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We consider the nonlinear Sturm]Liouville problem
XX XLu [ y pu q qu s lau q h ?, u , u , l , in 0, p ,Ž . Ž . Ž .

a u 0 q b uX 0 s 0, a u p q b uX p s 0,Ž . Ž . Ž . Ž .0 0 1 1

< < < <where a , b are real numbers with a q b ) 0, i s 0, 1, l is a real parameter,i i i i
w xand the functions p and a are strictly positive on 0, p . Suppose that the

nonlinearity h satisfies a condition of the form

3< < < < w xh x , j , h , l F M j q M h , x , j , h , l g 0, p = R ,Ž . Ž .0 1

<Ž . < <Ž . <as either j , h ª 0 or j , h ª `, for some constants M , M . Then we show0 1
Ž .that there exist global continua of nontrivial solutions l, u bifurcating from u s 0

or ‘‘u s `,’’ respectively. These global continua have properties similar to those
of the continua found in Rabonowitz’ well-known global bifurcation theorem.
Q 1998 Academic Press

1. INTRODUCTION

We consider the nonlinear Sturm]Liouville problem
XX XLu [ y pu q qu s lau q h ?, u , u , l , in 0, p ,Ž . Ž . Ž .

1.1Ž .X Xa u 0 q b u 0 s 0, a u p q b u p s 0,Ž . Ž . Ž . Ž .0 0 1 1

< < < <where a , b are real numbers with a q b ) 0, i s 0, 1, l is a reali i i i
1w x 0w xparameter, and the functions p, a g C 0, p , q g C 0, p . We also as-
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w x w xsume that p and a are strictly positive on 0, p . The function h: 0, p =
R3 ª R is assumed to be continuous and to have the form h s f q g,

w x 3where f , g are continuous functions on 0, p = R and there are con-
stants M , M such that0 1

3< < < < w xf x , j , h , l F M j q M h , x , j , h , l g 0, p = R . 1.2Ž . Ž . Ž .0 1

These assumptions will be taken to hold throughout. In addition, at various
Ž .points in the paper we will impose one or the other or both of the

following conditions on g : for any bounded interval L ; R,

g x , j , h , l s o j , h , as j , h ª 0, 1.3Ž . Ž . Ž . Ž .Ž .
or

g x , j , h , l s o j , h , as j , h ª `, 1.4Ž . Ž . Ž . Ž .Ž .

Ž . w x Ž < < .uniformly for x, l g 0, p = L here ? denotes the Euclidean norm .
Ž . Ž . Ž .If condition 1.3 holds then l, 0 is a solution of Eq. 1.1 for any

l g R and we can consider bifurcation from u s 0, i.e., bifurcation of
� 4 Žnontrivial solutions from the set of trivial solutions R = 0 a solution

Ž . Ž .l, u of 1.1 , or of any other equation in this paper, is said to be
.nontrï ial if u / 0 . Similar problems have been considered before in, for

w x w x w x w xexample, 3 , 5 , 9 , and 15 . These papers prove the existence of global
1w xcontinua of nontrivial solutions in R = C 0, p emanating from ‘‘bifurca-

Ž � 4 .tion intervals’’ in R = 0 , which we identify with R surrounding the
Ž .eigenvalues of the linear problem obtained from 1.1 by setting h ' 0.

Ž w xHowever, these papers suppose that M s 0 except in a remark in 151
Ž . .where a special case of 1.1 , with M - 1rp , is considered . By extending1

w xthe approximation technique used in 3 we obtain similar results for the
Ž .above more general problem with larger bifurcation intervals . Bailey also

w xconsidered a similar problem in 1 , although with a much stronger
Lipschitz-continuity condition on the nonlinearity, and he obtained less
information about the behaviour of the bifurcating sets of solutions.

Ž .If condition 1.4 holds then we can consider bifurcation from ‘‘u s `,’’
Ž .i.e., the existence of solutions of 1.1 having arbitrarily large u. If, in

Ž .addition to 1.4 , f ' 0, then the problem is said to be asymptotically linear
Ž . Ž .and the existence of solutions l, u of 1.1 with large u ‘‘bifurcating from

w x w x w xinfinity’’ is discussed in the papers 12 and 16 . The approach used in 12
w xand 16 is to transform the bifurcation from infinity problem to a problem

Ž .involving bifurcation from zero at eigenvalues of the linearization of 1.1 ,
w xand then apply the standard global bifurcation theory from 11 . However,

Ž . Ž .if f k 0 and satisfies 1.2 , then problem 1.1 need not be asymptotically
linear and the transformed problem may not have a linearization at u s 0.
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Thus the standard global bifurcation results are not immediately applica-
w x w xble and the proofs in 12 and 16 are not valid in this case. However, by

w xextending the approximation technique from 3 and combining it with the
w x w xglobal results in 8 and 11 we prove the existence, in this case, of global

sets of solutions bifurcating from infinity which are similar to those
w x w xobtained in 12 and 16 .

w xIn 10 Przybycin uses the same transformation together with the approx-
w ximation technique from 3 to obtain a theorem on bifurcation from

‘‘intervals at infinity.’’ He also assumes that M s 0.1
The general results on bifurcation from infinity just mentioned do not

require any assumptions on the behaviour of the function h at u s 0.
Ž . Ž .However, if 1.3 holds, in addition to 1.4 , then these general results can

be improved. Also, continua of solutions bifurcate from both u s 0 and
u s ` in this case. Furthermore, if g ' 0 then we can obtain additional
information on the location of the bifurcating sets of solutions.

