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We consider the nonlinear Sturm-Liouville problem
Lu= —(pu') +qu=Aau + h(-,u,u', \), in (0, 7),
ayu(0) + bou'(0) =0, au(m) + b/ (7w) =0,

where a;, b; are real numbers with |a;| + |b;| > 0, i = 0,1, A is a real parameter,
and the functions p and a are strictly positive on [0, 7] Suppose that the
nonlinearity /4 satisfies a condition of the form

[h(x, €1, )| < Molél + Mylnl,  (x,&,m,4) €[0,7] X R®,

as either I(&, n)l = 0 or |(&, )l — o, for some constants M, M;. Then we show
that there exist global continua of nontrivial solutions (A, u) bifurcating from u = 0
or “u = «,” respectively. These global continua have properties similar to those
of the continua found in Rabonowitz’ well-known global bifurcation theorem.
© 1998 Academic Press

1. INTRODUCTION

We consider the nonlinear Sturm-Liouville problem
Lu = —(pu') +qu=Aau + h(-,u,u',A), in (0, ), 11
ayu(0) + bou'(0) =0, a,u(m) + b/ (7) =0, (11)

where a;, b; are real numbers with |a;| +[b,/ > 0, i =0,1, A is a real
parameter, and the functions p,a € C*0, 7], g € C°[0, w]. We also as-
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sume that p and « are strictly positive on [0, 7]. The function 4: [0, 7] X
R3® — R is assumed to be continuous and to have the form h =f + g,
where f, g are continuous functions on [0, 7] X R*® and there are con-
stants M, M, such that

|f(x, & m A)| < Molél + Myml,  (x,&,m,4) € [0, 7] X R®. (1.2)

These assumptions will be taken to hold throughout. In addition, at various
points in the paper we will impose one or the other (or both) of the
following conditions on g: for any bounded interval A C R,

g(x,&m ) =o(l(&,m)]), as|(&m)|—0, (13)

or

g(x,&mA) =o(l(&.m)]),  as|(&m)]— (14)

uniformly for (x, A) € [0, w] X A (here |- | denotes the Euclidean norm).

If condition (1.3) holds then (A,0) is a solution of Eq. (1.1) for any
A € R and we can consider bifurcation from u = 0, i.e., bifurcation of
nontrivial solutions from the set of trivial solutions R X {0} (a solution
(A, u) of (1.1), or of any other equation in this paper, is said to be
nontrivial if u # 0). Similar problems have been considered before in, for
example, [3], [5], [9], and [15]. These papers prove the existence of global
continua of nontrivial solutions in R x CY[0, 7] emanating from “bifurca-
tion intervals” (in R x {0}, which we identify with R) surrounding the
eigenvalues of the linear problem obtained from (1.1) by setting 4 = 0.
However, these papers suppose that M; = 0 (except in a remark in [15]
where a special case of (1.1), with M, < 1/4r, is considered). By extending
the approximation technique used in [3] we obtain similar results for the
above more general problem (with larger bifurcation intervals). Bailey also
considered a similar problem in [1], although with a much stronger
Lipschitz-continuity condition on the nonlinearity, and he obtained less
information about the behaviour of the bifurcating sets of solutions.

If condition (1.4) holds then we can consider bifurcation from “u = ,”
i.e., the existence of solutions of (1.1) having arbitrarily large u. If, in
addition to (1.4), f = 0, then the problem is said to be asymptotically linear
and the existence of solutions (A, u) of (1.1) with large u “bifurcating from
infinity” is discussed in the papers [12] and [16]. The approach used in [12]
and [16] is to transform the bifurcation from infinity problem to a problem
involving bifurcation from zero at eigenvalues of the linearization of (1.1),
and then apply the standard global bifurcation theory from [11]. However,
if f# 0 and satisfies (1.2), then problem (1.1) need not be asymptotically
linear and the transformed problem may not have a linearization at u = 0.
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Thus the standard global bifurcation results are not immediately applica-
ble and the proofs in [12] and [16] are not valid in this case. However, by
extending the approximation technique from [3] and combining it with the
global results in [8] and [11] we prove the existence, in this case, of global
sets of solutions bifurcating from infinity which are similar to those
obtained in [12] and [16].

In [10] Przybycin uses the same transformation together with the approx-
imation technique from [3] to obtain a theorem on bifurcation from
“intervals at infinity.” He also assumes that M, = 0.

