at posi-
tion 285 to alanine, the coding sequence was mutagenized with the
primers GCTACACCAGCTCGAGTCGCTCTCGGAGTGACCACTGTGTG
and CAACACAGTGGTCACTCCGAGAGCGACTCGAGCTGGTGTAGC
resulting in pcDNA3.1(þ)-cfrdl-A285 (KF881791). For the identifi-
cation of D. melanogaster RDL, PCR was performed using cDNA and
the Expand High Fidelity kit (Roche) (40 cycles of 30 min at 94 �C,
30 s at 45 �C and 1 min 30 s at 72 �C) with the two primers CAC
CACCATGAGTGATTCAAAAATGGAC and GCTTGTGGACGACGCCC
TACTCCTC. The resulting PCR product was cloned into pCRII-TOPO,
sequenced (KF881792) and subcloned resulting in pcDNA3.1(þ)-
dmrdl-A302. To change the alanine at position 302 to serine,
the coding sequence was mutagenized with the primers
CGCCGGCGCGTGTGTCGCTCGGTGTGACAACCG and CGGTTGTCA
CACCGAGCGACACACGCGCCGGCG (KF881793) resulting in
pcDNA3.1(þ)-dmrdl-S302.

2.5. Bioinformatics analysis of GABACl and GluCl subunit genes

ClustalW multiple sequence alignments of the R. microplus RDL
and GluCl subunit genes and the corresponding genes from other
arthropods, the generation of phylogenetic trees and bootstrap
analyses were performed with the DNAStar Lasergene software
package. Bioinformatics analysis for the presence of endoplasmic
reticulum import sequences and transmembrane helices were
performed using SignalP 4.1 (http://www.cbs.dtu.dk/services/
SignalP/) (Petersen et al., 2011), and TMHMM 2.0 (http://www.
cbs.dtu.dk/services/TMHMM-2.0/), respectively.

2.6. Xenopus laevis oocyte expression and electrophysiology
experiments with RDL and GluCl subunit genes from
D. melanogaster, C. felis and R. microplus

The open reading frames of dmrdl-A302, dmrdl-S302, cfrdl-A285,
cfrdl-S285, rmrdl, and rmglucl were either present in pCR2.1
downstream of a T7 promoter or were subcloned into
pcDNA3.1(þ) downstream of the T7 promoter. The resulting
plasmids were linearized 30 of the gene sequence by restriction
enzyme digests resulting in 50-overhangs, and in vitro transcription
was performed to obtain 50-capped cRNA, and subsequent poly-
adenylation was performed according to the manufacturer’s
protocol (mMESSAGE mMACHINE T7 transcription kit, Ambion).
Transcripts were recovered by LiCl precipitation, dissolved in
nuclease-free water at a final concentration of w2 mg/ml, and
stored at �80 �C until use.

Defolliculated X. laevis oocytes (states V-VI) were purchased
from Ecocyte Biosciences. 50 nl cRNAs were injected using a
micromanipulator (World precision instruments). The oocytes
were incubated for 48e96 h at 17 �C in modified Barths solution
(5 mM HEPES pH 7.2, 96 mM NaCl, 2 mM KCl, 1.8 mM CaCl2, 1 mM
MgCl2, 2.4 mM Na-pyruvate). Oocytes held in bath were perfused
with Barths solution (5 mM Hepes pH 7.2, 96 mM NaCl, 2 mM KCl,
1.8 mM CaCl2, 1 mM MgCl2) at a flow rate of approximately 1.8 ml/
min, and were voltage clamped at �60 mV using the two electrode
clamp mode of a Turbo Tec-03x amplifier (NPI electronic). Elec-
trodes were pulled from borosilicate glass (Science products) using
the Puller PC-10 (Narishige group), and filled with 3 M KCl. The
electrode resistance ranged between 1 and 5 MU on the current-
passing side. Agonist solutions, freshly prepared in Barths solu-
tion from DMSO stock solutions (100 mMe1 M), with final DMSO
concentrations not exceeding 1.5% (v/v), were applied via bath
perfusion for 30 s. The resulting inward current was recorded using
CellWorksLite 5.5.1 (NPI electronic), and analysed later. An interval
of 2 min was routinely maintained between agonist applications,
which was elongated in some case to up to 5 min.

2.7. Heterologous expression of RDL or GluCl subunit genes in
HEK293 cells

For expression of arthropod RDL and GluCl subunit genes in
HEK293, pcDNA3.1(þ)-dmrdl-A302, pcDNA3.1(þ)-dmrdl-S302,
pcDNA3.1(þ)-cfrdl-A285, pcDNA3.1(þ)-cfrdl-S285, pcDNA3.1(þ)-
rmrdl and pcDNA3.1(þ)-rmglucl, respectively, were introduced into
the cells by Polyfect (Qiagen) transfection. The HEK293 cells were
cultured in Dulbecco’s modified Eagle’s medium, 10% inactivated
fetal calf serum (FCS) at 37 �C and 5% CO2, and recombinant cells
were selected by the addition of 600 mg/ml G418. Single cell cloning
was performed by the limiting dilution method in 96 well plates.
This procedure led to the following cell lines: HEK-RmRDL, HEK-
CfRDL-A285, HEK-CfRDL-S285 HEK-DmRDL-A302, HEK-DmRDL-S302,
and HEK-RmGluCl.

2.8. Cell culture procedure

For the RDL expressing cell-lines HEK-RmRDL, HEK-CfRDL-A285,
HEK-CfRDL-S285 HEK-DmRDL-A302, HEK-DmRDL-S302 the long-
term stability was tested for at least 50 passages. All cell lines
used in tests originated from passages 5 to 20. These cells were
incubated at 37 �C with 5% CO2. Cultures were split 1:6 every 3e4
days, and additional changes of medium were done as applicable.
All cell lines were cultured in the same medium (500 ml MEM,
57 mL FCS, 5.7 ml L-glutamine 200 mM, 5.7 ml NEAA (non essential
amino acids), 5.7 ml Penicillin 10000 U/ml/Streptomycin 10 mg/ml,
6.9 mL G418 stock solution with 50 mg/ml (final concentration
600 mg/ml)). To detach the cells from the cell-culture flasks the cells
were washed with PBS and incubated for 2e5 min with Accutase
(Sigma). Afterwards, dilutions with culture medium were per-
formed to the desired split ratio.

The long term stability of the WS-1 cell line (Wong et al., 1992)
was tested for >50 passages. The cells used in this test were be-
tween passage 15 and passage 18. This cell line was incubated at
37 �C with 10% CO2. Cultures were split 1:6 every 3e4 days, and
additional changes of medium were done as applicable. This cell
line was cultured in a slightly different medium (500 ml DMEM,
57 ml FCS, 11.4 ml L-glutamine 200 mM, 5.7 ml Na-pyruvate), but
passaged as described above for the HEK293 cell lines.
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2.9. Fluorescent membrane potential dye assays, EC50 and IC50
determinations of RDLs

For fluorescent membrane potential dye assays, 2e2.5� 104 cells
in 30 ml mediumwere seeded inpoly-D-lysine-coated 384well plates
and allowed to grow for 24 h. Next, 26 ml of FMP-dye RED in VSP
buffer (160 mM Na-gluconate, 4.5 mM K-gluconate, 2 mM CaCl2,
1 mM MgCl2, 10 mM glucose and 10 mM HEPES, pH 7.4) was added
to each well in a dilution corresponding to 50e100% of the con-
centration recommended by the manufacturer, and incubated at
room temperature for 30e60 min. In the case of inhibitor studies,
7 ml of test compounds and control compounds in VSP buffer/10%
DMSO were distributed into the wells and incubated at room tem-
perature for 30 min. To activate the ion channels, 7 ml of GABA was
added leading to the following final concentrations: 30 mMGABA for
the HEK-RmRDL cell line, 100 mM GABA for the HEK-CfRDL-A285 cell
line, 100 mM GABA for the HEK-CfRDL-S285 cell line, 10 mM GABA for
the HEK-DmRDL-A302 cell line,10 mMGABA for HEK-DmRDL-S302 cell
line and 10 mM GABA for WS-1 cell line. After a further 30 min in-
cubation at room temperature, fluorescence was measured at
565 nm emission wavelength with 530 nm excitation wavelength
using a Safire 2 (Tecan) or a FlexstationII384 (Molecular Devices).