Ž .Finally, it can be shown see the concluding remarks below that
Ž .condition 1.2 can be weakened slightly to allow the M to depend on l toi

some extent}however, this is at the cost of even larger bifurcation
intervals.

2. PRELIMINARY RESULTS

kw xFor any integer k G 0, let C 0, p denote the Banach space of real-val-
w xued, continuous functions on 0, p , having continuous derivatives up to

Ž . w x < <order k on 0, p , which extend continuously to 0, p , and let ? denotek
kw x 1w xthe standard sup-norm on C 0, p . Let E be the subspace of C 0, p

Ž .consisting of those functions which satisfy the boundary conditions in 1.1 .
Ž . Ž . 2w x Ž . ŽA solution of 1.1 is a pair l, u g R = C 0, p satisfying 1.1 similarly

.for other equations below . Thus we may consider the structure of the
solution set in R = E. For any positive integer k, let S denote the set ofk

w xfunctions u g E which have only simple zeros in 0, p and exactly k y 1
Ž . qsuch zeros in 0, p . Let S be the set of functions u g S which arek k

positive in a deleted neighbourhood of x s 0, and let Sy s ySq. Thek k
sets Sq , Sy , and S are open in E. From now on n will denote either qk k k
or y; yn will denote the opposite sign to n .

Ž .If h ' 0 then 1.1 is a standard linear Sturm]Liouville problem. Thus
there exists a strictly increasing sequence of simple eigenvalues m , k sk
1, 2, . . . , with corresponding eigenfunctions f g S . We also define thek k
numbers m0 s p 2 k 2rl 2, k G 1, wherek

1r2
p a zŽ .

l s dz.H ž /p zŽ .0
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Now consider the problem

Lu s lau q q u q q uX , in 0, p ,Ž .0 1 2.1Ž .X Xa u 0 q b u 0 s 0, a u p q b u p s 0,Ž . Ž . Ž . Ž .0 0 1 1

0w xwith general functions q , q g C 0, p .0 1

LEMMA 2.1. There exist positï e constants c , c , independent of q , q ,0 1 0 1
Ž . Ž .such that if l, u g R = S , k G 1, is a solution of 2.1 thenk

< 0 < < < < < 2 < <l y m F c 1 q q q q q c 1 q q k . 2.2Ž .Ž .Ž .0 0 0k 0 0 1 1 1

ŽRemark. The numbers c , c and the constants c in the following0 1 i
. < < < < < < < y1 < < y1 <proof depend on p , q , a , p , a , and on the boundary condi-1 0 1 0 0

Ž .tions in 2.1 . However, we are regarding the functions p, q, and a, and the
boundary conditions as fixed, so we suppress the dependence of c and c0 1
on them.

Proof of Lemma 2.1. Let

1r2
x a zŽ .

y s dz.H ž /p zŽ .0

w xBy transforming the independent variable x on the interval 0, p to the
w x w xvariable y on the interval 0, l , and defining the function ¨ on 0, l by

Ž Ž .. Ž .¨ y x s u x , we obtain an equation for ¨ having the form

¨Y q r ¨ X q l q r ¨ s 0, in 0, l , 2.3Ž . Ž . Ž .1 0

0w x Žwhere r g C 0, p , i s 0, 1 this transformation is similar to the well-i
w xknown Liouville transformation, which is described in Section 10.9 of 4 ;

1w x .the assumption that a, p g C 0, p is needed here . Clearly u g S m ¨k
< <g S . Let R s r , i s 0, 1. From the transformation it can be verified0k i i

Ž < < . Ž < < .that R F c 1 q q , R F c 1 q q .0 00 2 0 1 3 1
Ž .We now construct a number l such that any nontrivial solution l, ¨0

Ž . Žof 2.3 together with the transformed boundary conditions}these de-
.pend only on the original boundary conditions and on p and a has

Ž .l G l . We sketch the construction. By multiplying 2.3 by ¨ and integrat-0
Ž .ing over the interval 0, l we obtain

5 5 2 5 X 5 2 ² X : ² :l ¨ s ¨ q b.c.y r ¨ , ¨ y r ¨ , ¨ , 2.4Ž .1 0

² : 5 5 2Ž .where ? , ? and ? denote the L 0, l inner product and norm, respec-
tively, and b.c. denotes the boundary terms obtained from integrating
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² Y : w x¨ , ¨ by parts. Now, it can be shown that for any e ) 0, e g 0, l , and1
2w xany w g C 0, p ,

2 2 2X y15 5 5 5w e F 2e w q 2e w .Ž . 1 1

Hence, we can show that

< < 5 X 5 2 y1 5 5 2b.c. F c 2e ¨ q 2e ¨ ,Ž .4 1 1

where c depends only on the coefficients a , b , i s 0, 1, in the boundary4 i i
Ž .conditions in 2.1 and on p, a. Also, for any e ) 0,2

<² X : < 5 X 5 5 5 5 X 5 2 y1 2 5 5 2r ¨ , ¨ F ¨ r ¨ F 2e ¨ q 2e R ¨ .1 1 2 2 1

Ž .Thus, choosing e , e , such that c e q e - 1r4, we obtain from 2.4 ,1 2 4 1 2

l G l [ y2c ey1 y 2ey1R2 y R .0 4 1 2 1 0

w x Ž .We now apply the results in 2 to Eq. 2.3 . For any real numbers K, L,
2 Ž . Ž .such that z [ K y L r4 ) 0, the functions a L, K , b L, K defined in

w x2 satisfy

y1r2 y1r2 y1r2 y1r2a L, K y z pr2 F Lz , b L, K y z pr2 F Lz ,Ž . Ž .

