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Abstract

In this paper, we generalize the notions of a matrix and its ideal of 2 × 2 minors to that
of a box-shaped matrix and its ideal of 2 × 2 minors, and make use of these notions to study
projective embeddings of certain blowup surfaces. We prove that the ideal of 2 × 2 minors of
a generic box-shaped matrix is a perfect prime ideal that gives the algebraic description for the
Segre embedding of the product of several projective spaces. We use the notion of the ideal of
2× 2 minors of a box-shaped matrix to give an explicit description for the de(ning ideal of the
blowup of P2 along a set of ( d+12 ) (d ∈ Z) points in generic position, embedded into projective
spaces using very ample divisors which correspond to the linear systems of plane curves going
through these points. c© 2002 Elsevier Science B.V. All rights reserved.

MSC: Primary: 13C40; 14J26; secondary: 14E25

0. Introduction

Ideals of minors of a matrix have been thoroughly studied over many decades. They
play a signi(cant role in the study of projective varieties. It had been a major classical
problem to show that the ideal of t × t minors of a generic matrix is a prime and
perfect ideal. The proof for a general value of t was due to Eagon and Hochster from
their important work in [13]. In the (rst part of this paper, we generalize the notions
of a matrix and its ideal of 2× 2 minors to that of a box-shaped-matrix and its ideal
of 2× 2 minors. Our main theorem in this section is the following theorem.
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Theorem 0.1 (Theorem 1.6). If A is a box-shaped matrix of indeterminates; then
I2(A) is a prime ideal in t[A] (here; I2(A) is the ideal of 2× 2 minors of A).

Coupled with previous work of Grone [11], we also show that the ideal of 2 × 2
minors of a generic box-shaped matrix is the de(ning ideal of a Segre embedding of
the product of several projective space, namely P(V1)×· · ·×P(Vn) ,→ P(V1⊗· · ·⊗Vn).
This geometric realization of the ideal of 2× 2 minors of a generic box-shaped matrix
enables us to study its perfection (Theorem 1.10), its Hilbert function (Proposition
1.9), and gives a GrFobner basis (Theorem 1.14).
Box-shaped matrices not only describe the Segre embedding of the product of several

projective spaces, but also provide a new tool for the study of projective embeddings
of certain blowup surfaces. This study is carried out in the second part of this paper.
To be more precise, let X = {P1; : : : ; Ps} be a set of s distinct points in P2, and let
IX =

⊕
t¿� It ⊆ R = t[w1; w2; w3] be the homogeneous decomposition of the de(ning

ideal of X, and P2(X) the blowup of P2 centered at X. The second part of this paper
studies the problem of (nding systems of de(ning equations for P2(X) embedded in
projective spaces by very ample divisors which correspond to the linear systems of
plane curves going through the points in X. This problem has also been considered by
several authors in the last ten years, such as [4–6,8–10,15–17].
A great deal of work has concentrated on an important special case, when s=(d+12 )

for some positive integer d and the points in X are in generic position (cf. [4,8,9]).
In this case,

X= Id ⊕ Id+1 ⊕ Id+2 ⊕ · · ·
is generated by Id (see [7]). We also address this situation.
It is well known that, in our situation, all the linear systems It (for t ¿ d+ 1) are

very ample (cf. [3,6]), so they all give embeddings of P2(X) in projective spaces. If
in addition, there are no d points of X lying on a line, then the linear system Id is
also very ample. Under this assumption, Gimigliano studied the embedding of P2(X)
given by the linear system Id, which results in a White surface [8,9]. White surfaces
had also been studied in the classical literature [20,25]. Gimigliano showed that the
de(ning ideal of a White surface is generated by the 3× 3 minors of a 3× d matrix
of linear forms, and its de(ning ideal has the same Betti numbers as that of the ideal
of 3× 3 minors of a 3× d matrix of indeterminates (which was given by the Eagon–
Northcott complex). The embedding of P2(X) given by the linear system Id+1 (which
results in a Room surface) was then studied in detail by Geramita and Gimigliano [4].
Geramita and Gimigliano were able to determine the resolution of the ideals de(ning
the Room surfaces. They also proved that the de(ning ideals of the embeddings of
P2(X) given by the linear systems It are generated by quadrics, for all t ¿ d+1, but
they were unable to write down those generators when t ¿ d+ 2.
In [2,23], a method of (nding a system of de(ning equations for a diagonal subal-