2.10. Fluorescent membrane potential dye assays, EC50 and IC50
determinations of the R. microplus GluCl

For fluorescent membrane potential dye assays, 2.5 � 104 cells of
the HEK-RmGluCl line in 30 ml medium (see above) were seeded in
poly-D-lysine-coated 384 well plates and allowed to grow for 48 h.
20 ml of FMP-dye BLUE in VSP buffer (160mMNa-gluconate, 4.5 mM
K-gluconate, 2 mM CaCl2, 1 mM MgCl2, 10 mM glucose and 10 mM
HEPES, pH 7.4) was added to eachwell in a dilution corresponding to
100% of the concentration recommended by the manufacturer, and
incubated at room temperature for 30e60 min. In the case of in-
hibitor studies, 12.5 ml of test compounds and control compounds in
VSP buffer/10% DMSO were distributed into the wells and incubated
at room temperature for 30 min. To activate the ion channels, 12.5 ml
glutamate was added to 100 mM final concentrations, and fluores-
cence was measured kinetically at 510 nm excitation and 545/
565 nm emission using a FLIPRTetraII (Molecular Devices).

2.11. Analysis of data

Data were analysed using the data management system
ActivityBase� including XLfit� (IDBS: ID Business Solutions Ltd., 2
Occam Court, Surrey Research Park, Guildford, Surrey, GU2 7QB
UK).

Percentage activity after GABA stimulation was calculated as
follows:

% activity ¼ V � B
C � B

� 100%

V: mean fluorescence with test compound (GABA/glutamate
stimulated)

B: mean fluorescence of HI_control (without GABA/glutamate
stimulation)
C: mean fluorescence of LO_control (GABA/glutamate stimu-
lated positive control)
% inhibition is calculated as follows: % inhibition ¼ 100% - %
activity

IC50 values and the hill coefficients were calculated using the
four parameter equation 205 (y ¼ A þ ((B�A)/(1þ((C/x)̂D)))) from
XLfit� (IDBS: ID Business Solutions Ltd., 2 Occam Court, Surrey
Research Park, Guildford, Surrey, GU2 7QB UK) and the option
unlock.

2.12. Evaluation of insecticidal and acaricidal potency of
compounds

Unfed adult fleas of C. felis (adapted to artificial feeding, Wade
and Georgi, 1988) were collected from long term in vitro cultures.
Defibrinated blood was offered to adult fleas through a parafilm
membrane for feeding and to induce oviposition. The laid eggs
were reared to larvae, which were then fed on a blood meal
medium until pupation. The unfed adult fleas emerging from
these pupae were used in this study to assess the insecticidal
activity after feeding on declining concentrations of the test
compounds. Flies of Stomoxys (S.) calcitrans and Lucilia (L.)
cuprina, and mosquitoes of Aedes (A.) aegypti were collected from
in vitro artificial rearing systems. The adults were fed with defi-
brinated blood using a blood-soaked cotton swab (Stomoxys
calcitrans), a parafilm membrane (Aedes aegypti), or with a pro-
tein/sugar medium (Lucilia cuprina). Organic vegetable medium
(consisting of wheat and lucerne as major components) was
offered to adult S. calcitrans for oviposition. Eggs were reared in
the medium for development from larval hatch to pupation. The
unfed adult flies emerging from these pupae were used in this
study to assess the insecticidal activity after feeding on declining
concentrations of the test compounds. Meat medium was offered
to adult L. cuprina for oviposition. The freshly hatched fly larvae
(L1) were harvested and used in this study to assess the insec-
ticidal activity after exposure to declining concentrations of the
test compounds. A moist filter paper was offered to adult
A. aegypti for oviposition. The laid eggs were exposed to water
until larval hatch. The freshly hatched mosquito larvae were
harvested and used in this study to assess the insecticidal
activity after exposure to declining concentrations of the test
compounds.

Engorged females of the ixodide (hard-bodied) tick R. microplus
were collected after dropping from cattle which had been infested
with larvae approximately 3 weeks earlier, and used in this study to
assess the acaricidal activity after immersion in declining concen-
trations of the test compounds. Each tick stage (larva, nymph,
adult) of the ixodide tick Rhipicephalus sanguineus was reared on
rabbits until full engorgement and dropping from the host. Fully
engorged larvae/nymphs were incubated under controlled climate
conditions until molting into the next stage (nymphs/adults). The
unfed adults were used in this study to assess the acaricidal activity
after immersion in declining concentrations of the test compounds.
Nymphal and adult stages of the argaside (soft-bodied) tick Orni-
thodoros (O.) moubata were reared on rabbit or cattle until full
engorgement and dropping from the hosts. Unfed nymphs (N3)
were used in this study to assess the acaricidal activity after feeding
on declining concentrations of the test compounds. All parasite
cultures were maintained at MSDAnimal Health Innovation GmbH,
Schwabenheim, Germany.

To test for insecticidal and/or acaricidal activity, the com-
pounds were dissolved in a premix consisting of DMSO and
emulsifiers, and diluted with deionized water or blood to obtain
a stock solution of 1 mg/ml (1000 parts per million, ppm).
Further dilutions (100 ppm, 10 ppm, 1 ppm, etc.) were generated
from this stock using either deionized water (L. cuprina,
A. aegypti, R. microplus, R. sanguineus) or blood (C. felis,
S. calcitrans, Ornithodoros moubata). Deltamethrin and imidaclo-
prid were used as reference insecticides/acaricides. For C. felis, 20
adult cat fleas per compound solution were continuously fed
with a medicated blood diet through a parafilm membrane until



Consensus #1   ...........M............L....A...............A....G......NI..IL..F....YDKRVRPNYGG.PVEVGVTM...SIS..SE
---------+---------+---------+---------+---------+---------+---------+---------+---------+---------+

10        20        30        40        50        60        70        80        90        100
---------+---------+---------+---------+---------+---------+---------+---------+---------+---------+

DmelGABA.pro   MSDSKMDKLARMAPLPRTPLLTIWLAINMALIAQETGHKRIHTVQAATGGGSMLGDVNISAILDSFSVS-YDKRVRPNYGGPPVEVGVTMYVLSISSVSE         99
CfelisGABA.pro -----------MAALTRATMGALLLALSPALLL-----IWLPYADAATGGGSMYGDVNISAILDNFSVS-YDKRVRPNYGGPPVEVGVTMYVLSISSLSE         83
RmicGABA.pro   -----------MRQAMAFSCWSFVLFVAVAVTS-----AGRDNGPAPLRPGQTQRGQNITQILNAFFTRGYDKRVRPNYGGVPVEVGVTMQIISISTVSE         84

Consensus #1   V.MDFT.DFYFRQ.W.D.RL...K.P..E...VG.E....IWVPDTFF.NEK..YFH.ATT.N.F.R....G...RSIRLT.TASCPM.L.YFPMDRQ.C
---------+---------+---------+---------+---------+---------+---------+---------+---------+---------+

110       120       130       140       150       160       170       180       190       200
---------+---------+---------+---------+---------+---------+---------+---------+---------+---------+

DmelGABA.pro   VLMDFTLDFYFRQFWTDPRLAYRKRPGVETLSVGSEFIKNIWVPDTFFVNEKQSYFHIATTSNEFIRVHHSGSITRSIRLTITASCPMNLQYFPMDRQLC        199
CfelisGABA.pro VKMDFTLDFYFRQFWTDPRLAYRKRPGVETLSVGSEFIKNIWVPDTFFVNEKQSYFHIATTSNEFIRIHHSGSITRSIRLTITASCPMNLQYFPMDRQLC        183
RmicGABA.pro   VQMDFTSDFYFRQSWRDERLSFQKSPDLESMTVGAEVAEKIWVPDTFFANEKSAYFHAATTPNTFLRIGSGGEVFRSIRLTVTASCPMDLRYFPMDRQAC        184

Consensus #1   .IEIESFGYTM.DIRY.W..G..SV....EV.LPQF.VLGH.Q.A.E..LTTGNYSRL.CEI.F.RSMGYYLIQIYIP.GLIV.ISWVSFWL.R.A.PAR
---------+---------+---------+---------+---------+---------+---------+---------+-TM1--------+---------+