when Lzy1r2 F c , where c is a constant, independent of K and L. Also,5 5
w xin the present situation, the constants L , K , i s 1, 2, used in 2 satisfyi i

< <L F R , l y R F K F l q R . Let h and h denote, respectively,i 1 0 i 0 max min
the maximum and minimum distance between any two consecutive zeros of

Ž . w xany nontrivial solution ¨ of 2.3 . Theorem 3.1 of 2 shows that h andmax
h satisfy the following estimates:min

h F a L , K q b L , KŽ . Ž .max 1 1 2 1

y1r2 y1r22 2F l y R y R p q 2 R l y R y R ,Ž . Ž .0 1 1 0 1

h G a L , K q b L , KŽ . Ž .min 2 2 1 2

y1r2 y1r22 2G l q R q R p y 2 R l y R y R ,Ž . Ž .0 1 1 0 1

2 2 2 Ž .when l G R rc q R q R r4. Now, the number of zeros, k, of ¨ in 0, l1 5 0 1
satisfies

lrh y 1 F k F lrh q 1,max min

Ž . Žand hence 2.2 follows from the above estimates for l G l [ c 1 q R1 6 0
2 . Ž .q R for sufficiently large c . Thus the lemma holds in the region1 6

l G l .1
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Ž . Ž .Now consider a nontrivial solution l, ¨ of 2.3 with l F l F l . Then0 1
Ž . w x 2 2the simple estimate 1.7 in 2 shows that Kh q 2 Lh G p , wheremin min

< < Ž < < < < . ŽŽ < < < <K s l q r F l q l q R , L s R . Hence h G l q l q00 0 1 0 1 min 0 1
.1r2 .y1R q R , and so k must satisfy0 1

k 2 F c 1 q R q R2 .Ž .7 0 1

Therefore, if c , c , are chosen appropriately the lemma also holds in the0 1
region l F l F l . This completes the proof of the lemma.0 1

w xRemark. By using the results of 2 rather more carefully in the above
proof, we could obtain estimates for the ‘‘asymptotic’’ values of the

Ž .constants c , c , i.e., values of the constants which would ensure that 2.20 1
holds for all sufficiently large k and l. We note also that it is in the proof

1w xof Lemma 2.1 that we use the assumption that a g C 0, p . It is known
Ž .that finding asymptotic estimates for the eigenvalues of 2.1 is more

1w x Ž .difficult when a f C 0, p , and the estimate 2.2 may not be true}to
1w xavoid these problems we assume that a g C 0, p , even though a g

0w x Ž .C 0, p would seem more natural in 1.1 .
2' 'Ž . Ž . ŽLet K s c 1 q 2 M q 2 M , K s c 1 q 2 M the reason for0 0 0 1 1 1 1' .the 2 factors will be seen in the proof of Lemma 2.2 below and for any

k G 1, n , and any d , z ) 0, let

< 0 <I s l g R: l y m F K q K k ,� 4k k 0 1

< 0 <I d s l g R: l y m - K q K k q d ,Ž . � 4k k 0 1

n n < < y1U d , z s l, u g R = E: l g I d , u g S , u ) z .Ž . Ž . Ž .� 41k k k

n Ž .Clearly U d , z is open in R = E. Also, it follows from Lemma 2.2, withk
q s q s 0, that m g I for all k G 1.0 1 k k

In the proof of our main result on bifurcation from infinity we will also
need to consider the modified nonlinear problem

< <y2 e < < e < < e X XLu s lau q u f ?, u u , u u , l q g ?, u , u , l ,Ž .Ž .1 1 1 2.5Ž .X Xa u 0 q b u 0 s 0, a u p q b u p s 0,Ž . Ž . Ž . Ž .0 0 1 1

w x Ž .with e g 0, 1r2 . In a sense, this problem approximates problem 1.1
w xwhen e is small; this form of approximation is similar to that used in 3 .

Ž .LEMMA 2.2. Suppose that condition 1.4 holds, L ; R is a compact
Ž .inter̈ al, and d ) 0. Then there exists z s z d , L ) 0 such that ifU U

Ž . w x Ž . < < y1l, u, e g L = E = 0, 1r2 is a solution of 2.5 with u ) z , then1 U

l, u g Un d , z .Ž . Ž .D k U
Ž .k , n
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Proof. Suppose that the result is not true. Then there exists a sequence
Ž . w x Ž .l , u , e g L = E = 0, 1r2 , n s 1, 2, . . . , of solutions of 2.5 , withn n n

< <l ª l g L, u ) n, and1n ` n

l , u f Un d , ny1 . 2.6Ž . Ž . Ž .Dn n k
Ž .k , n

0w xDefine the functions f , g g C 0, p byn n

< <y1y2 e n < < en < < en Xf x s u f x , u u x , u u x , l ,Ž . Ž . Ž .Ž .1 1 1n n n n n n n

< <y1 Xg x s u g x , u x , u x , l .Ž . Ž . Ž .Ž .1n n n n n

< < Ž . < <For each n G 1 let w s u r u g E. Dividing 2.5 by u shows that1 1n n n n
w satisfies the equationn

Lw s l aw q f q g . 2.7Ž .n n n n n

Also, it follows from the properties of f and g that

Xf x F M w x q M w x ,Ž . Ž . Ž .n 0 n 1 n
2.8Ž .