gebra from that of a bigraded algebra was given. This, together with results of [19]
(which gives the equations for the Rees algebra of the ideal of a set of ( d+12 ) points
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in generic position), makes it possible, in theory, for one to write a system of de(ning
equations for the embeddings of P2(X) given by the linear systems It for all t. How-
ever, this method has its disadvantages as pointed out in [12]. In the second part of
this paper, we generalize Geramita and Gimigliano’s argument on the Room surfaces
and give an explicit description of the de(ning ideals of the embeddings of P2(X)
given by the linear systems It , for all t ¿ d+1. Our main result in this section is the
following theorem.

Theorem 0.2 (Theorem 2.6). Suppose t=d+n (n¿ 1). Then the projective embedding
of P2(X) given by the linear system It is generated by ( n+12 )d linear forms and the
2× 2 minors of a box-shaped matrix of linear forms.

Throughout this paper, t will be our ground (eld. For simplicity, we assume that t

is algebraically closed and of characteristic 0 (though many of our results are true for
any (eld t). We also let P2 = P2t be the projective plane over t.

1. Box-shaped matrices and their ideals of 2× 2 minors

The techniques we use in this section are inspired by those of [22] in his study of
ideals of 2× 2 minors of a matrix.

1.1. Box-shaped matrices

Let S be a commutative ring that contains a (eld t. An n-dimensional array (n¿ 2)

A= (ai1 ::: in)16ij6rj ; ∀j=1;:::; n;

can be realized as the box

B= {(i1; : : : ; in) | 16 ij 6 rj; ∀j};
in which each integral point (i1; : : : ; in) is assigned the value ai1 ::: in .

De�nition. An n-dimensional array A, with its box-shaped realization B, is called an
n-dimensional box-shaped matrix of size r1 × · · · × rn.

We associate to each box-shaped matrix A of elements in S a ring SA = t[A], the
subring of S obtained by adjoining the elements of A to the (eld t.

De�nition. Suppose A is an n-dimensional box-shaped matrix of size r1 × · · · × rn of
elements in S. For each l= 1; 2; : : : ; n, we call

ai1 ::: il::: inaj1 ::: jl::: jn − ai1 ::: il−1jlil+1 ::: inaj1 ::: jl−1iljl+1 ::: jn ∈ SA;

(where (i1; : : : ; in) and (j1; : : : ; jn) are any two integral points in B), a 2 × 2 minor
about the lth coordinate of A. A 2× 2 minor of A is a 2× 2 minor about at least
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one of its coordinates. We let I2(A) be the ideal of SA generated by all the 2 × 2
minors of A, and call it the ideal of 2× 2 minors of the box-shaped matrix A.

From now on, unless stated otherwise, we focus our attention to box-shaped matrices
of indeterminates. Suppose A=(xi1 ::: in)(i1 ;:::;in)∈B is an n-dimensional generic box-shaped
matrix of size r1 × · · · × rn with its box-shaped realization B. For each l=1; : : : ; n, let

Al = (xi1 ::: in)(i1 ;:::;in)∈B and il¡rl ;

and denote by I2(Al) its ideal of 2 × 2 minors (in the appropriate ring). For each
l= 1; : : : ; n, we also let

Bl = {(i1; : : : ; in) ∈ B | il = rl};

and

Il = 〈I2(Al); {xi1 ::: in | (i1; : : : ; in) ∈ Bl}〉:

Throughout this paper, to any box-shaped matrix A, we always associate box-shaped
matrices Al, boxes Bl and all the ideals Il de(ned as above. The (rst crucial property
of box-shaped matrices of indeterminates comes in the following lemma.