210       220       230       240       250       260       270       280       290       300
---------+---------+---------+---------+---------+---------+---------+---------+---------+---------+

DmelGABA.pro   HIEIESFGYTMRDIRYFWRDGLSSVGMSSEVELPQFRVLGHRQRATEINLTTGNYSRLACEIQFVRSMGYYLIQIYIPSGLIVVISWVSFWLNRNATPAR        299
CfelisGABA.pro HIEIESFGYTMRDIRYKWNEGPNSVGVSNEVSLPQFKVLGHRQRAMEISLTTGNYSRLACEIQFVRSMGYYLIQIYIPSGLIVIISWVSFWLNRHATPAR        283
RmicGABA.pro   TIEIESFGYTMKDIRYRWSDGDTSVRIAKEVELPQFKVLGHVQKAKEVALTTGNYSRLVCEIRFARSMGYYLIQIYIPAGLIVVISWVSFWLHRNASPAR        284

Consensus #1   VALGVTTVLTMTTLMSSTNAALPKISYVKSIDVYLGTCFVMVF..LLEYA.VGY..KRI.MRK.R.....K.AEQ.........................
--------- TM2+--- ----------+---------+--TM3-------+------+---------+---------+---------+---------+

310       320       330       340       350       360       370       380       390       400
---------+---------+---------+---------+---------+---------+---------+---------+---------+---------+

DmelGABA.pro   VALGVTTVLTMTTLMSSTNAALPKISYVKSIDVYLGTCFVMVFASLLEYATVGYMAKRIQMRKQRFMAIQKIAEQKKQQLDGANQQQANPNPNAN----- 394
CfelisGABA.pro VALGVTTVLTMTTLMSSTNAALPKISYVKSIDVYLGTCFVMVFASLLEYATVGYMAKRIQMRKQRFMAIQKIAEQKKLQAEG------------------ 365
RmicGABA.pro   VALGVTTVLTMTTLMSSTNAALPKISYVKSIDVYLGTCFVMVFTALLEYAAVGYLGKRITMRKTRCQQLAKLAEQHRQRCAAASSNEPSSEPLLASPEVS        384

Consensus #1  ..................G.P...................................QT............................EVR.K..DPK..SK
---------+---------+---------+---------+---------+---------+---------+---------+---------+---------+

410       420 430       440       450       460       470       480       490       500
---------+---------+---------+---------+---------+---------+---------+---------+---------+---------+

DmelGABA.pro   ----VGGPGGVGVGPGGPGGPGGGVNVGVGMGMGPEHGHGHGHHAHSHGH-PHAPKQTVSNRPIGFSNIQQNVGTRGCSIVGPLFQEVRFKVHDPKAHSK        489
CfelisGABA.pro ---------------GGPGGPGD----------------------HSH-----APKQT----------------------------EVRFKVRDPKAHSK        395
RmicGABA.pro   IVKTVGSCQVCPAAVASQGQPREAPPTGFTMGRRGADQCCPGLQGSCQVCPAAVASQTQQQAP-----PP-----G-------IPMEVRLKMVDPKGFSK        467

Consensus #1   ..TLENT.NG................................................P.......NKL.G..PS.IDKYSR.VFPVCFVCFNLMYWI.Y
---------+---------+---------+---------+---------+---------+---------+---------+---------+TM4------+

510       520       530       540       550       560       570       580       590       600
---------+---------+---------+---------+---------+---------+---------+---------+---------+---------+

DmelGABA.pro   GGTLENTVNGGRGGPQSHGPGPGQGGGPPGGGGGGGGGGGPPEGGGDPEAAVPAHLLHPGKVKKDINKLLGITPSDIDKYSRIVFPVCFVCFNLMYWIIY        589
CfelisGABA.pro GGTLENTINGGRGGAAAD-E----------------------E----SAAPAPQHLIHPG---KDINKLLGITPSGIDKYSRIVFPVCFVCFNLMYWIMY        465
RmicGABA.pro   SSTLENTVNG-------------------------------------APDIEAAFCKNP-------NKLFGVSPSDIDKYSRVVFPVCFVCFNLMYWIIY        523

Consensus #1   LH.SDV..DD....G...-
---------+---------

610       
---------+---------

DmelGABA.pro   LHVSDVVADDLVLLGEE                                                                                           606
CfelisGABA.pro LHVSDVVADDLVLLGEDK.                                                                                         484
RmicGABA.pro   LHISDVLPDD---VGDD.                                                                                          538

Fig. 2. Alignment of RDL protein sequences from D. melanogaster, C. felis and R. microplus. C. felis (KF881790) and R. microplus RDL (KF881797) polypeptide sequences identified in
this study were aligned with D. melanogaster RDL (M69057). The open arrow indicates the peptide sequence used for the design of the single degenerate primer used for primer
extension. The peptide sequences used for RT-PCR degenerate primer pair design are marked with filled horizontal arrows. The predicted endoplasmic reticulum (ER) import signal
sequences are highlighted by grey shading of black letters. The Cys loop is indicated by a half-circle connection and the four transmembrane helices (TM1-TM4) are highlighted by
black bars under the consensus sequence.
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assessment of mortality (after approximately 48 h). For
S. calcitrans, 25 adult flies per compound solution were contin-
uously fed with a medicated blood diet until assessment of
mortality (after approximately 24 h). For L. cuprina, the com-
pound solutions were mixed 9 þ 1 (w/v) with ground beef meat.
Approximately 20 larvae L1 were added per compound solution
and incubated until assessment of mortality and inhibition of
larval development (after approximately 48 h). For A. aegypti,
liquid growth medium (MSD Animal Health Innovation GmbH)
was used for serial dilutions with the compound in 128-well
trays. Approximately 20 larvae L1 were added per compound
solution and incubated until assessment of mortality and inhi-
bition of larval development (after approximately 48 h). For
R. microplus, 20 engorged adults were immersed in 20 ml com-
pound solution for approximately 5 min. Thereafter, the ticks
were dried off and incubated in a petri dish lined with a filter
paper until assessment of mortality and oviposition (after
approximately 3 weeks). For R. sanguineus, 20 unfed adults were
immersed in 20 ml compound solution for approximately 5 min.
Thereafter, the ticks were dried off and incubated in a petri dish
lined with a filter paper until assessment of mortality (after
approximately 48 h). For O. moubata, nymphs N3 were fed on a
medicated blood diet through a parafilm membrane until
engorgement. 10 engorged nymphs were collected and then kept
under controlled climate conditions in a petri dish lined with a
filter paper to enable the assessment of mortality and inhibition
of molting into the next stage (after approximately 3 weeks).
3. Results

3.1. Identification of R. microplus genes encoding RDL and GluCl
subunits and full length cDNA cloning

For the identification of the RDL subunit gene of R. microplus
(rmrdl), specific cDNA was enriched by reverse transcription of
larval total RNA using a degenerate primer deduced from the
conserved peptide sequence PKISYVK (Fig. 2). The reaction product
was then used as a template for RT-PCR using a degenerate primer
pair from the conserved peptide sequences (N/K)IWVPDT and
WVSFW(L/I)N) (Fig. 2). An RT-PCR product of 460 bp was cloned
and sequenced (KF881794). The deduced protein sequence showed
extensive sequence identities (74.5%) to the corresponding region
of the D. melanogaster RDL gene dmrdl (M69057, ffrench-Constant
et al., 1991) indicating that the correct gene fragment had been
identified. The missing cDNA sequences of the R. microplus RDL
gene (rmrdl) were obtained by 50- and 30-RACE using tick larval total
RNA as template (KF881795 and KF881796, respectively). Based on
the deduced start and stop codon positions in the 50- and 30-RACE
product sequences of R. microplus rmrdl, PCR primers were then
designed for the PCR amplification of the respective full length
genes from tick cDNA (KF881797).