< <r [ g ª 0.0n n

Ž .Thus from 2.7 we have

Y X w xw x F K w x q w x q r , x g 0, p , 2.9Ž . Ž . Ž . Ž .Ž .n n n n

for some constant K ) 0.
We will now show that there exist d ) 0, N ) 0 such that, for n G N ,1 1 1

X w xw x , w x ) d , x g 0, p . 2.10Ž . Ž . Ž .Ž .n n 1

Suppose that this is not true. Then there exists a subsequence of the
� 4 Ž � 4. w xsequence w which we will relabel as w , and t g 0, p such thatn n

<Ž Ž . X Ž .. < w x Žw t , w t ª 0. By following the argument on p. 379 of 3 usingn n
. Ž .Gronwall’s inequality we find that this, together with 2.9 , implies that

< <w ª 0 in E. However, this contradicts the fact that w s 1 for all n.1n n
Ž .Thus 2.10 must be true.

Ž . Ž . w xIt follows from 2.10 that for n G N we can write f x , x g 0, p , in1 n
the form

f x M 2 w x f x M 2 wX xŽ . Ž . Ž . Ž .n 0 n n 1 n Xf x s w x q w xŽ . Ž . Ž .n n n2 2F x F xŽ . Ž .n n

s f 0 x w x q f 1 x wX x ,Ž . Ž . Ž . Ž .n n n n
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Ž .2 2 Ž .2 2 X Ž .2where F x s M w x q M w x G d ) 0, and for each i s 0, 1,n 0 n 1 n 2
i 0w xf g C 0, p andn

f xŽ .ni ' 'f x F 2 M F 2 M ,Ž . Xn i iM w x q M w xŽ . Ž .0 n 1 n

Ž .by 2.8 . In a similar manner we have

0 1 X w xg x s g x w x q g x w x , x g 0, p ,Ž . Ž . Ž . Ž . Ž .n n n n n

i 0w x < i < Ž .with g g C 0, p and g ª 0 as n ª `. Thus Eq. 2.7 can be rewrit-0n n
ten as

Lw s l aw q f 0 q g 0 w q f 1 q g1 wX , 2.11Ž .Ž . Ž .n n n n n n n n n

with

i i i'< < < <f q g F 2 M q g . 2.12Ž .0 0n n i n

Ž . Ž .It also follows from 2.10 that, for each n G N , l , u g L = S for1 n n k
Ž . Ž . Ž .some k possibly depending on n . Hence it follows from 2.11 , 2.12 ,

Ž . Ž .Lemma 2.1, and the definition of I d that l g I d if n is sufficientlyk n k
Ž . qŽ y1 . yŽ y1 . Ž .large. Thus l , u g U d , n j U d , n , which contradicts 2.6n n k k

and so completes the proof of Lemma 2.2.

Ž . Ž .When condition 1.3 holds a similar result with a similar proof is valid
< <for small u . For any k G 1, n , and any d , z ) 0, let1

n n < <V d , z s l, u g R = E: l g I d , u g S , u - z .� 4Ž . Ž . Ž . 1k k k

Ž .LEMMA 2.3. Suppose that condition 1.3 holds, L ; R is a compact
Ž .inter̈ al, and d ) 0. Then there exists z s z d , L ) 0 such that ifV V

Ž . w x Ž . < <l, u, e g L = E = 0, 1r2 is a nontrï ial solution of 2.5 , with u - z ,1 V
then

l, u g V n d , z .Ž . Ž .D k V
Ž .k , n

3. MAIN RESULTS

Ž .Let SS ; R = E be the set of nontrivial solutions of 1.1 . For any
Ž . Ž Ž ..l g R, we say that a subset CC ; SS meets l, ` respectively, l, 0 if

Ž .there exists a sequence l , u g CC, n s 1,2, . . . , such that l ª l,n n n
< < Ž < < .u ª ` respectively, u ª 0 as n ª `. Furthermore, we will say that1 1n n

Ž . Ž Ž .. nCC ; SS meets l, ` respectively, l, 0 through R = S if the sequencek
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Ž . nl , u g CC, n s 1, 2, . . . , can be chosen so that u g S for all n. Ifn n n k
� 4 ŽI ; R is a bounded interval we say that CC ; SS meets I = ` respectively,

� 4. Ž . Ž Ž ..I = 0 if CC meets l, ` respectively, l, 0 for some l g I; we define CC

� 4 � 4 nmeets I = ` or I = 0 through R = S similarly.k
We consider first the case of bifurcation from u s ` and suppose, for

Ž . Ž Ž .now, that condition 1.4 holds bifurcation from u s 0, when 1.3 holds,
will be considered below}we deal with this case second because it is

.simpler than bifurcation from u s `, and so the proofs may be omitted .
Putting e s 0 in Lemma 2.2, it follows that any set CC ; SS which meets
Ž . n Ž .l, ` , for some l, must do so through R = S , for at least one pair k, nk
Ž Ž .CC may meet more than one ‘‘point’’ l, ` through more than one set

n . Ž . nR = S . Furthermore, if CC meets l, ` through R = S then l g I . Fork k k
each k G 1 and n we define the set DDn ; SS to be the union of all thek

� 4 n Žcomponents of SS which meet I = ` through R = S we will showk k
. nbelow that this set is nonempty . The set DD may not be connected ink

Ž .R = E although, by adding the ‘‘points at infinity’’ l, ` , l g I , to R = Ek
n Žand defining an appropriate topology on the resulting set, the set DD j Ik k

� 4.= ` is connected}we will not pursue this further.
Ž .For any set A ; R = E we let P A denote the natural projection ofR

� 4A onto R = 0 .