Lemma 1.1. Suppose A = (xi1 ::: in)(i1 ;:::;in)∈B is a box-shaped matrix of indeterminates
in S. Then;
(a) For any l �= s ∈ {1; : : : ; n}, we have

Il ∩ Is = 〈I2(A); {xi1 ::: in | (i1; : : : ; in) ∈ Bl ∩ Bs}〉:

(b) For any distinct elements l1; l2; : : : ; lt of {1; 2; : : : ; n} (26 t 6 n); we have

t⋂
j=1

Ij =

〈
I2(A);


xi1 ::: in | (i1; : : : ; in) ∈

t⋂
j=1

Bj



〉

:

Proof. (a) For convenience, we denote by LHS and RHS the left hand side and the
right hand side of the presented equality, respectively. It is clear that RHS ⊆ LHS.
We need to show the opposite direction. Let F ∈ LHS. Since F ∈ Il, we can write
F = F ′ + F ′′, where

F ′ ∈ I2(Al) and F ′′ =
∑

(i1 ;:::; in)∈Bl

Fi1 ::: in xi1 ::: in :

It suMces to show that F ′′ ∈ RHS. F ′′ certainly belongs to Is. Now, for (i1; : : : ; in) ∈ Bl,
we write Fi1 ::: in in the form

Fi1 ::: in =
∑

( j1 ;:::; jn)∈Bs

Gi1 ::: in;j1 ::: jnxj1 ::: jn + Gi1 ::: in ;
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where Gi1 ::: in is independent of the indeterminates {xj1 ::: jn | (j1; : : : ; jn) ∈ Bs}. Then F ′′=
G + G′, where

G =
∑

(i1 ;:::; in)∈Bl

Gi1 ::: in xi1 ::: in ;

and

G′ =
∑

(i1 ;:::; in)∈Bl;( j1 ;:::; jn)∈Bs

Gi1 ::: in;j1 ::: jnxi1 ::: in xj1 ::: jn

=
∑

(i1 ;:::; in)∈Bl;
( j1 ;:::; jn)∈Bs

(Gi1 ::: in;j1 ::: jnXi1 ::: in;j1 ::: jn + xi1 ::: is−1jsis+1 ::: inTi1 ::: in;j1 ::: jn);

where

Xi1 ::: in;j1 ::: jn = xi1 ::: in xj1 ::: jn − xi1 ::: is−1jsis+1 ::: in xj1 ::: js−1isjs+1 ::: jn ;

and Ti1 ::: in;j1 ::: jn ∈ SA. Clearly, Xi1 ::: in;j1 ::: jn is a 2 × 2 minor about the s-th coordinate
of A, and since the sum is taken on (i1; : : : ; in) ∈ Bl and (j1; : : : ; jn) ∈ Bs, the point
(i1; : : : ; is−1; js; is+1; : : : ; in) belongs to Bl ∩ Bs. Thus, G′ ∈ RHS.
It remains to show that G ∈ RHS. Again, we have G ∈ Is, so we can write

G = H +
∑

( j1 ;:::; jn)∈Bs

Hj1 ::: jnxj1 ::: jn ;

where H ∈ I2(As). We may also assume that H and Hj1 ::: jn , where (j1; : : : ; jn) ∈ Bl∩Bs,
are independent of the indeterminates

{xj1 ::: jn | (j1; : : : ; jn) ∈ Bs \ (Bl ∩ Bs)}:
Then

G − H −
∑

( j1 ;:::; jn)∈Bl∩Bs

Hj1 ::: jnxj1 ::: jn =
∑

( j1 ;:::; jn)∈Bs\(Bl∩Bs)

Hj1 ::: jnxj1 ::: jn :

The left hand side of the above equality is independent of all the indeterminates

{xj1 ::: jn | (j1; : : : ; jn) ∈ Bs \ (Bl ∩ Bs)}:
Thus, both sides must be zero. This implies that

G = H +
∑

( j1 ;:::; jn)∈Bl∩Bs

Hj1 ::: jnxj1 ::: jn ⊆ RHS:

We have proved LHS ⊆ RHS. Thus, the given equality follows.
(b) We will use induction on t. For t=2 the equality is proved in part (a). Suppose

t ¿ 2, and the equality is true for t − 1. We then have
t−1⋂
j=1

Ij =

〈
I2(A);


xi1 ::: in | (i1; : : : ; in) ∈

t−1⋂
j=1

Bj



〉

:
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It remains to prove〈
I2(A);


xi1 ::: in | (i1; : : : ; in) ∈

t⋂
j=1

Bj



〉

=

〈
I2(A);


xi1 ::: in | (i1; : : : ; in) ∈

t−1⋂
j=1

Bj



〉

∩ It :

We can proceed in the same lines of argument as that of the proof of part (a) to
show that the equality above is indeed true. Hence, the presented equality is true for
all 26 t 6 n.