In the case of R. microplus GluCl, the gene was identified
by degenerate primer PCR with a primer pair derived from
the conserved peptide sequences C(N/T)SKTNTG and WVSFWLD
(Fig. 3). The resulting PCR product of 142 bp was cloned
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and sequenced. The deduced protein sequence (CTSNTNTGEY
SCLRVDLVFKREFSYYLIQIYIPCCMLVIVSWVSFWL) was 89.4% iden-
tical to the corresponding region in the D. melanogaster GluCl gene
(dmglucl, U58776, Cully et al., 1996), which was a strong indication
that an orthologous gene fragment had been identified. The start
and stop codons of the R. microplus GluCl gene were identified by
sequencing 50-RACE and 30-RACE products (KF881798and
KF881799, respectively). By the use of flanking primers around the
start and stop codons and PCR on R. microplus larval cDNA, a full
length gene of 1364 bp was identified (KF881800, rmglucl). The tick
protein was 71.8% identical to the D. melanogaster U58776 poly-
peptide sequence (Cully et al., 1996), suggesting that the cloned
gene rmglucl could be the tick ortholog of dmglucl. However, with
respect to exon 3, rmglucl of this study is more similar to the
D. melanogaster glucl splice variant AJ002232 described by
Semenov and Pak (1999).

3.2. Full length cDNA cloning of C. felis and D. melanogaster RDL
subunits

The gene encoding C. felis RDL (cfrdl) was isolated by (RT-)PCR
using a full length primer pair derived from a published sequence
(US7476728) using C. felis cDNA. A PCR error-free version of the
C. felis RDL cDNA (KF881790), which corresponds to dmrdl splice
variant ac (see below) was used for further studies. This form (cfrdl-
S285) represented a presumably dieldrin-resistant form of the re-
ceptor, with a serine at the position corresponding to amino acid
302 in dmrdl (ffrench-Constant et al., 1993a,b). Site-directed
mutagenesis at this position was performed, resulting in the
C. felis RDL cDNA cfrdl-A285, the presumably dieldrin-sensitive form
of the gene (KF881791).

For comparison, the gene encoding D. melanogaster RDL (dmrdl)
was isolated by PCR using a full length primer pair derived from the
Consensus #1     M................................F................
---------+---------+---------+---------+---------+

10        20        30        40        5
---------+---------+---------+---------+---------+

DmelGluCl.pro    MGSGHY-----FWAILYFASLCSASLANNAKVNFRE--------------
MdomGluCl.pro    MGTGHF-----FWVIFYFASLCSASLANNAKVNFRE--------------
Cel-GluCla.pro  MATWIVG---KLIIASLILGIQAQQARTKSQDIFEDDNDNGTTTLESLAR
RmicGluClSV2.pro MSVHSWRFCVPLVALAFFLLILLSCPSAWGKANFRA--------------

Consensus #1     ...R.I..I....MEY..Q.T.RE.W.D.RL.......G......LT...
---GG----+---------loop D ---+---------+---------+

110       120       130       140       1
---------+---------+---------+---------+---------+

DmelGluCl.pro    LFVRSIMTISDIKMEYSVQLTFREQWTDERLKFDDIQ-GRLKYLTLTEAN
MdomGluCl.pro    LFVRSIMTISDIKMEYSVQLTFREQWTDERLKFDDMQ-GRLKYLTLTEAN
Cel-GluCla.pro   MLLRTISKIDVVNMEYSAQLTLRESWIDKRLSYGVKGDGQPDFVILTVGH
RmicGluClSV2.pro IFLRSISKIDDLSMEYTVQMTFREQWRDERLQYDDLG-GQVRYLTLTEPD

Consensus #1     L..YP.D.Q.CS....SY..TT.D...LWKE..P.Q....L...LP.F.L
---------+------+B-----------+----- loop F ------+

210       220       230       240       2
---------+---------+---------+---------+---------+

DmelGluCl.pro    LKLYPLDRQICSLRMASYGWTTNDLVFLWKEGDPVQVVKNLH--LPRFTL
MdomGluCl.pro    LKLYPLDRQICSLRMASYGWTTNDLVFLWKEGDPVQVVKNLH--LPRFTL
Cel-GluCla.pro LQYYPMDVQQCSIDLASYAYTTKDIEYLWKEHSPLQLKVGLSSSLPSFQL
RmicGluClSV2.pro LKFYPLDKQICSIVMVSYGYTTEDLVFLWKEGDPVQVTKNLH--LPRFTL

Consensus #1     SFW.D....PARV.LGVTTLLTM..Q..GIN..LPPVSY.KAIDVW.G.C
---------+---------TM2-------+---------+---------+

310 320       330       340       3
---------+---------+---------+---------+---------+

DmelGluCl.pro    SFWLDQGAVPARVSLGVTTLLTMATQTSGINASLPPVSYTKAIDVWTGVC
MdomGluCl.pro    SFWLDQGAVPARVSLGVTTLLTMATQTSGINASLPPVSYTKAIDVWTGVC
Cel-GluCla.pro   SFWFDRTAIPARVTLGVTTLLTMTAQSAGINSQLPPVSYIKAIDVWIGAC
RmicGluClSV2.pro SFWLDPTSIPARVSLGVTTLLTMATQISGINASLPPVSYTKAIDVWTGVC

Consensus #1     ........F.....V.............Q.....................
---------+---------+---------+---------+---------+

410       420       430       440       4
---------+---------+---------+---------+---------+

DmelGluCl.pro    LDTDSNATFAMKPLVRHPGDPLALEKRLQCEVHMQAPKRPNCCKTWLSKF
MdomGluCl.pro    LDTDSNATFAMKPLVRHPGDPLALEKLRQCEVHMQAPKRPNCCKTWLSKF
Cel-GluCla.pro   HNDVPTKVFNQEEKVRTVP-----LNRRQMNSFLNLLET-------KTEW
RmicGluClSV2.pro LEDG-ATTFAMRPLVHHHG-ELHADKLRQCEVHMKTPKT-NLCKAWLSRF

Fig. 3. Alignment of GluCl protein sequences from D. melanogaster, C. felis and R. microplus
aligned with those of D. melanogaster GluCl (U58776), M. domestica GluCl (AB177546), and C.
marked with horizontal arrows. The predicted endoplasmic reticulum (ER) import signal se
half-circle connection and the four transmembrane helices (TM1-TM4) as well as the loops A
Wolstenholme, 2012) are highlighted by black bars under the consensus sequence. Conserv
database sequence M69057 and fly total cDNA. A PCR error-free
version (KF881792) corresponding to splice variant ac was used
for further studies. This dmrdl gene version corresponded to the
dieldrin-sensitive form with an alanine at position 302 (dmrdl-
A302). To make the dieldrin-resistant form available for further
studies, site-directed mutagenesis at this position was performed
resulting in the gene version dmrdl-S302 (KF881793).

3.3. Bioinformatics analysis of R. microplus, C. felis RDL subunits
and R. microplus GluCl, and their functional expression in X. laevis
oocytes

Thededucedpolypeptide sequences of the putative RDL andGluCl
subunit genes from R. microplus and C. felis identified in this study
showedmany of the elements typical of the ligand-gated ion channel
superfamily: first, they all contained signal sequences for import into
the endoplasmic reticulum, as indicated by high scores (RDL: 0.924
for C. felis, 0.874 for R. microplus; GluCl: 0.906 for R. microplus) in the
SignalP 4.1 algorithm (Petersen et al., 2011). Second, the polypeptides
of all three subunits possessed the conserved cysteines required for
the formation of the cystine loop, the hallmark of the protein family
(Figs. 2 and 3). Third, prediction of transmembrane helices with
TMHMM 2.0 showed for all three polypeptides, and independent of
the presence of A or S at position 285 in CfRDL, the presence of four
such helices each (Figs. 2 and 3), with the arrangement of extracel-
lular and intracellular domains in agreement with the known archi-
tecture of ligand-gated ion channels (not shown).