Ž .THEOREM 3.1. If 1.4 holds then, for e¨ery integer k G 1 and each n ,
the set DDn is nonempty and at least one of the following holds:k

Ž . n � 4 n
X Ž X X. Ž .Xi DD meets I = ` through R = S for some k , n / k, n ;k k k 9

Ž . n Ž .ii DD meets l, 0 for some l g R;k

Ž . Ž n .iii P DD is unbounded.R k

q y Ž . Ž .In addition, if the union DD s DD j DD does not satisfy ii or iii then itk k k
Ž . Xmust satisfy i with k / k.

˜Ž . ŽProof. For any nontrivial l, ¨ g R = E we define the function f l,
. 0w x¨ g C 0, p by

˜ 2 2 X 2< < < < < < w xf l, ¨ x s ¨ f x , ¨ x r ¨ , ¨ x r ¨ , l , x g 0, p ,Ž . Ž . Ž . Ž .Ž .1 1 1

Ž̃ .and let f l, 0 s 0; we define g similarly. By our basic assumptions and˜
˜ 0Ž . w x1.4 , the functions f , g : R = E ª C 0, p are continuous and satisfy˜

˜ < <f l ¨ F M q M ¨ ,Ž . Ž . 10 0 1 3.1Ž .
< < < <g l, ¨ s o ¨ , as ¨ ª 0,Ž . Ž .˜ 1 10

where the o estimate holds uniformly for l in any bounded interval
Ž . Ž . < < 2L ; R. Now let l, u be a nontrivial solution of 1.1 . Setting ¨ s ur u ,1
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< < < < < < 2 Ž . < < 2we have ¨ s 1r u and u s ¨r ¨ . Dividing 1.1 by u yields the1 1 1 1

equation
˜L¨ s la¨ q f l, ¨ q g l, ¨ 3.2Ž . Ž . Ž .˜

Ž Ž .the boundary conditions in 1.1 also hold here and below; for brevity we
. Ž . Ž .will not explicitly display them again . The transformation l, u ª T l, u

Ž . w x w x[ l, ¨ was used in the papers 12 and 16 and turns a ‘‘bifurcation at
infinity’’ problem into a ‘‘bifurcation at zero’’ problem. However, here Eq.
Ž .3.2 does not have a linearization at ¨ s 0 so we cannot immediately
apply standard global bifurcation theory to obtain the desired result, as

w x w xwas done in 12 and 16 . To deal with this problem we will also consider
the equation

˜ e< <L¨ s la¨ q f l, ¨ ¨ q g l, ¨ , 3.3Ž . Ž .Ž . ˜1

Ž x Ž Ž .for e g 0, 1r2 it can be seen from these definitions that 3.3 is equiva-
˜ eŽ .. Ž x Ž . < Ž < < . <lent to 2.5 . For fixed e g 0, 1r2 it follows from 3.1 that f l, ¨ ¨1 0

Ž < < . w x w xs o ¨ , so the global bifurcation results in 8 and 11 are applicable to1
Ž . Ž .this equation. Also, we will see that as e ª 0, 3.3 approximates 3.2 in a

Ž .suitable sense. We now choose some fixed arbitrary k G 1 and n , and0 0
we will prove the theorem for k s k and n s n .0 0

˜ Ž .Let SS ; R = E be the set of nontrivial solutions of 3.2 . By construc-
˜Ž . Ž .tion, the transformation l, u ª T l, u maps SS into SS and, heuristi-

Ž .cally, interchanges points at u s 0 respectively, u s ` with points at
˜n 0Ž .¨ s ` respectively, ¨ s 0 . Let DD be the union of all the components ofk 0˜ n 0 n 0� 4SS which meet I = 0 through R = S . Then DD is the inverse imagek k k0 0 0

y1 ˜n 0 ˜n 0Ž .T DD of DD under the transformation T. Thus to prove the theoremk k0 0 ˜n 0it suffices to show that the set DD is nonempty and either meets somek 0
� 4 n Ž . Ž .interval I = 0 through R = S , with k, n / k , n , or is unboundedk k 0 0

Ž Ž . Ž . n 0in R = E the alternatives ii and iii stated in the theorem for DDk 0

˜n 0 .correspond, via T , to the various ways in which DD can be unbounded .k 0

˜n 0Suppose that DD is nonempty, but neither of the above possibilitiesk 0 ˜n 0Ž .holds the possibility that DD is empty will be dealt with below . Thenk 0˜n 0DD is bounded and we can choose a compact interval L ; R such thatk 0

˜n 0 ˜ ˜Ž . Ž .P DD j I is in the interior of L. Let SS s SS l L = E . We noteR k k L0 0
n Ž . n Ž .that for any k, n , and d the transformation T maps U d into V d .k k