In particular, we obtain the following corollary.

Corollary 1.2.
⋂n

l=1 Il = 〈I2(A); xr1 :::rn〉.

1.2. The prime-ideal theorem

From henceforth, we shall assume that our ring S is a domain. The primeness of
I2(A) for a generic box-shaped matrix A comes as a consequence of a series of
lemmas. Note that even though the following lemmas are generalizations to higher
dimension of those given in [22], most of the proofs require more arguments than
what was given for their two-dimensional statements.

Lemma 1.3. Suppose F(: : : ; xi1 ::: in ; : : :) is an element of SA = t[A]. If; for some xi1 ::: in
of A; there exists a positive integer � such that x�i1 ::: inF ∈ I2(A); then; for any xj1 ::: jn
of A there exists a non-negative integer � such that x�j1 ::: jnF ∈ I2(A).

Proof. Denote by Z the multiplicatively closed subset of SA consisting of all non-
negative powers of xj1 ::: jn , and let SZ be the localization of SA at the set Z . Let
 : SA → SZ be the ring homomorphism de(ned by  (c) = c for all c ∈ t, and

 (xi1 ::: in) =
xi1j2 ::: jnxj1i2j3 ::: jn : : : xj1 ::: jn−1in

xn−1j1 ::: jn

for all xi1 ::: in ∈ A:

Obviously,  is a well-de(ned map. It is easy to verify that  (a) = 0 for any 2× 2
minors a of A. Thus,  (I2(A)) = 0. Moreover,

x�i1 ::: inF(: : : ; xi1 ::: in ; : : :) ∈ I2(A):

Therefore, in SZ ,(
xi1j2 ::: jnxj1i2j3 ::: jn : : : xj1 ::: jn−1in

xn−1j1 ::: jn

)�

F(: : : ;  (xi1 ::: in); : : :) = 0:

Since SA is a domain, so is SZ . Hence,

F(: : : ;  (xi1 ::: in); : : :) = 0 in SZ :
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Now, using binomial expansions, we can write

F(: : : ; xi1 ::: in ; : : :) = F

(
: : : ;

xi1j2 ::: jnxj1i2j3 ::: jn : : : xj1 ::: jn−1in
xn−1j1 ::: jn

; : : :

)
+ K;

where K belongs to the ideal of SZ generated by elements of the form

xi1 ::: in −
xi1j2 ::: jnxj1i2j3 ::: jn : : : xj1 ::: jn−1in

xn−1j1 ::: jn

:

The generators of this SZ -ideal can be rewritten as

xi1 ::: in x
n−1
j1 ::: jn − xi1j2 ::: jnxj1i2j3 ::: jn : : : xj1 ::: jn−1in :

We shall prove that K belongs to the ideal of SZ generated by I2(A), or equivalently,
we prove that these generators, considered as elements of SA, belong to I2(A). Indeed,
using induction on n, modulo I2(A), we have

Kn = xi1 ::: in x
n−1
j1 ::: jn − xi1j2 ::: jnxj1i2j3 ::: jn : : : xj1 ::: jn−1in

= xi1j2 ::: jnxj1i2 ::: in x
n−2
j1 ::: jn + (xi1 ::: in xj1 ::: jn − xi1j2 ::: jnxj1i2 ::: in)x

n−2
j1 ::: jn

− xi1j2 ::: jnxj1i2j3 ::: jn : : : xj1 ::: jn−1in
≡ xi1j2 ::: jnxj1i2 ::: in x

n−2
j1 ::: jn − xi1j2 ::: jnxj1i2j3 ::: jn : : : xj1 ::: jn−1in

= xi1j2 ::: jnKn−1;

where

Kn−1 = xj1i2 ::: in x
n−2
j1 ::: jn − xj1i2j3 ::: jn : : : xj1 ::: jn−1in :