The general results on bifurcation from infinity just mentioned do not
require any assumptions on the behaviour of the function /4 at u = 0.
However, if (1.3) holds, in addition to (1.4), then these general results can
be improved. Also, continua of solutions bifurcate from both u = 0 and
u = o in this case. Furthermore, if g = 0 then we can obtain additional
information on the location of the bifurcating sets of solutions.

Finally, it can be shown (see the concluding remarks below) that
condition (1.2) can be weakened slightly to allow the M; to depend on A to
some extent—however, this is at the cost of even larger bifurcation
intervals.

2. PRELIMINARY RESULTS

For any integer k > 0, let C*[0, 7] denote the Banach space of real-val-
ued, continuous functions on [0, 7], having continuous derivatives up to
order k on (0, 7), which extend continuously to [0, 7], and let |- |, denote
the standard sup-norm on C*[0, ]. Let E be the subspace of C0, 7]
consisting of those functions which satisfy the boundary conditions in (1.1).
A solution of (1.1) is a pair (A, u) € R X C?[0, 7] satisfying (1.1) (similarly
for other equations below). Thus we may consider the structure of the
solution set in R X E. For any positive integer k, let S, denote the set of
functions u € E which have only simple zeros in [0, 7r] and exactly & — 1
such zeros in (0, 7). Let S, be the set of functions u € S, which are

positive in a deleted neighbourhood of x =0, and let S; = —S; . The
sets S;7, S, , and S, are open in E. From now on v will denote either +
or —; —v will denote the opposite sign to v.

If ~ =0 then (1.1) is a standard linear Sturm-Liouville problem. Thus
there exists a strictly increasing sequence of simple eigenvalues u,, k =
1,2,..., with corresponding eigenfunctions ¢, € S,. We also define the
numbers u = w%k?/1%, k > 1, where

g a(2) 1/2
l_jo(p(z)) dz.
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Now consider the problem

Lu = Aau + qou + g, in (0, ), ”1
agu(0) + bot/(0) =0,  au(m) + bu/'(7) =0, (21)

with general functions g,, ¢, € C°[0, 1.

LEMMA 2.1. There exist positive constants c,, ¢,, independent of q, q,,
such that if (A, u) € R X S, k > 1, is a solution of (2.1) then

(A — ,lL2| < Co(l + |C]0|0 + |CI1|S) + Cl(l + |Q1|0)k' (2'2)

Remark. The numbers c,, ¢, (and the constants c; in the following
proof) depend on | pli, Iqlo, lali, | p~tlo, la~tlo, and on the boundary condi-
tions in (2.1). However, we are regarding the functions p, g, and 4, and the
boundary conditions as fixed, so we suppress the dependence of ¢, and ¢,
on them.

Proof of Lemma 2.1. Let

_fa2) 7
y_fo(p(Z)) &

By transforming the independent variable x on the interval [0, 7] to the
variable y on the interval [0, /], and defining the function v on [0, /] by
v(y(x)) = u(x), we obtain an equation for v having the form

V't + (A +rg)v =0, in (0,7), (2.3)

where r; € C°l0, 7], i = 0,1 (this transformation is similar to the well-
known Liouville transformation, which is described in Section 10.9 of [4];
the assumption that a, p € C*[0, 7] is needed here). Clearly u € S, < v
€ S,. Let R, =1rlo, i = 0,1. From the transformation it can be verified
that R, < (1 + |golo), Ry < c5(1 + lgylo).

We now construct a number A, such that any nontrivial solution (A, v)
of (2.3) (together with the transformed boundary conditions—these de-
pend only on the original boundary conditions and on p and «) has
A > A,. We sketch the construction. By multiplying (2.3) by v and integrat-
ing over the interval (0, /) we obtain

Mol = 10112 + b.c.— (rv' vy = {reu, vy, (2.4)

where (-, - ) and || -|| denote the L2(0, /) inner product and norm, respec-
tively, and b.c. denotes the boundary terms obtained from integrating
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(v",v) by parts. Now, it can be shown that for any €, > 0, e [0, ], and
any w € C?0, 7],

2 _
|w(e)| < 2¢51|Iw’||2 + 2€; wll?.
Hence, we can show that
b.c.| < c4(2€1|lv’||2 + Zel’lllullz),

where ¢, depends only on the coefficients a;, b;, i = 0,1, in the boundary

I I

conditions in (2.1) and on p, a. Also, for any €, > 0,
Kr', v)] < I Hrwll < 26,0117 + 26 *R2|vll’.
Thus, choosing e, €,, such that c,e; + €, < 1/4, we obtain from (2.4),
A= Ay= —2c,6;' — 2€6,'R? — R,,.