Also, the statement of Lemma 2.2 holds in the transformed situation if u is
n n < < y1 < <changed to ¨ , U to V , and u ) z to ¨ - z . Now, for any1 1k k U U

d , z ) 0, let

W d , z s V n d , z ,Ž . Ž .D0 k
Ž . Ž .k , n / k , n0 0

X < <­ W d , z s l, ¨ g ­ W d , z : ¨ s z .� 4Ž . Ž . Ž . 10 0
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Ž . Ž .The set W d , z is open in R = E, and we let W d , z denote its closure.0 0
Also, the location of the intervals I ensures that any bounded subset ofk

n Ž .R = E intersects only finitely many sets V d , z . It can now be seen thatk
Ž .we can choose d , z ) 0, with z F z d , L , such that:0 0 0 U 0

Ž . Ž .a I d ; L;k 00

˜ XŽ . Ž . Ž .b SS l ­ W d , z ; ­ W d , z ;L 0 0 0 0 0 0
n 0˜Ž . Ž .c DD l W d , z s Bk 0 0 00

ŽŽ . Ž .b follows from Lemma 2.2 with e s 0; if c did not hold then by Lemma
˜n 0 n� 42.2 with e s 0, DD would meet I = 0 through R = S for somek k k0 ˜n 0Ž . Ž . .k, n / k , n , contrary to our assumption on DD .0 0 k 0˜ ˜n 0 Ž � 4.Now let C s DD j I = 0 ; R = E. It follows from Lemma 2.20 k k0 0˜n 0 ˜Ž . Ž .and c that DD cannot meet any point l, 0 with l f I , so C isk k 00 0

Ž .closed; it is also connected. Furthermore, Eq. 3.2 shows that bounded
˜ 2 ˜w xsubsets of SS in R = E are also bounded in R = C 0, p , so C is0

compact. Thus we can choose a bounded open set OO ; L = E such that0

X˜ ˜C ; OO , ­ W d , z l OO s B, ­ OO l SS _W d , z s BŽ . Ž .ž /0 0 0 0 0 0 0 0 0 0

3.4Ž .

˜ XŽ Ž Ž ..since dist C , ­ W d , z ) 0 it is clear that an open set with the first0 0 0 0
two properties exists; we obtain the final property by following the argu-

w x w x.ments in Lemmas 1.1 and 1.2 of 11 or in Step 1 on p. 677 of 18 . On the
˜n 0other hand, a set OO with these properties can also be constructed if DD0 k 0

is empty, so the remainder of the proof covers all the above possibilities
˜n 0for DD . Letk 0

OO s OO _W d , z . 3.5Ž . Ž .0 0 0 0

The set OO is open and, for sufficiently small d , z ) 0, has the properties1 1

˜n 0 n 0 ˜DD ; OO , V d , z ; OO , ­ OO l SS s B 3.6Ž . Ž .k k 1 10 0

Ž Ž . Ž . Ž ..the final property in 3.6 follows from b above and 3.4 .
w x Ž xBy Theorem 2 in 8 , for each fixed e g 0, 1r2 there exists a compo-

˜n 0Ž . Ž .nent DD e ; R = E of nontrivial solutions of 3.3 with the followingk 0 ˜n 0 n 0Ž . Ž . Žproperties: DD e meets m , 0 through R = S and so intersectsk k k0 0 0
n 0 ˜n 0Ž .. Ž . Ž . Ž .V d , z ; DD e is either unbounded or there is some k, n / k , nk 1 1 k 0 00 0

˜n 0 nŽ . Ž . Žsuch that DD e meets m , 0 through R = S and so intersectsk k k0
Ž ..W d , z . These nodal properties follow from the nodal properties of the0 0 0

w x w xlinear problem and Lemma 1.24 of 11 ; see 11, p. 502 . Now, these
properties together with the construction of the set OO imply that the



BRYAN P. RYNNE152

˜n 0Ž .component DD e intersects both OO and the complement of OO, and sok 0˜n 0Ž .DD e l ­ OO / B. Thus, for each e there exists a nontrivial solutionk 0
Ž . Ž . Ž .l , ¨ g ­ OO of 3.3 . Since OO is bounded in R = E, Eq. 3.3 shows thate e

Ž . 2w xthe set of points l , ¨ is bounded in R = C 0, p , independently of e .e e

Therefore there is a sequence e , n s 1, 2, . . . , such that e ª 0 andn n
Ž . Ž . Ž .l , ¨ converges in R = E to a solution l , ¨ of 3.2 . We will showe e ` `n n ˜Ž . Ž .that l , ¨ is nontrivial, which implies that l , ¨ g ­ OO l SS . Since this` ` ` `

Ž .contradicts 3.6 , this will complete the proof of the theorem.
< <Suppose that ¨ ª 0. Then it follows from Lemma 2.2 that, for all1e n

sufficiently large n,

l , ¨ g ­ OO l V n 0 d , z j W d , z ,Ž . Ž .Ž . Ž .e e k 2 2 0 2 2n n 0

� 4 � 4 Ž .where d s min d , d , z - min z , z . However, this contradicts 3.52 0 1 2 0 1
Ž . Ž .and 3.6 . Thus we can conclude that l , ¨ is nontrivial, which completes` `

the proof.

Ž . Ž .Remarks. i If, for each l g R, there is an x such that h x, 0, 0, l / 0
Ž .then alternative ii in Theorem 3.1 cannot hold.