Since every indeterminate appearing in the expression Kn−1 has j1 in its (rst in-
dex, we can view Kn−1 as just the same expression as Kn but given by the (n −
1)-dimensional box-shaped matrix A′ = (xi1 ::: in)i1=j1 . By induction hypothesis, Kn−1
then belongs to I2(A′) ⊆ I2(A). And hence, Kn ∈ I2(A).
We have just proved that K belongs to the ideal of SZ generated by I2(A). Equiva-

lently, F(: : : ; xi1 ::: in ; : : :) belongs to the ideal of SZ generated by I2(A). Therefore, there
exists a � such that

x�j1 ::: jnF(: : : ; xi1 ::: in ; : : :) ∈ I2(A) in SA:

The lemma is proved.

Lemma 1.4. Suppose l ∈ {1; 2; : : : ; n}. Suppose also that F ∈ SA = t[A] is a poly-
nomial independent of the indeterminates xi1 ::: in for all (i1; : : : ; in) ∈ Bl such that
I2(Al) :F = I2(Al). Then Il :F = Il.

Proof. The proof follows in exactly the same line as that of [22].

Lemma 1.5. Let F ∈ SA = t[A] and suppose that x�1:::1F ∈ I2(A) for some positive
integer �. Then F ∈ I2(A). In other words; I2(A) : x�1:::1 = I2(A).
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Proof. We use induction on n. When n = 2, the result follows from that of [22].
Suppose n¿ 2, A is an n-dimensional box-shaped matrix of indeterminates, and the
lemma is true for any box-shaped matrices of lower dimension. We now use induction
on r1 + · · ·+ rn. We may assume that ri ¿ 2 for all i = 1; : : : ; n (since otherwise, A
collapses to an (n− 1)-dimensional box-shaped matrix, and the result follows from the
induction hypothesis), and the lemma is true for any n-dimensional box-shaped matrix
with smaller value of r1 + · · ·+ rn.
If F is of degree zero, then x�1:::1F belongs to the ideal of 2×2 minors of a box-shaped

matrix obtained from A by letting all the indeterminates xi1 ::: in , for (i1; : : : ; in) �=
(1; : : : ; 1), be zero. Yet, this ideal is zero, so F = 0 ∈ I2(A). We may use induc-
tion again, assuming that the degree of F is bigger than zero, and the lemma holds
for polynomials whose degrees are smaller than that of F .
Now, x�1:::1F ∈ I2(A) ⊆

⋂n
j=1 Ij by Corollary 1.2, so in particular, x

�
1:::1F ∈ Ij for

all j. Moreover, by the induction hypothesis, we have I2(Aj) : x�1:::1 = I2(Aj). Thus,
by Lemma 1.4, Ij : x�1:::1 = Ij. This implies that F ∈ ⋂n

j=1 Ij = 〈I2(A); xr1 :::rn〉. Write
F = F1 + xr1 :::rnF2, where F1 ∈ I2(A). Since I2(A) is homogeneous, we may assume
that the degree of F2 is smaller than that of F . We have x�1:::1F=x�1:::1F1+x�1:::1xr1 :::rnF2 ∈
I2(A). Thus, xr1 :::rnx

�
1:::1F2 ∈ I2(A). By Lemma 1.3, there is a non-negative integer �

such that x�+�
1:::1F2 = x�1:::1x

�
1:::1F2 ∈ I2(A). By our induction hypothesis on the degree of

F , we have F2 ∈ I2(A). Hence, F ∈ I2(A) as required.

The primeness of the ideal of 2 × 2 minors of a box-shaped matrix in the generic
case is stated as follows.

Theorem 1.6. If A is a box-shaped matrix of indeterminates; then I2(A) is a prime
ideal in t[A].

Proof. Suppose that F(: : : ; xi1 ::: in ; : : :)G(: : : ; xi1 ::: in ; : : :) ∈ I2(A), where F;G ∈ SA=t[A].
Let Z be the multiplicatively closed subset of SA consisting of all non-negative powers
of x1:::1, and let SZ be the localization of SA at Z . Similar to what was done in
Lemma 1.3, we de(ne a map

’ : SA → SZ ;

by sending t to t, and sending xi1 ::: in to (xi11:::1x1i21:::1 : : : x1:::1in)=x
n−1
1:::1 for all xi1 ::: in ∈ A.