We now apply the results in [2] to Eqg. (2.3). For any real numbers K, L,
such that ¢ =K — L?/4 > 0, the functions a(L, K), B(L, K) defined in
[2] satisfy

la(L,K) — {VPm/2| <LE 2, | B(L.K) = (Y Pm/2] < L2,

when L{ /% < ¢, where ¢, is a constant, independent of K and L. Also,
in the present situation, the constants L;, K;, i = 1,2, used in [2] satisfy
L] <R, A — R, <K, <A+R, Let h,,, and h,,;, denote, respectively,
the maximum and minimum distance between any two consecutive zeros of
any nontrivial solution v of (2.3). Theorem 3.1 of [2] shows that %, and
h i, satisfy the following estimates:

hoax < a(Ly, Ky) + B(L,, Ky)

< (A =Ry~ R2)[m+ 2Ry(A — Ry - R2) 7,
hain = a(Ly, K;) + B(Ly, K5)

> (A+ Ry +RY) [ — 2Ry(A =Ry — R2) 7,

when A > R?/cZ + R, + R?/4. Now, the number of zeros, k, of v in (0, 1)
satisfies

l/hpax =1 <k <1/hpi + 1,
and hence (2.2) follows from the above estimates for A > A; == ¢s(1 + R,

+ R?) (for sufficiently large cg). Thus the lemma holds in the region
A=A,
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Now consider a nontrivial solution (A, v) of (2.3) with A, < A < A;. Then
the simple estimate (1.7) in [2] shows that Kh%,, + 2Lh,,, = 72, where
K =X+ rolo < (Aol + M| + Ry), L =R,. Hence h;, = ((IA,] + [A] +
R)Y? 4+ R, and so k must satisfy

k* < c,(1+ R, + RZ).

Therefore, if ¢y, c;, are chosen appropriately the lemma also holds in the
region A, < A < A,. This completes the proof of the lemma.

Remark. By using the results of [2] rather more carefully in the above
proof, we could obtain estimates for the ‘“asymptotic” values of the
constants ¢, ¢y, i.e., values of the constants which would ensure that (2.2)
holds for all sufficiently large k£ and A. We note also that it is in the proof
of Lemma 2.1 that we use the assumption that a € C*[0, 7]. It is known
that finding asymptotic estimates for the eigenvalues of (2.1) is more
difficult when a ¢ CY[0, 7], and the estimate (2.2) may not be true—to
avoid these problems we assume that a € CY[0, 7], even though a €
C°[0, w] would seem more natural in (1.1).

Let K, =c,(1 +V2M, +2M?), K, = c,(1 + V2M,) (the reason for
the V2 factors will be seen in the proof of Lemma 2.2 below) and for any
k=1, v,and any 6, ¢ > 0, let

I ={A e Rix — | <Ky + Kk},
L(8) ={x e R: A — ufl <K, + Kk + 8},

Ur(8,0) ={(ru) eRXE:XEL(8), ucS lul> 1.
Clearly U?(8,¢) is open in R X E. Also, it follows from Lemma 2.2, with
qo = g, = 0, that u, € I, forall k > 1.

In the proof of our main result on bifurcation from infinity we will also
need to consider the modified nonlinear problem
Lu = Aau + |uly >f(-, lulsu, lulfu', \) +g(-,u,u', A),

ayu(0) + bou'(0) =0, au(m) + b/ (m) =0, (2:5)

with e €[0,1/2]. In a sense, this problem approximates problem (1.1)
when € is small; this form of approximation is similar to that used in [3].

LEMMA 2.2. Suppose that condition (1.4) holds, A C R is a compact
interval, and 8 > 0. Then there exists {y; = {,;,(8,A) > 0 such that if
(A u,e) € A X E X[0,1/2] is a solution of (2.5) with |ul, > {;*, then

(Lu)ye U U8 &)

(k,v)
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Proof. Suppose that the result is not true. Then there exists a sequence
(A, u,, )€ ANXEXI[0,1/2], n=1,2,..., of solutions of (2.5), with
A, = A, €A, u,l > n, and

(Aow) & U (800, (256)
(k,v)

Define the functions f,, g, € C°[0, ] by

Fu(x) =l |2 f (2 luy £, (), £, (%)),
gn(x) = |un|1_lg(x’ un(x)’ uln(x)’ An)'

For each n > 1 let w, = u, /lu,l; € E. Dividing (2.5) by |u,|; shows that
w, satisfies the equation

Lw}‘l = /\ﬂawﬂ +fl’l +gﬂ (27)
Also, it follows from the properties of f and g that
| £u(x) [ < Mo|w,(x) | + M |wy(x)], (28)
Pn = |gn|0 - 0.