Ž . w xii Unlike in the case of bifurcation from zero in 11 , it need not
n n Ž w x.be the case that DD ; R = S in Theorem 3.1 see 12, Remark 2.12 .k k

This makes the approximation argument in the above proof more compli-
n n w xcated than it would be if we had DD ; R = S , as in 3 ; this point appearsk k

w xto have been overlooked in 10 .
Ž .iii Under further differentiability hypotheses on the functions p, q,

w xa, and h, the genericity results in 13 can be adapted to show that
‘‘generically’’ the sets DDn are collections of smooth, one-dimensionalk

Ž w x.curves in R = E see 13, Theorem 2.5 . We will not give precise state-
ments of what ‘‘generically’’ means here; as an example, this result holds

Ž .whenever the coefficient function p in 1.1 belongs to a certain residual
3w xsubset of the subspace of C 0, p consisting of positive functions.

Ž .We will now suppose that condition 1.3 holds and consider the case of
bifurcation from u s 0. The above methods enable us to extend some of

w x w x w x w xthe results in 3 , 5 , 9 , and 15 for this situation. As before, putting
e s 0, for all n G 1, in Lemma 2.3 shows that any set CC ; SS which meetsn
Ž . n Ž .l, 0 , for some l, must do so through R = S for at least one pair k, n .k

Ž . nFurthermore, if CC meets l, 0 through R = S then l g I . Thus fork k
each k and n we can define the set CC n ; SS to be the union of all thek

� 4 n Žcomponents of SS which meet I = 0 through R = S the followingk k
.theorem will show that this set is nonempty for all k and n . The set

n Ž � 4. nCC j I = 0 is connected in R = E, but CC may not be connected.k k k
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Ž . Ž .A further consequence of condition 1.3 , together with 1.2 , is that if
Ž . Ž . n Žl, u is a solution of 1.1 with u g ­S , then u s 0 see the firstk

w x.paragraph of the proof of Theorem 1 in 3 ; hence the nodal structure of
the solutions is preserved along any component of SS .

Ž .THEOREM 3.2. If 1.3 holds then, for e¨ery integer k G 1 and each n ,
the set CC n is nonempty, is unbounded in R = E, and CC n ; R = Sn.k k k

w xProof. The proof is similar to the proof of Theorem 1 in 3 , using
w xLemma 2.3 rather than Lemma 1 of 3 . We note that the preservation of

nodal properties along components of SS makes the proof of this theorem
rather simpler than the proof of Theorem 3.1.

Ž .Remarks. i Theorem 3.2 is very similar to Berestycki’s Theorem 1 in
w x w x3 , except that M s 0 in 3 . The extension to M ) 0 here is gained at1 1
the expense of having larger bifurcation intervals I ; in fact, the bifurca-k

w xtion intervals in 3 have constant length, whereas here they grow with k.

Ž . Ž wii Schmitt and Smith also proved a similar result see 15, Theo-
x.rems 3.4 and 3.5 . However, their theorems also require M s 0, and they1

only consider k G k for some k sufficiently large that their bifurcation0 0
Ž .intervals I which are the same as Berestycki’s do not overlap for k G k .k 0

Also, they do not show that the individual sets CCq , CCy are nonempty andk k
unbounded, only that the union CCq j CCy is. In addition, in Lemma 3.3 ofk k
w x15 they consider the case 0 - M - 1rp , for a particular equation, and1
obtain larger, nonoverlapping bifurcation intervals, for k sufficiently large,
and the remark following Theorem 3.4 notes that a corresponding bifurca-
tion theorem holds for this case. Theorem 3.2 above extends this result to

Ža general equation, for all M ) 0 and all k and n the bifurcation1
intervals I used here may overlap, but the use of nodal properties ensuresk

.that this does not invalidate the bifurcation results .
Ž .iii In a sequence of papers Makhmudov and Aliev also give results

on bifurcation intervals when the nonlinearity again satisfies a similar
Ž w x .condition see, for instance, 9 and the references therein . Their applica-

tions are usually to higher order Sturm]Liouville equations, but in essence
their results also require M s 0 and k sufficiently large to obtain bifurca-1
tion.

Ž . Ž .Next, if conditions 1.3 and 1.4 both hold then we can improve
Theorems 3.1 and 3.2 as follows.

Ž . Ž .THEOREM 3.3. If 1.3 and 1.4 hold then, for e¨ery integer k G 1 and
n n Ž .each n , DD ; R = S , and alternatï e i of Theorem 3.1 cannot hold.k k

n Ž .Furthermore, if DD meets l, 0 , for some l g R, then l g I . Similarly, ifk k
n Ž .CC meets l, ` , then l g I .k k
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Ž .Proof. The remark preceding Theorem 3.2 shows that if 1.3 holds
Ž n . Ž n . Ž n .then SS l R = ­S s B. Hence the sets SS l R = S and SS _ R = Sk k k

Ž w x.are mutually separated in R = E see 17, Definition 26.4 . Thus by
w xCorollary 26.6 of 17 any component of SS must be a subset of one or

another of these sets. Since DDn is the union of components of SS whichk
intersect R = Sn, each of these components must be a subset of R = Sn,k k

n n Ž .and hence DD ; R = S . This ensures that alternative i of Theorem 3.1k k
n Ž .cannot hold. It now follows from Lemma 2.3 that DD can only meet l, 0k

n Ž .if l g I . Similarly, by Lemma 2.2, CC can only meet l, ` if l g I .k k k

Imposing a further restriction on the nonlinearity will enable us to say
rather more about the location of the sets CC n and DDn, and which of thek k
alternatives in Theorem 3.3 holds. We suppose that

g ' 0 3.7Ž .

Ž Ž ..in effect, we suppose that the nonlinearity h itself satisfies 1.2 .