It is easy to verify that ’(a) = 0 for any 2× 2 minors a of A. Thus, ’(I2(A)) = 0.
Moreover, F(: : : ; xi1 ::: in ; : : :)G(: : : ; xi1 ::: in ; : : :) ∈ I2(A). Hence, in SZ ,

F(: : : ; ’(xi1 ::: in); : : :) G(: : : ; ’(xi1 ::: in); : : :) = 0:

Since SA is a domain, so is SZ . Thus, at least one of the two factors has to be zero.
Suppose

F

(
: : : ;

xi11:::1x1i21:::1 : : : x1:::1in
xn−11:::1

; : : :

)
= 0:
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Now, similar to what was done in Lemma 1.3, we deduce that there exists a � such
that x�1:::1F(: : : ; xi1 ::: in ; : : :) ∈ I2(A) in SA. Hence, by Lemma 1.5, F ∈ I2(A), and this
completes the proof.

1.3. Segre embedding, Cohen–Macaulayness and Kozsul property

Suppose V1; V2; : : : ; Vn are vector spaces of dimensions r1; r2; : : : ; rn, respectively. Re-
call the following de(nition.

De�nition. A tensor z ∈ V1 ⊗ · · · ⊗ Vn is referred to as decomposable if there exist
vj ∈ Vj for all j = 1; : : : ; n, such that z = v1 ⊗ · · · ⊗ vn.

Now, let {ej1; : : : ; ejrj} be a basis for Vj for all j=1; : : : ; n. Then a basis of V1⊗· · ·⊗Vn

is given by

{)i1 ::: in = e1i1 ⊗ · · · ⊗ enin | 16 ij 6 rj ∀j = 1; : : : ; n}:
A tensor z ∈ V1 ⊗ · · · ⊗ Vn is represented by

z =
∑
i1 ::: in

yi1 ::: in )i1 ::: in ;

and a vector vj ∈ Vj is given by

vj =
rj∑

k=1

ujkejk :

Thus, to have z = v1 ⊗ · · · ⊗ vn, is the same as to have

yi1 ::: in = u1i1 : : : unin for all i1 : : : in:

This is clearly the equations describing the image of the following Segre embedding:

P(V1)× · · · × P(Vn) ,→ P(V1 ⊗ · · · ⊗ Vn):

Hence, a tensor z ∈ V1 ⊗ · · · ⊗ Vn is decomposable if and only if its corresponding
point in P(V1 ⊗ · · · ⊗ Vn) is in the image of the above Segre embedding.
The geometric realization of the ideal of 2× 2 minors of a generic matrix A comes

from the work of Grone [11], which we rephrase in the following proposition.

Proposition 1.7 (Grone [11]). Suppose A is a generic box-shaped matrix of size
r1 × · · · × rn, and V1; : : : ; Vn are vector spaces of dimension r1; : : : ; rn; respectively.
Then I2(A) gives a set of equations that describe the decomposable tensors in
V1 ⊗ · · · ⊗ Vn.

Since the Segre embedding of the product of several projective spaces is a closed
immersion, Grone’s result gives an immediate corollary, which demonstrates the geo-
metric realization of I2(A).
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Corollary 1.8. If A is an n dimensional generic box-shaped matrix of size r1×· · ·×rn;
then I2(A) gives the de>ning ideal of the Segre embedding

P(V1)× · · · × P(Vn) ,→ P(V1 ⊗ · · · ⊗ Vn):

where V1; : : : ; Vn are vector spaces of dimensions r1; : : : ; rn; respectively.

Proof. The result follows from the fact that I2(A) is a prime ideal.

From this, we can calculate the Hilbert function of the ideal of 2 × 2 minors of a
generic box-shaped matrix as follows.

Proposition 1.9. The Hilbert function of I2(A) is

H(I2(A); t) =




n∏
i=1

ri + t − 1

t


−

n∏
i=1

(
ri + t − 1

t

)
∀t ¿ 0:

Proof. It is easy to see that all homogeneous polynomials of degree t on PPri−1

restricted to the image of Pr1−1×· · ·×Prn−1 gives all multi-homogeneous polynomials
of degree (t; : : : ; t) in Pr1−1×· · ·×Prn−1. Thus the Hilbert function of the homogeneous
coordinate ring of the Segre embedding is

n∏
i=1

(
ri + t − 1

t

)
:

The proposition now follows.