Thus from (2.7) we have
wi ()| < K(Jw,(x)| +|wp(x)] +p,), x€[0,7x], (29)

for some constant K > 0.
We will now show that there exist 6, > 0, N, > 0 such that, for n > N,

() wi(0))| > 8, xe[o,m]. (2.10)

Suppose that this is not true. Then there exists a subsequence of the
sequence {w,} (which we will relabel as {w,}), and 7 [0, 7w] such that
I(w,(7), w!(7))] = 0. By following the argument on p. 379 of [3] (using
Gronwall’s inequality) we find that this, together with (2.9), implies that
w, — 0 in E. However, this contradicts the fact that |w,|; = 1 for all n.
Thus (2.10) must be true.

It follows from (2.10) that for n > N, we can write f,(x), x € [0, 7], in
the form

£,() Maw,(x) () MPw(x) |
O Yo R

= ()w,(x) + £ (x)w(x),

fulx) =
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where F,(x)* = M§w,(x)* + M{w;(x)* > 8, > 0, and for each i =0,1,
fie o, 7] and

|£,(2)]
w,(x)| + My w,(x)]

|fr:(x)| S\/51‘/10| M, < V2 M,

by (2.8). In a similar manner we have

8.(x) = ga(X)w,(x) + g (x)w,(x),  xe[0,7],

with gl € C°[0, w]and |gil, = 0 as n — . Thus Eq. (2.7) can be rewrit-
ten as

Lwn = /\nawn + (fno + gs)wn + (fnl + gi)wl,l’ (211)
with
If} + ghlo < V2 M, + Igilo. (2.12)

It also follows from (2.10) that, for each n > N;, (A,,u,) € A X S, for
some k (possibly depending on n). Hence it follows from (2.11), (2.12),
Lemma 2.1, and the definition of ,(8) that A, € I,(8) if n is sufficiently
large. Thus (A,,u,) € U7 (8,n" 1) U U7 (8,n 1), which contradicts (2.6)
and so completes the proof of Lemma 2.2.

When condition (1.3) holds a similar result (with a similar proof) is valid
for small |u|;. For any k > 1, v, and any 8, ¢ > 0, let

VI8, ¢) ={(Au) eRXE:NE(8), uessSy luly <}

LEMMA 2.3. Suppose that condition (1.3) holds, A C R is a compact
interval, and &> 0. Then there exists {, = {,(8,A) >0 such that if
(A u,e) € A X E X [0,1/2] is a nontrivial solution of (2.5), with |ul, < ¢,
then

(Lu)ye U Vs &),

(k,v)

3. MAIN RESULTS

Let C R X E be the set of nontrivial solutions of (1.1). For any
A € R, we say that a subset & c.% meets (A, ) (respectively, (A,0)) if
there exists a sequence (A, u,) €€, n=12,..., such that A, — A,
|u,l; — o (respectively, |u,|; — 0) as n — . Furthermore, we will say that
& C. meets (A, ») (respectively, (A,0)) through R X Sy if the sequence
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(A, u,) €%, n=12,..., can be chosen so that u, € S} for all n. If
I c R is a bounded interval we say that & c.%” meets I X {=} (respectively,
I x {0}) if & meets (A, ) (respectively, (A, 0)) for some A € I; we define
meets I X {oo} or I X {0} through R X S similarly.

We consider first the case of bifurcation from u = « and suppose, for
now, that condition (1.4) holds (bifurcation from u = 0, when (1.3) holds,
will be considered below—we deal with this case second because it is
simpler than bifurcation from u = %, and so the proofs may be omitted).
Putting e = 0 in Lemma 2.2, it follows that any set & . which meets
(A, ), for some A, must do so through R X S¢, for at least one pair (k, )
(Z may meet more than one “point” (A, ) through more than one set
R X §7). Furthermore, if & meets (A, «) through R X S} then A € [,. For
each k > 1 and v we define the set 2,” C.% to be the union of all the
components of . which meet I, X {} through R X Sy (we will show
below that this set is nonempty). The set & may not be connected in
R X E although, by adding the “points at infinity” (A,%), A € [,,toR X E
and defining an appropriate topology on the resulting set, the set 2 U (I,
X {e0}) is connected—we will not pursue this further.