In the case of GluCl, comparisons of the R. microplus protein
described in this study (Fig. 3) with the Caenorhabditis elegansGluCla
subunit X-ray structure (Cully et al., 1994; Hibbs and Gouaux, 2011)
showed, that 8 out of 9 residues described in the nematode receptor
as being part of the loops AeG and being involved in L-glutamate
binding are conserved in the tick sequence (Fig. 3).
...................L......G.YD.R.RP...N...GP..V..N
---------+---------+---------+---------+---------+
0        60        70        80        90        100
---------+---------+---------+---------+---------+
--------------KEKKVLDQILGAGKYDARIRPSGINGTDGPAIVRIN         67
--------------KEKKVLDQILGAGKYDARIRPSGINGTDGPAIVRIN         67
LTSPIHIPIEQPQTSDSKILAHLFTSG-YDFRVRPPTDNG--GPVVVSVN         94
--------------IEKRILDSIIGQGRYDCRIRPMGINNTDGPCVVRVN         72

..W.PD.FF.NEK....H.I..PNV..RI...G.VL.S.RISL.L.CPM.
---- loop A--------+---------+---- loop E--------+
50       160       170       180       190       200
---------+---------+---------+---------+---------+
RVWMPDLFFSNEKEGHFHNIIMPNVYIRIFPNGSVLYSIRISLTLACPMN        166
RVWMPDLFFSNEKEGHFHNIIMPNVYIRIFPNGSVLYSIRISLTLACPMN        166
QIWMPDTFFPNEKQAYKHTIDKPNVLIRIHNDGTVLYSVRISLVLSCPMY        194
KLWKPDLFFSNEKEGHFHNIIMPNVLLRIHPNGDVLFSIRISLVLSCPMN        171

....T.YC.S.TNTG.YSCL.......REFS.YL.Q.YIP.CMLVIVSWV
------- loop C +---------+---------+-TM1-----+
50       260       270       280       290       300
---------+---------+---------+---------+---------+
EKFLTDYCNSKTNTGEYSCLKVDLLFRREFSYYLIQIYIPCCMLVIVSWV        264
EKFLTDYCNSKTNTGEYSCLKVDLLFKREFSYYLIQIYIPCCMLVIVSWV        264
TNTSTTYCTSVTNTGIYSCLRTTIQLKREFSFYLLQLYIPSCMLVIVSWV        294
ERFQTDYCTSRTNTGEYSCLRVDLVFKREFSYYLIQIYIPCCMLVIVSWV        269

.TF.F.ALLEFALVN........................E..........
-----TM3-+---------+---------+---------+---------+
50       360       370       380       390       400
---------+---------+---------+---------+---------+
LTFVFGALLEFALVNYASRSGSNKANMHKENMKKKRRDLEQASLDAASDL        364
LTFVFGALLEFALVNYASRSGSNKANMHKENMKKKRRDLEQASIDAASDL        364
MTFIFCALLEFALVNHIANKQGVERKARTE-----REKAEIP---LLQNL        386
LTFVFGALLEFALVNYASRSDSRRQNTQKQ--KQRKWELEPP---LDSDH        364

.......SKR.D..SR..FP..F..FN..YW.............
---------+---------+--TM4----+---------+----
50       460       470       480       490  
---------+---------+---------+---------+----
PTRQCSRSKRIDVISRITFPLVFALFNLVYWSTYLFREEEDE                456
PTRQCSRSKRIDVISRITFPLVFALFNLVYWSTYLFREEEDETF              458
ND----ISKRVDLISRALFPVLFFVFNILYWSRFGQQNVLF                 461
PT----RSKRIDVVSRIFFPLMFALFNLVYWTTYLFREDEEDE.              451

. The R. microplus GluCl polypeptide sequence identified in this study (KF881800) was
elegans GluCla (U14524). The peptide sequences used for degenerate primer design are
quences are highlighted by grey shading of black letters. The Cys loop is indicated by a
-G identified in X-ray structure analysis of C. elegans GluCla (Hibbs and Gouaux, 2011;
ed residues involved in L-glutamate agonist binding are highlighted by black circles.



Fig. 5. Examples for electrical current responses of homomeric C. felis and R. microplus
RDL and GluCl ion channels expressed in Xenopus laevis oocytes. (A) R. microplus RDL;
(B) C. felis RDL-A285; (C) C. felis RDL-S285; (D,E) R. microplus GluCl. The identity, con-
centration, and length of application of applied agonists are indicated; L-Glu: L-
glutamate.
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Construction of a DNASTAR/ClustalW-based molecular tree of
polypeptide sequences (Fig. 4) showed, that the R. microplus and
C. felis RDL subunits form a cluster with the corresponding protein
family, while the same is observed for the R. microplus CluCl subunit
in their corresponding protein family. Furthermore, the tick se-
quences are in their respective subclusters of acarid GluCl and RDL
subunits, while the C. felis RDL clustered in the respective insect
subfamily (Fig. 4).

The functionality of all rdl and glucl subunit genes identified and
isolated in this study was investigated by X. laevis oocyte electro-
physiology experiments after injection of in vitro-transcribed,
capped, polyadenylated cRNA. In the case of the tick gene rmrdl,
application of GABA resulted in strong currents of up to 12 mA
(Fig. 5A), suggesting that the channel subunits were assembled into
functional homomers in the oocytes. Similarly, Xenopus oocyte
expression of cfrdl-A285 and cfrdl-S285 (Fig. 5B and C), as well as
dmrdl-A285 and dmrdl-S285 (not shown) resulted in currents in the
range of 5 mA. Expression of the tick rmglucl gene in Xenopus oo-
cytes led to ion channels that were reversibly opened by glutamate
with currents up to up to 7 mA (Fig. 5D), while application of iver-
mectin onto this receptor led to the expected permanent ion
channel opening (Fig. 5E).

3.4. Generation of arthropod RDL- and GluCl-expressing HEK293
cell lines, development of a membrane potential fluorescent dye
assay, and characterization of agonist and antagonist pharmacology

To investigate the effects of agonists and antagonists on the
rdl- or glucl-encoded arthropod RDL and GluCl subunits in more
detail, transgenic clonal HEK293 cell lines were generated, that
Fig. 4. Amino acid sequence identity relationships of R. microplus RDL, C. felis RDL and R. microplus GluCl to other RDL/GABACl and GluCl subunits. The dendrogram (DNAStar) was
derived from CLUSTALW-aligned protein sequences of R. microplus RDL (Rmic-GABACl, KF881797), C. felis RDL (Cfelis-GABACl, KF881790), R. microplus GluCl (Rmic-GluCl, KF881800)
identified in this study (highlighted by black arrows) together with the RDL subunits of D. melanogaster (Dmel-GABACl, M69057),M. domestica (Mdom-GABACl AB177547), L. cuprina
(Lcup-GABACl, AF024647), Anopheles gambiae (Agamb-GABACl, XM_316071), Plutella xylostyla (Pxyl-GABA-Cl, EU273945), Homarus americanus (Hame-GABACl, AY098943), Der-
macentor variabilis (Dvar-GABACl, BD432650), Tetranychus urticae, (Turtic-GABACl, AB634459), Ixodes scapularis (Iscap-GABACl, XM_002411520), Metaseiulus occidentalis (Mocci-
GABACl, XM_00373780), Caenorhabditis elegans (unc49A, AF151640; unc49B2, AF151642; unc49C, AF151644), Rattus norvegicus (GABACl-a1, NM_183326; GABACl-g2, NM_183327),
and the GluCl subunits of D. melanogaster (Dmel-GluCl, U58776), M. domestica (Mdom-GluCl AB177546), Anopheles gambiae (Agamb-GluCl, XM_321696), Plutella xylostyla (Pxyl-
GluCl, GQ221939), Apis mellifera (Amell-GluCl, NM_001077809), Rhipicephalus sanguineus (Rsang-GluCl, GQ215234), Ixodes scapularis (Iscap-GluCl, XM_002413465), Tetranychus
urticae, (Turtic-GluCl, AB567687), Caenorhabditis elegans (GluCla-2B, AJ000537; GluCla, U14524; AVR15, AJ243914; AVR14, NM_001025791). Furthermore, Rattus norvegicus glycin-
gated chloride channel sequences were included (RnorvGlycineR-1a1, NM_012568; RnorvGlycineR-a2, NM_013133), and the Gallus gallus nicotinic receptor a2 subunit (Ggallus-
NicR-a2, NM_204815) served as an outgroup.
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stably express either DmRDL-A302, DmRDL-S302, CfRDL-A285,
CfRDL-S285, RmRDL, or RmGluCl. In addition, a rat GABACl-
expressing cell line, derived from the transfection of rat GABACl
a1, b1 and g2 subunit genes into HEK293 cells (Wong et al., 1992)
was purchased from ATCC, and used as a reference. A membrane
potential dye assay was established, that allowed the determi-
nation of doseeresponse curves and effective concentrations 50%
(EC50s) of specific agonists (Fig. 6A and C). The GABA EC50s for all
GABACls investigated in this study were in the low mM range, with
DmRDL being the most sensitive receptor, and the Hill coefficients
suggested pronounced positive cooperativity for all GABA re-
ceptors investigated (Table 1, see Fig. 6C as an example). Only little
differences were seen between the GABA EC50s and Hill co-
efficients of the DmRDL-A302 versus DmRDL-S302 and of the
CfRDL-A285 versus CfRDL-S285 receptor versions. The RmGluCl
showed an EC50 for the natural ligand L-glutamate ofw18 mM, and
the Hill coefficient suggested that this tick receptor does not show
any cooperativity (Table 1, Fig. 6A).