Ž .THEOREM 3.4. Suppose that 3.7 holds. Then for e¨ery integer k G 1 and
each n ,

CC n j DDn ; I = E. 3.8Ž .k k k

Ž n . Ž n . n � 4 nHence, P CC and P DD are bounded and CC meets I = ` while DDR k R k k k k
� 4 Ž n .meets I = 0 each through R = S .k k

Ž .Proof. Relation 3.8 follows immediately from Lemma 2.1 and Theo-
rems 3.2 and 3.3. The other results then follow from Theorem 3.3 and the
definitions of the sets CC n, DDn.k k

Ž . n nRemarks. i Theorem 3.4 does not appear to imply that CC l DD / B.k k
Conceivably, for instance, the set CC n could consist of a countable collec-k
tion of components of nontrivial solutions, each of which is bounded but

� 4 nthe union of which meets I = ` , and similarly for DD . If this were so wek k
would have CC n l DDn s B. This situation seems rather unlikely, and willk k
certainly not happen if there is a simple bifurcation at either u s 0 or
u s `, since then there will be a unique curve of solutions near u s 0 or

Ž w x w xu s `, i.e., there will be a single bifurcating component see 6 or 18 for
w x w xsimple bifurcation from u s 0 and 7 or 14 for simple bifurcation from

. n n n nu s ` . This will ensure that CC l DD / B, but not necessarily CC s DD .k k k k

Ž . w xii Theorem 3.4 is similar to Proposition 2 in 5 , except that there
M s 0, k is required to be sufficiently large, and only the sets CCq j CCy

1 k k
are considered.

Ž .iii For large k we could obtain more precise estimates for the sizes
Žof the bifurcation intervals I see the remark following the proof ofk
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.Lemma 2.1 , and we could even have different intervals for bifurcation
from zero or infinity if we had different constants M in the estimates fori
the behaviour of f at zero and infinity. Furthermore, if more precise
information about the behaviour of the nonlinearity at either zero or
infinity is available then Theorems 3.3 and 3.4 can be improved further.

< Ž . < Ž <Ž . <. <Ž . < <Ž . <For instance, if h x, j , h, l s o j , h , as either j , h ª 0 or j , h
Ž . Ž .ª `, and if a continuum of solutions meets l, 0 or l, ` , respectively,

then l must be an eigenvalue m of the linear problem.k

Ž . Ž .iv We can weaken condition 1.2 to a certain extent and still
Ž .obtain all the above results albeit with larger bifurcation intervals I .k

Ž . Ž .Suppose, instead of 1.2 , that for any number L ) 0, condition 1.2 holds
Ž . w x 2 w x Ž . Ž .for x, j , h, l g 0, p = R = yL, L , with constants M L , M L and0 1

Ž . Ž .2 Ž . Ž .suppose that M L q M L s o L as L ª `. Then if 3.7 holds,0 1
Ž . Ž .Lemma 2.1 says that any nontrivial solution l, u g R = S of 1.1 , withk

< <l F L, satisfies

20< <l y m F c 1 q M L q M L q c 1 q M L k .Ž . Ž . Ž .Ž .Ž .k 0 0 1 1 1

Hence, some analysis shows that there is a decreasing function a : N ª R
Ž . Ž .such that a k ª 0 as k ª ` and any nontrivial solution l, u g R = Sk

satisfies

< 0 < 2l y m F a k k .Ž .k

Ž . Ž . Ž .If instead of 3.7 , one or the other of 1.3 or 1.4 is satisfied then this
estimate holds for the limiting values of l obtained from sequences of

Ž . < < < <solutions l , u with u ª 0 or u ª `. In any case, replacing the1 1n n n n
X w 0 Ž . 2 0intervals I used previously with the intervals I s m y a k k , m qk k k k

Ž . 2 x Ža k k , all of the above results still hold any compact interval L
intersects only finitely many of the new intervals I X , so the proofs arek

. X Ž . 2identical . The lengths of the new intervals I are 2a k k , and the size ofk
Ž Ž .this, for large k, depends on the rate of convergence of M L q0

Ž .2 .M L rL to zero as L ª `; they could be substantially larger than the1
intervals I .k

Ž . Ž .v The following linear problems have no nontrivial solutions and
show that we cannot weaken the condition in the previous remark further

Ž . Ž .2 Ž .to M L q M L s O L :0 1

Ž . Y Ž . Ž .a yu s lu q h, with u 0 s u p s 0, and h s ylu;
Ž . Y Ž . Ž . 1r2 Xb yu s lu q h, with u 0 s u p s 0, and h s 4l u .

Ž . Ž . Ž . Ž .2 Ž .vi It follows from remark iv that if M L q M L s o L and0 1
Ž . Ž n . Ž n .if 3.7 holds, then the projections P CC and P DD are bounded andR k R k

X n n Žlie in I , and the sets CC and DD may intersect this is the extendedk k k



BRYAN P. RYNNE156

. w xversion of Theorem 3.4 . Theorem 3.3 in 16 gives conditions on the
nonlinearity h which ensure that there are constants R , R , with R - R ,1 2 1 2

Ž . n < < Ž . n < <such that if l, u g CC then u F R , while if l, u g DD then u G R ;0 0k 1 k 2
n n Ž n . Ž n .thus the sets CC and DD cannot meet and each of P CC and P DDk k R k R k

must be unbounded. In a sense this is the reverse of the situation just
Ž . Ž . Ž .described. In Toland’s conditions, M L s O L , M L ' 0.0 1
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