For any set 4 C R X E we let P,(A) denote the natural projection of
A onto R x {0}.

THEOREM 3.1. If (1.4) holds then, for every integer k > 1 and each v,
the set @) is nonempty and at least one of the following holds:

() 2 meets I, X {} through R X S¢. for some (k', v') # (k, v);
(i) 2} meets (A,0) for some A € R;
(iii)  Px(2)) is unbounded.

In addition, if the union 9, =27 VD, does not satisfy (ii) or (iii) then it
must satisfy (i) with k' + k.

Proof. For any nontrivial (A, ) € R X E we define the function f(A,
v) € CY0, 7] by

ﬂ/\, v)(x) = Ivlff(x, U(x)/lulf,u'(x)/lvlf, )\), x € [0,],

and let f()\,O) = 0; we define g similarly. By our basic assumptions and
(1.4), the functions f,g: R X E — C°[0, 7] are continuous and satisfy

|R/\U)|o
1g(A0) o

where the o estimate holds uniformly for A in any bounded interval
A c R. Now let (A, u) be a nontrivial solution of (1.1). Setting v = u /|ul?,

IA

(M, + My)lvly, (31)

0(|U|l)1 as |U|l - Ol
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we have [vl; = 1/lul; and u = v/|v|?. Dividing (1.1) by |ul? yields the
equation

Lv = Aav + f(A,0) +8(A0) (3.2)

(the boundary conditions in (1.1) also hold here and below; for brevity we
will not explicitly display them again). The transformation (A, u) — T(A, u)
:= (A, v) was used in the papers [12] and [16] and turns a “bifurcation at
infinity” problem into a “bifurcation at zero” problem. However, here Eqg.
(3.2) does not have a linearization at v = 0 so we cannot immediately
apply standard global bifurcation theory to obtain the desired result, as
was done in [12] and [16]. To deal with this problem we will also consider
the equation

Lv = hav +ﬂ)\, lvlfv) +g(A,0), (3.3)

for € € (0,1/2] (it can be seen from these definitions that (3.3) is equiva-
lent to (2.5)). For fixed € € (0,1/2] it follows from (3.1) that |f(A, [vliv)lo
= o(|v|,), so the global bifurcation results in [8] and [11] are applicable to
this equation. Also, we will see that as € — 0, (3.3) approximates (3.2) in a
suitable sense. We now choose some fixed (arbitrary) k, > 1 and »,, and
we will prove the theorem for k = k, and v = v,.

Let . C R X E be the set of nontrivial solutions of (3.2). By construc-
tion, the transformation (A, u) — T(A,u) maps . into . and, heuristi-
cally, interchanges points at u = O (respectively, u = «) with points at
v_= % (respectively, v = 0). Let Z/* be the union of all the components of
. which meet L, X {0} through [R{ X Sgo. Then e is the inverse image

l(9,:0) of 9,:0 under the transformatlon T. Thus to prove the theorem
it suffices to show that the set 9{0 is nonempty and either meets some
interval I, X {0} through R X S¢, with (k, v) # (ky, vo), or is unbounded
in R X E (the alternatives (i) and (iii) stated in the theorem for 2;°
correspond, via 7', to the various ways in which 9,;’0 can be unbounded)

Suppose that _@*k”o is nonempty, but neither of the above possibilities
holds (the pOSSIbIlIty that ,° is empty will be dealt with below). Then
9,:0 is bounded and we can choose a compact interval A ¢ R such that
PR(QkO) U I, is in the interior of A. Let S =N (A X E). We note
that for any k v, and & the transformation 7" maps UZ(8) into V;/(8).
Also, the statement of Lemma 2.2 holds in the transformed situation if u is
changed to v, UY to V¢, and |ul, > {;* to |vl; < ¢,. Now, for any
6,,>0, let

Wo(8,8) = U W),

(k, v)#(ky, vg)

IWo(8.4) = {(rv) € aWo(8,¢): vl = £}
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The set W,(8, ) is open in R X E, and we let W,(8, ¢) denote its closure.
Also, the location of the intervals I, ensures that any bounded subset of
R X E intersects only finitely many sets 1;7(8, {). It can now be seen that
we can choose §,, {, > 0, with ¢, < {,(8,, A), such that:

@ 1,(8,) C A;
(b) A N IWy(8g, Lo) © 9 Wo( 8o, Lo);
© DN Wy(8y, L) = D

((b) follows from Lemma 2.2 with e = 0; if (c) did not hold then by Lemma
2.2 with e=0, 9{0 would meet I, X {0} through R X S¢ for some
(k, v) # (ky, v,), contrary to our assumption on 9{0)

Now let Co =20 U (I, X {0) cR X E. It follows from Lemma 2.2
and (c) that 9,50 cannot meet any point (A,0) with A & [, , so C, is
closed; it is also connected. Furthermore, Eq. (3.2) shows that bounded
subsets of ¥ in R X E are also bounded in R X C?0, 7], so C, is
compact. Thus we can choose a bounded open set &, C A X E such that

Cocy  IWo(80.lo) NGy =D, 36,0 (P\Wy(8y.4,)) = @
(3.4)

(since dist(C,, ' W,(8,, £,)) > 0 it is clear that an open set with the first
two properties exists; we obtain the final property by following the argu-
ments in Lemmas 1.1 and 1.2 of [11] or in Step 1 on p. 677 of [18]). On the
other hand, a set @, with these properties can also be constructed if Z;°
is empty, so the remainder of the proof covers all the above possibilities

for ékVOO. Let
@’=ﬁo\Wo(50:§o)- (3.5)
The set & is open and, for sufficiently small 8,, {; > 0, has the properties
Gco, V(s b)co, ienNT=0 (3.6)

(the final property in (3.6) follows from (b) above and (3.4)).

By Theorem 2 in [8], for each fixed € € (0,1/2] there exists a compo-
nent 9 *(e) € R X E of nontrivial solutions of (3.3) with the following
propertles 9{0(6) meets (puy,,0) through R X Sgo (and so intersects
Vie(8y, {0, 9,:0(6) is either unbounded or there is some (k,v) # (kqy, vo)
such that 9,(”0(6) meets (u,,0) through R X Sy (and so intersects
Wo(8y, £o))- These nodal properties follow from the nodal properties of the
linear problem and Lemma 1.24 of [11]; see [11, p. 502]. Now, these
properties together with the construction of the set # imply that the



152 BRYAN P. RYNNE

component gk”O(e) intersects both @ and the complement of #, and so

O(e) N oo + D Thus, for each e there exists a nontrivial solution
()LE, v.) € d@ of (3.3). Since @ is bounded in R X E, Eq. (3.3) shows that
the set of points (A_, v,) is bounded in R X C?[0, 7], independently of e.
Therefore there is a sequence €,, n =1,2,..., such that ¢, — 0 and
(A, ,v.) converges in R X E to a solutlon (/\,,L ) of (3.2). We will show
that ()\x, v,.) is nontrivial, which implies that (A, v,) € 9@ N.Z. Since this
contradicts (3.6), this will complete the proof of the theorem.

Suppose that v, |1 = 0. Then it follows from Lemma 2.2 that, for all

sufficiently large n,
(A 0. ) € 00 N (V(8,,8,) U Wo(8,,45)),

where 8, = min{§,, 6,}, ¢, < min{{,, {;}. However, this contradicts (3.5)
and (3.6). Thus we can conclude that (A, v..) is nontrivial, which completes
the proof.

Remarks. (i) If, for each A € R, there is an x such that A4(x,0,0, A) # 0
then alternative (ii) in Theorem 3.1 cannot hold.

(i) Unlike in the case of bifurcation from zero in [11], it need not
be the case that 2 C R X §¢ in Theorem 3.1 (see [12, Remark 2.12]).
This makes the approximation argument in the above proof more compli-
cated than it would be if we had 2" € R X S/, as in [3]; this point appears
to have been overlooked in [10].

(iii) Under further differentiability hypotheses on the functions p, ¢,
a, and h, the genericity results in [13] can be adapted to show that
“generically” the sets &, are collections of smooth, one-dimensional
curves in R X E (see [13, Theorem 2.5]). We will not give precise state-
ments of what “generically” means here; as an example, this result holds
whenever the coefficient function p in (1.1) belongs to a certain residual
subset of the subspace of C3[0, 7] consisting of positive functions.