By contrast to the findings on RDL EC50s for the natural agonist
GABA, major differences were detected with respect to sensitivity
to antagonists: when the inhibition potencies of dieldrin and pic-
rotoxinin were analysed on the GABA receptor compendium, IC50s
in the low mM to high nM range could be determined on DmRDL-
A302 and CfRDL-A285 for these two antagonists. However, on the
corresponding S302/S285 ion channel versions, IC50s could not be
Fig. 6. Examples for membrane fluorescence dye assay agonist and antagonist responses of
cells. (A) RmGluCl, L-glutamate stimulation dose response; (B) RmGluCl, 100 mM L-glutamate
RmRDL, 30 mM GABA, fluralaner inhibition dose response; (E) CfRDL-S285, 100 mM GABA, flur
squares), 100 mM GABA, dieldrin inhibition dose response.
determined due to very low receptor sensitivities, or, in the case of
CfRDL-S285 and picrotoxinin, the IC50 wasw25 � higher than on its
CfRDL-A285 counterpart (Table 1, and Fig. 6F). These data confirmed
the expected dieldrin resistance phenotypes reported for the
DmRDL A302 ➔ S302 mutation, and the corresponding RDL mutants
on other insect receptors (ffrench-Constant et al., 1993a,b; ffrench-
Constant, 1994). Dieldrin showed very poor antagonism on the rat
GABACl investigated in this study (IC50 > 30 mM), while the cattle
tick receptor proved to be highly sensitive to this organochlorine
cyclodiene, showing an IC50 in the low nM range. For the convul-
sant picrotoxinin, both the rat GABACl and the tick RDL exhibited
IC50s in the low mM range.

In the case of the ectoparasiticidal market product fipronil
(Fig. 1), the DmRDL-A302 variant showed an IC50 of w36 nM, while
the dieldrin-resistant S302 variant was w18-fold less sensitive to
this drug (Table 1). This suggested that the A302➔ S302 mutation has
also a pronounced negative influence on fipronil activity, a result in
agreement with earlier D. melanogaster studies (Hosie et al., 1995).
By contrast, no such negative influence of the A285 ➔ S285 mutation
was seen on fipronil activity towards CfRDL, as both forms had IC50s
around 10 nM. Also, the R. microplus RDL displayed a fipronil IC50 of
w8.5 nM, while this phenylpyrazole compound had no inhibitory
activity on the rat GABACl analysed in this study. Furthermore, it
was observed that RmGluCl is strongly inhibited by fipronil in the
nM range (Table 1).
homomeric C. felis and R. microplus RDL and GluCl ion channels expressed in HEK293
, fluralaner inhibition dose response; (C) RmRDL, GABA stimulation dose response; (D)
alaner inhibition dose response; (F) CfRDL-A285 (open squares) versus CfRDL-S285 (filled



Table 1
GABACl and GluCl channels: EC50 values and Hill coefficients for specific agonists, IC50 values of antagonists.

Rat GABACl
(a1b1g2; WS-1)

DmRDL-A302 DmRDL-S302 CfRDL-A285 CfRDL-S285 RmRDL RmGluCl

EC50 (mM)
GABA 1.9 � 0.7 1.2 � 0.3 1.4 � 0.4 19.2 � 2.6 17.7 � 2.6 9.8 � 2.7 17.8 � 2.8

(L-glutamate)
Hill coefficient
GABA 1.82 � 0.28 2.16 � 0.36 1.97 � 0.73 2.30 � 0.49 2.48 � 0.38 2.01 � 0.02 1.10 � 0.07

(L-glutamate)
IC50 (nM)
Dieldrin >30,000 3301 � 1154 >30,000 550 � 189 >30,000 <9 n.d.
Picrotoxinin 4539 � 574 773 � 386 >30,000 346 � 199 9980 � 3769 2017 � 1774 n.d.
Fipronil >30,000 36.3 � 8 663 � 236 10.0 � 6.5 10.8 � 1.8 8.5 � 4.1 60.7 � 16.5
Fluralaner >30,000 1.6 � 0.4 2.8 � 1.5 0.45 � 0.4 1.7 � 0.7 1.6 � 0.8 82.5 � 14.1

�Standard deviation derived from at least six measurements.
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The novel isoxazoline ectoparasiticide fluralaner showed
significantly higher inhibitory activity (5e236-fold) than fipronil
on all five arthropod RDLs investigated in this study. The observed
IC50s ranged from 2.8 nM (DmRDL-S302) to as low as 0.45 nM
(CfRDL-A285), while no inhibitory activity on rat GABACl was found
(Table 1, Fig. 6E as example). Only small changes in fluralaner IC50s
were observed for the dieldrin-resistant versus the dieldrin-
sensitive insect RDL forms. Fluralaner was also a potent inhibitor
of RmGluCl, with an IC50 of w80 nM (Fig. 6B, Table 1), which is in
the same range as seen for fipronil.

3.5. Ectoparasiticidal activity of fluralaner in comparison with
dieldrin, fipronil, imidacloprid, and deltamethrin

The ectoparasiticidal activity of fluralaner was investigated us-
ing in vitro test systems on four insect parasites, the cat flea C. felis,
the stable fly S. calcitrans, the sheep blowfly L. cuprina and the
yellow fever mosquito A. aegypti, as well as on three tick species,
the hard-bodied R. microplus (cattle tick) and R. sanguineus (brown
dog tick), and the soft-bodied tick O. moubata. Parasiticidal potency
was assessed in comparison with dieldrin and the current market
product insecticides and acaricides fipronil, imidacloprid and
deltamethrin.

The cat flea colony used in our study exhibited the cfrdl-S285
genotype expected to confer dieldrin resistance. Indeed, the fleas
survived up to 100 ppm dieldrin exposure, confirming that the
C. felis RDL resistance genotype also translates into a phenotype.
Fluralaner was not affected by this dieldrin resistance and killed
exposed fleas at concentrations as low as 0.01 ppm. Remarkably,
this isoxazoline derivative was superior to the marketed com-
pounds fipronil and imidacloprid in its flea killing activity by one
order of magnitude (Table 2). When applied to larvae from blowfly
Table 2
Insecticidal and acaricidal activity of fluralaner and other selected ectoparasiticidal mark

Fluralaner Fipronil

Threshold of mortality�90% (ppm)

Ctenocephalides felis, adult fleasa �0.01 �0.1

Stomoxys calcitrans, adult fliesa �1 �1
Lucilia cuprina, fly larvae L1b �1 �100
Aedes aegypti, mosquito larvae L1c �0.0000012 �0.02
R. microplus, engorged female ticksc �1 �3.9
Rhipicephalus sanguineus adult ticksc �1 �125
Ornithodoros moubata, tick nymphs N3a �0.0001 �0.001

n. d.: not determined.
a Medicated blood diet.
b Medicated meat diet.
c Medicated immersion fluid.
and from mosquito, fluralaner was at least one to two orders of
magnitude more potent than all reference compounds for
L. cuprina, and proved to be even about four orders of magnitude
more potent against A. aegypti. In the case of adult engorged female
hard ticks as well as soft tick nymphs, fluralaner killed these par-
asites at lower concentrations than the established acaricide
fipronil. Furthermore, fluralaner killed engorged female
R. microplus at concentrations as low as 1 ppm whereas delta-
methrin at 1000 ppm failed to reach the 90% killing threshold on
ticks of this isolate (Table 2).