We will now suppose that condition (1.3) holds and consider the case of
bifurcation from u = 0. The above methods enable us to extend some of
the results in [3], [5], [9], and [15] for this situation. As before, putting
€, = 0, forall n > 1, in Lemma 2.3 shows that any set Z C.%” which meets
(A,0), for some A, must do so through R X §¢ for at least one pair (k, v).
Furthermore, if & meets (A,0) through R X S¢ then A € I,. Thus for
each k and v we can define the set & c.% to be the union of all the
components of . which meet I, X {0} through R X S} (the following
theorem will show that this set is nonempty for all k and »). The set
&y U (I, x {0} is connected in R X E, but ” may not be connected.
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A further consequence of condition (1.3), together with (1.2), is that if
(A, u) is a solution of (1.1) with u €4Sy, then u =0 (see the first
paragraph of the proof of Theorem 1 in [3]); hence the nodal structure of
the solutions is preserved along any component of ..

THEOREM 3.2. If (1.3) holds then, for every integer k > 1 and each v,
the set & is nonempty, is unbounded in R X E, and & C R X §;.

Proof. The proof is similar to the proof of Theorem 1 in [3], using
Lemma 2.3 rather than Lemma 1 of [3]. We note that the preservation of
nodal properties along components of . makes the proof of this theorem
rather simpler than the proof of Theorem 3.1.

Remarks. (i) Theorem 3.2 is very similar to Berestycki's Theorem 1 in
[3], except that M; = 0 in [3]. The extension to M, > 0 here is gained at
the expense of having larger bifurcation intervals I, ; in fact, the bifurca-
tion intervals in [3] have constant length, whereas here they grow with k.

(ii) Schmitt and Smith also proved a similar result (see [15, Theo-
rems 3.4 and 3.5]). However, their theorems also require M, = 0, and they
only consider k > k, for some k, sufficiently large that their bifurcation
intervals I, (which are the same as Berestycki’s) do not overlap for k > k.
Also, they do not show that the individual sets &, , %, are nonempty and
unbounded, only that the union ;7 U &, is. In addition, in Lemma 3.3 of
[15] they consider the case 0 < M; < 1/ar, for a particular equation, and
obtain larger, nonoverlapping bifurcation intervals, for k sufficiently large,
and the remark following Theorem 3.4 notes that a corresponding bifurca-
tion theorem holds for this case. Theorem 3.2 above extends this result to
a general equation, for all M; >0 and all k£ and » (the bifurcation
intervals I, used here may overlap, but the use of nodal properties ensures
that this does not invalidate the bifurcation results).

(iii) In a sequence of papers Makhmudov and Aliev also give results
on bifurcation intervals when the nonlinearity again satisfies a similar
condition (see, for instance, [9] and the references therein). Their applica-
tions are usually to higher order Sturm—Liouville equations, but in essence
their results also require M, = 0 and k sufficiently large to obtain bifurca-
tion.

Next, if conditions (1.3) and (1.4) both hold then we can improve
Theorems 3.1 and 3.2 as follows.

THEOREM 3.3. If (1.3) and (1.4) hold then, for every integer k > 1 and
each v, @' CR X S}/, and alternative (i) of Theorem 3.1 cannot hold.
Furthermore, if 2} meets (A,0), for some A € R, then A € I,.. Similarly, if
& meets (A, ), then A € I.
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Proof. The remark preceding Theorem 3.2 shows that if (1.3) holds
then N (R X 457) = J. Hence the sets N (R X S¢) and A\(R X S7)
are mutually separated in R X E (see [17, Definition 26.4]). Thus by
Corollary 26.6 of [17] any component of . must be a subset of one or
another of these sets. Since &)’ is the union of components of . which
intersect R X §7, each of these components must be a subset of R X Sy,
and hence @ R X §}. This ensures that alternative (i) of Theorem 3.1
cannot hold. It now follows from Lemma 2.3 that &’ can only meet (A, 0)
if A € I,. Similarly, by Lemma 2.2, €, can only meet (A, ) if A € [,.

Imposing a further restriction on the nonlinearity will enable us to say
rather more about the location of the sets & and &}, and which of the
alternatives in Theorem 3.3 holds. We suppose that

g=0 (3.7)

(in effect, we suppose that the nonlinearity 4 itself satisfies (1.2)).

THEOREM 3.4.  Suppose that (3.7) holds. Then for every integer k > 1 and
each v,

gVl cl, XE. (3.8)

Hence, Py(%}) and Px(2}) are bounded and € meets I, X {} while @}’
meets I, X {0} (each through R X S}).

Proof. Relation (3.8) follows immediately from Lemma 2.1 and Theo-
rems 3.2 and 3.3. The other results then follow from Theorem 3.3 and the
definitions of the sets &, 2.

Remarks. (i) Theorem 3.4 does not appear to imply that € N9 + &.
Conceivably, for instance, the set &,” could consist of a countable collec-
tion of components of nontrivial solutions, each of which is bounded but
the union of which meets I, X {}, and similarly for &} If this were so we
would have & NZ} = . This situation seems rather unlikely, and will
certainly not happen if there is a simple bifurcation at either u = 0 or
u = oo, since then there will be a unique curve of solutions near u = 0 or
u = o, i.e., there will be a single bifurcating component (see [6] or [18] for
simple bifurcation from u = 0 and [7] or [14] for simple bifurcation from
u = ). This will ensure that & N2 # &, but not necessarily & =2,

(ii) Theorem 3.4 is similar to Proposition 2 in [5], except that there
M, = 0, k is required to be sufficiently large, and only the sets & U &,
are considered.

(iii) For large k we could obtain more precise estimates for the sizes
of the bifurcation intervals I, (see the remark following the proof of
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Lemma 2.1), and we could even have different intervals for bifurcation
from zero or infinity if we had different constants M, in the estimates for
the behaviour of f at zero and infinity. Furthermore, if more precise
information about the behaviour of the nonlinearity at either zero or
infinity is available then Theorems 3.3 and 3.4 can be improved further.
For instance, if |A(x, & 1, M| = o(I( &, n)), as either [(&,9)| = 0 or [(&, 1)l
— oo, and if a continuum of solutions meets (A, 0) or (A, »), respectively,
then A must be an eigenvalue w, of the linear problem.

(iv) We can weaken condition (1.2) to a certain extent and still
obtain all the above results (albeit with larger bifurcation intervals I,).
Suppose, instead of (1.2), that for any number L > 0, condition (1.2) holds
for (x, &, m, ) € [0, w] X R? X [—L, L], with constants M,(L), M,(L) and
suppose that M,(L) + M,(L)* = o(L) as L — . Then if (3.7) holds,
Lemma 2.1 says that any nontrivial solution (A, u) € R X §, of (1.1), with
[Al < L, satisfies

A — wfl < (1 + M(L) + My(L)?) + ¢y(1 + My(L))k.

Hence, some analysis shows that there is a decreasing function «a: N — R
such that a(k) — 0 as k — « and any nontrivial solution (A, u) € R X S,
satisfies

A — ull < a(k)k?.

If instead of (3.7), one or the other of (1.3) or (1.4) is satisfied then this
estimate holds for the limiting values of A obtained from sequences of
solutions (A, u,) with |u,l; = 0 or |u,|l; = «. In any case, replacing the
intervals I, used previously with the intervals I} = [ u? — a(k)k? u? +
a(k)k?], all of the above results still hold (any compact interval A
intersects only finitely many of the new intervals I;, so the proofs are
identical). The lengths of the new intervals I; are 2a(k)k?, and the size of
this, for large k, depends on the rate of convergence of (M,(L) +
M(L)*) /L to zero as L — o; they could be substantially larger than the
intervals 1.

(v) The following (linear) problems have no nontrivial solutions and
show that we cannot weaken the condition in the previous remark further
to My(L) + M,(L)? = O(L):

@ —u' = Au+h,with u(0) =u(w)=0,and h = —Au;
(b)) —u" = Au + h, with u(0) = u(w) = 0, and h = 41?4,

(vi) It follows from remark (iv) that if My(L) + M,(L)* = o(L) and
if (3.7) holds, then the projections Pz(%;) and Pr(2;’) are bounded and
lie in I, and the sets &7 and 2} may intersect (this is the extended
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version of Theorem 3.4). Theorem 3.3 in [16] gives conditions on the
nonlinearity & which ensure that there are constants R,, R,, with R; < R,,
such that if (A, u) € & then |uly < Ry, while if (A, u) €9/ then |uly > R,;

th
m

us the sets & and 2} cannot meet and each of Px(%}) and Pr(Z})
ust be unbounded. In a sense this is the reverse of the situation just

described. In Toland’s conditions, M,(L) = O(L), M(L) = 0.

10.

11.

12.

13.

14.

15.
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