Fluralaner proved to be arthropodicidal for each organism
investigated and demonstrated very high potency at low test
concentrations in the range of �1e0.0000012 ppm, generally
outperforming the other test compounds. The isoxazoline deriv-
ative showed like fipronil 100% mortality at 1 ppm for S. calcitrans
adult flies, and shared with deltamethrin a very low mortality
concentration of 0.0001 ppm for O. moubata ticks. Only in two
assays (S. calcitrans, R. sanguineus) the pyrethroid deltamethrin
displayed an insecticidal/acaricidal activity at a lower test con-
centration than fluralaner. However, in all other test settings,
fluralaner performed best as ectoparasiticide (Table 2). Taken
together, fluralaner was of superior potency compared to the in-
secticides imidacloprid and dieldrin, and also exceeded the po-
tency of fipronil and deltamethrin in the majority of the
arthropods tested.

4. Discussion

In our study on the biochemical and parasitological properties of
the RDL and GluCl antagonist fluralaner (A1443, Ozoe et al., 2010), a
first step comprised the identification, full length cDNA cloning and
demonstration of functionality of the putative target genes from
et products.

Dieldrin Imidacloprid Deltamethrin

None
at 100 ppm

�0.1 None at 100 ppm

n. d. n. d. �0.1
�100 �10 �100
�0.08 �0.08 �0.01
n. d. n. d. None at 1000 ppm
n. d. n. d. �0.5
�1 None at 10 ppm �0.0001
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R. microplus, rmrdl and rmglucl, to build the basis for tick on-target
studies. Based on protein sequence homology analyses (Fig. 4) and
other bioinformatics evaluations (Figs. 2 and 3), the rmrdl and
rmglucl genes studied in this report belong to the arthropod RDL
and GluCl gene families, respectively, which strongly suggests that
R. microplus gene orthologs for these two ion channels have been
identified.

Functional expression and two electrode voltage clamp studies
on rmrdl cRNA injected into Xenopus oocytes demonstrated that its
gene product acts as a RDL channel. The deduced rmrdl protein
sequence is virtually identical (except for three conservative R ➔ K
exchanges) to the translated ORF of the R. microplus rdl gene from
another tick isolate reported while this study was ongoing (Hope
et al., 2010). Also, the rmrdl translated ORF is 98.3% identical to
the protein sequence of a Dermacentor variabilis rdl gene, whose
expression product has been functionally characterized as RDL
(Zheng et al., 2003). In the case of RmGluCl, the Xenopus oocyte
electrophysiology studies presented here demonstrated its
reversible channel gating by L-glutamate and the irreversible
channel opening by ivermectin, consistent with the functional
properties of arthropod GluCls (Wolstenholme, 2012). Comparison
of RmGluCl with translated R. sanguineus DNA sequences
(BD437104-BD43106) from a patent (Amuran et al., 2004), that
were predicted to be L-glutamate-gated chloride channel genes,
show 98.2% sequence identity.

To complement our molecular investigations with the most
important companion animal ectoparasite, the cat flea, we cloned
the gene encoding C. felis RDL based on DNA sequences from an
earlier report (AX477445, Wisniewski and Brandt, 2002). The
deduced protein sequence of the cfrdl cDNA isolated fromour C. felis
strain differed from the earlier AX477445 at four positions,
including an A285 ➔ S285 exchange predicted to confer dieldrin
resistance (Bass et al., 2004; Brunet et al., 2009). Since the earlier
studies on cfrdl were limited to DNA methods (Daborn et al., 2004;
Bass et al., 2004; Brunet et al., 2009), Xenopus oocyte expression
combined with voltage clamp electrophysiology was performed in
this study, confirming that this gene encodes for a functional CfRDL
(Fig. 5C). To investigate effects of the dieldrin resistance mutation
A285 ➔ S285, the CfRDL-A285-encoding version of cfrdl was gener-
ated, which proved to be functional in Xenopus oocytes (Fig. 5B).
Since the vast majority of historic RDL studies in insects have been
performed with the D. melanogaster channel (Buckingham et al.,
2005), the genes encoding the best-studied ac-splice variant
(ffrench-Constant et al., 1991; Hosie et al., 2001) in its dieldrin-
sensitive and -resistant dmrdl forms (A302, S302) were included in
this study and functionally characterized, to allow better compar-
isons and connections to results published earlier by others.

In a second step of our study, transgenic stable and clonal cell
lines were generated for the three parasite RDL gene forms rmrdl,
cfrdl-A285 and cfrdl-S285, for the two D. melanogaster gene versions
dmrdl-A302 and dmrdl-S302, as well as the tick rmglucl. The HEK293
cell line WS-1, that had been transfected with the rat GABAA re-
ceptor subunit genes a1, b2 and g2 (Wong et al., 1992), served as a
mammalian GABACl control. The development of a membrane
potential dye assay for these seven cell lines was a prerequisite for
performing comparative determinations of agonist EC50 values and
antagonist IC50 values.

The GABA EC50 for the mammalian control WS-1 cell line was
determined to be 1.9 mM (Table 1), which is in the same range as the
value (4.7 mM) published by Joesch et al. (2008) using a membrane
fluorescence dye assay set-up and a similar cell line. In the case of
DmRDL, importantly, the GABA EC50 values did not differ signifi-
cantly between the dieldrin-resistant (S302) and -sensitive (A302)
forms (1.2 mM versus 1.4 mM). These GABA EC50 values were
somewhat lower than those previously reported from Xenopus
oocyte voltage-clamp electrophysiology on DmRDLs corresponding
to the ac splice variant used in this study (between 9.8 mM and
50 mM; ffrench-Constant et al., 1993a; Hosie and Sattelle, 1996,
Belelli et al., 1996; Edwards and Lees, 1997; McGurk et al., 1998;
Pistis et al., 1999; Hosie et al., 2001, 2006). Other DmRDL splice
variants have been reported with even higher GABA EC50 values in
Xenopus assays (splice variant bd: 152 mM, Chen et al., 1994,103 mM,
Hosie and Sattelle, 1996; 152 mM, Hosie et al., 2001; splice variant
ad: 58 mM, Hosie et al., 2001). By contrast, a more recent study,
using a membrane potential dye assay similar to that employed in
this study, reported a GABA EC50 of 1 mM for DmRDL expressed in
Drosophila D.Mel-2 cells (Nakao et al., 2010), which is a value very
close to our results. There is the possibility that voltage-clamp
electrophysiology readouts of Xenopus GABACl expression sys-
tems might generally generate higher EC50s than membrane po-
tential dye assays in cell culture.

The GABA sensitivity of cat flea CfRDL was more than 10-fold
lower than that of DmRDL, but the CfRDL EC50 was, similar to the
observations for DmRDL, largely unaffected in its specific agonist
pharmacology by the dieldrin resistance mutation (19.2 mM versus
17.7 mM, A285 ➔ S285). In line with the results on DmRDL in HEK293
cell membrane fluorescence dye assays, the GABA EC50 of CfRDLs
expressed in HEK293 cells tended to be lower than those obtained
by Xenopus oocyte electrophysiology in several other insect species
(Heliothis virescens: 19.1 mM, Wolff and Wingate, 1998; Drosophila
simulans: 70 mM, Le Goff et al., 2005; Musca domestica: 100 mM,
Eguchi et al., 2006; 160 mM, Ozoe et al., 2010), and in whole cell
current recording on cockroach (Periplanata americana) throracic
ganglion neurons (52.9 mM, Zhao et al., 2003).

The R. microplus receptor RmRDL showed a GABA EC50 of 9.8 mM,
again much lower than the value published previously for a Derma-
centor variabilisRDL,whichwas estimated inXenopusoocyte voltage-
clamp electrophysiology experiments as >100 mM (Zheng et al.,
2003). In the case of the novel R. microplus RmGluCl, the EC50 for L-
glutamate in themembranepotential dyeassay (17.8mM)couldnotbe
compared to a tick counterpart, but its EC50was also somewhat lower
than those published earlier based on Xenopus oocyte voltage-clamp
electrophysiology for D. melanogasterGluCl (23 mM, Cully et al.,1996)
and M. domestica GluCl, (33.2 mM, Eguchi et al., 2006), and based on
whole cell current recording on Periplaneta americana thoracic gan-
glion neurons (36.8 mM, Ikeda et al., 2003).

As a third step in this study, the panel of RDL-, mammalian
GABACl-, and tick GluCl-expressing cell lines was employed to
assess inhibitor actions by insecticides, including the novel iso-
xazoline compound fluralaner (Fig. 1). None of the dieldrin, fipronil
or fluralaner insecticides investigated in this work showed a pro-
nounced inhibitory effect on the rat GABACls expressed in theWS-1
cell line. Only the nonspecific insecticidal and convulsant drug
picrotoxinin showed a moderate potency on this cell line, with an
IC50 of approximately 4.5 mM (Table 1). The most prominent
representative of the cyclodiene group of insecticides, dieldrin,
showed inhibitory action on DmRDL-A302 and Cf-RDL-A285 (IC50s of
3.3 mM and 0.55 mM, respectively), while, in agreement with
expectation (ffrench-Constant et al., 2000), the DmRDL-S302 and
CfRDL-S285 variants with the dieldrin resistance mutations were
not inhibited in the concentration range investigated (Table 1,
Fig. 6F). A similar loss of inhibitory activity in the A ➔ S mutant
channel forms was seen with picrotoxinin, also as expected, given
the shared binding site with cyclodienes (Chen et al., 2006).

Fipronil (Fig. 1) is a phenylpyrazole insecticide and acaricide
introduced in 1993 and used in agriculture as well as in veterinary
medicine. This compound is known to block both GABA- and L-
glutamate-gated chloride channels (Hainzl et al., 1998; Bloomquist,
2003; Narahashi et al., 2010). In our study, fipronil proved to be an
effective inhibitor of DmRDL-A302 (IC50 ¼ 36.3 nM), but the dieldrin
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resistance mutant DmRDL-S302 did lead to a significant loss of po-
tency by a factor of 18 (IC50 ¼ 663 nM). This loss of fipronil inhibitor
activity was not seen for the CfRDL dieldrin resistance mutant,
where this inhibitor was approximately equipotent on the A285 and
the S285 variants (w10 nM and 11 nM, Table 1). This observation
may provide an explanation for the fact that despite the wide-
spread occurrence of the dieldrin resistance mutation in cat flea
populations (Bass et al., 2004; Daborn et al., 2004), failure of
fipronil efficacy in connection with this mutation has so far not
been reported (Brunet et al., 2009). In the case of RmRDL, fipronil
inhibited this tick ion channel strongly with an IC50 of 8.5 nM,
which is in agreement with the high acaricidal potency of this
compound (Davey et al., 1998, Table 2). The IC50 values of fipronil on
parasite and fruit fly RDLs of this study compare well with earlier
reports on D. melanogaster and M. domestica RDLs using the Xen-
opus voltage clamp electrophysiology readouts (3.6e31.4 nM, Le
Goff et al., 2005, 24.5 nM, Ozoe et al., 2010; respectively). In addi-
tion to RDLs, GluCls of various insects have also been described as
fipronil targets, where this inhibitor reaches nanomolar potency
(Ikeda et al., 2003; Zhao et al., 2004; Zhao and Salgado, 2010;
Narahashi et al., 2010; Ozoe et al., 2010). Our experiments on
R. microplus GluCl show that this acarid chloride channel is also
susceptible to fipronil. The IC50 of fipronil on RmGluCls is approx-
imately 61 nM. However, given that RmRDL is more than 7-fold
more sensitive to this pesticide, it appears that at least in the tick
R. microplus, GluCls may be secondary fipronil targets after RDLs.

Isoxazolines have emerged recently as a novel class of parasiti-
cides, and insect RDL and GluCl have been implicated as targets
(Ozoe et al., 2010; Lahm et al., 2013; García-Reynaga et al., 2013).
The experiments in this study have shown that the isoxazoline drug
fluralaner (A1443, Ozoe et al., 2010) inhibits insect and acarid RDL
channels from three species in the low nanomolar to high pico-
molar IC50 range. Only a minor, statistically not significant differ-
ence was seen between the CfRDL-A285/S285 and DmRDL-A302/S302
channel versions (Table 1), suggesting that fluralaner is not affected
by the dieldrin resistance mutation in the cat flea and the fruit fly.
These results are in agreement with earlier findings on Musca (M.)
domestica (Ozoe et al., 2010) and D. melanogaster (Lahm et al., 2013)
RDL forms. Comparison of fipronil and fluralaner RDL on-target
efficacy showed, that the isoxazoline drug gave rise to a 5-fold
(RmRDL) to 236-fold (DmRDL-S302) lower IC50 values than the
phenylpyrazole drug (Table 1), which is in line with Ozoe et al.
(2010), who have reported a 5-fold higher inhibitor efficacy of
fluralaner over fipronil on M. domestica RDL. Fluralaner did not
show any inhibitory action on the rat GABACl expressed in WS-1
cells (Table 1).

On the R. microplus GluCl, fluralaner exhibits also nanomolar
inhibitory activity (IC50¼ 82.5 nM), but its on-target potency on the
corresponding R. microplus RDL is approximately 52-fold higher
(Table 1). In M. domestica, a direct comparison of fluralaner inhib-
itory action on RDL and GluCl has also shown a 15-fold higher
potency on the GABA-gated ion channel (Ozoe et al., 2010). Our
current data together with previous studies collectively suggest,
that fluralaner is a highly potent arthropod-specific RDL channel
inhibitor, with a less potent, but still significant, inhibitory activity
on arthropod GluCls. Fluralaner proved to be of higher RDL on-
target inhibitory activity compared to fipronil on all arthropod
channels investigated so far, while on arthropod GluCls both pes-
ticides are approximately equally active (Table 1, Ozoe et al., 2010).

It has been shown that fipronil is converted to fipronil sulfone by
insect cytochrome P450 enzyme systems, and that this metabolite
possesses also ectoparasiticidal activity and acts as antagonist on
RDLs and GluCls (Hainzl et al., 1998; Scharf 1999, Durham et al.,
2002; Zhao et al., 2005). This raises the possibility that fipronil
sulfone might be of higher on-target potency than fluralaner, an
aspect that remains to be tested. However, our bioscreen results
demonstrate, that in an in vivo situation expected to lead to fipronil
oxidation to fipronil sulfone in the ectoparasites, fluralaner still
outperforms this phenylpyrazole drug in most test systems: In the
evaluation of insecticidal and acaricidal potency of fluralaner,
fipronil, dieldrin, imidacloprid and deltamethrin with four insect
and three tick species (bioscreen), fluralaner showed a stronger
activity compared to fipronil in all tests, except for S. calcitrans,
where both compounds were showed 100% mortality at the lowest
concentration tested (1ppm, Table 2). The parasiticidal activity of
fluralaner exceeded that of fipronil by factors ranging from 3.9
(R. microplus adults ticks), to 10 (C. felis adult fleas), to 100
(L. cuprina larvae), to more than 16,000 (A. aegypti larvae).
Furthermore, fluralaner was more potent in most assays than the
other established insecticides/acaricides investigated here (diel-
drin, imidacloprid and deltamethrin, Table 2). The bioscreen data of
fluralaner were in agreement with the arthropod RDL inhibition
data, suggesting that on-target potency on this ion channel may be
a major contributing factor to its superior parasiticidal properties.

In summary, our study demonstrates that the novel isoxazoline
parasiticide fluralaner outperforms fipronil on the primary mo-
lecular target RDL. Furthermore in a large number of bioscreens
assessing insecticidal and acaricidal activity, fluralaner exhibited
higher parasiticidal activity compared to the effects of fipronil,
dieldrin and other marketed substances with different molecular
mode of actions. This suggests that the isoxazoline fluralaner
emerges as a new ectoparasiticidal drug with several superior
properties. In vivo animal studies of ectoparasite challenge models
have highlighted the therapeutic potential of this novel compound
class (Heckeroth et al., 2013).
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