Remark. It is clear that any Segre embedding is Hilbertian, i.e. its Hilbert function
and its Hilbert polynomial are the same.

The geometric realization of I2(A) and Proposition 1.9 give us the perfection of
I2(A). The result is stated as follows.

Theorem 1.10. IfA is an n-dimensional generic box-shaped matrix of size r1×· · ·×rn,
then I2(A) is a perfect ideal of grade

∏n
i=1 ri −

∑n
i=1 ri + (n− 1).

Proof. We let Si=t[yi;1; : : : ; yi; ri ] be the homogeneous coordinate ring of Pri−1 for all i.
Clearly, Si is Cohen–Macaulay for all i. By results of [24, p. 378] and Proposition 1.7,
it follows by induction on n that the Segre product

⊗n
i=1

Si is a Cohen–Macaulay
ring. Furthermore, this ring is exactly the coordinate ring of the Segre embedding
Pr1−1 × · · · × Prn−1 ,→ PPri−1. Thus, since I2(A) is the de(ning ideal of this Segre
embedding, i.e.

⊗n
i=1

Si � t[A]=I2(A), we have I2(A) is a perfect ideal. The grade of
I2(A) comes from the codimension of the Segre embedding, which is exactly

∏n
i=1 ri−∑n

i=1 ri + (n− 1). The theorem is proved.

Remark. The perfection of I2(A) also comes from a more general result of Hochster
[14, Theorem 1].
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We have an immediate corollary.

Corollary 1.11. Suppose V1; : : : ; Vn are vector spaces of dimensions r1; : : : ; rn. Then;
the homogeneous coordinate ring of the Segre embedding

P(V1)× · · · × P(Vn) ,→ P(V1 ⊗ · · · ⊗ Vn)

is always Cohen–Macaulay.

We now recall the following folklore result (cf. [18]).

Lemma 1.12 (Huneke [18, Lemma 6:3A]). Let I be a proper ideal of Z[x1; : : : ; xn]
such that Z[x1; : : : ; xn]=I is Z-?at; and I is perfect of grade g. Suppose S is a Noethe-
rian ring and a1; : : : ; an are elements of S. Let I ′ be the ideal given by the image of
I under the ring homomorphism of Z[x1; : : : ; xn] → S sending xi to ai. Then grade
I ′ 6 g; and if the equality is attained then I ′ is a perfect ideal.

We note also that our calculations and arguments, so far, are independent of the
(eld t. In fact, the same calculations and arguments would apply if we have any
commutative Noetherian ring with identity instead of t. Thus, our results hold when
we substitute t by Z, the ring of integers. This, together with Lemma 1:2, gives rise
to the following result for any box-shaped matrix A.

Theorem 1.13. SupposeA is any n-dimensional box-shaped matrix of size r1×· · ·×rn.
Then;

grade I2(A)6
n∏

i=1

ri −
n∑

i=1

ri + (n− 1);

and if the equality is attained then I2(A) is a perfect ideal.

Proof. The result follows from Lemma 1.12 and the fact that our Theorem 1.10 is still
true if instead of t we have the ring Z.

We return to the generic situation. Suppose again that

A= (xi1 ::: in)(i1 ;:::;in)∈B

is a generic box-shaped matrix of size r1 × · · · × rn. The following theorem gives a
GrFobner basis for I2(A).

Theorem 1.14. Under the degree reverse lexicographic monomial ordering on SA =
t[A], in which the variables xi1 ::: in are ordered by lexicographic ordering on their
indices (assuming that 1¡ 2¡ · · ·¡n), the 2×2 minors of A form a GrAobner basis
for I2(A).
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Proof. Let 6lex be the lexicographic ordering on Nn. We order the variables of SA
by

xi1 ::: in 6 xj1 ::: jn ⇔ (i1; : : : ; in)6lex (j1; : : : ; jn);

and use degree reverse lexicographic ordering on the monomials of SA. We shall prove
that under this monomial ordering, the 2 × 2 minors of A form a GrFobner basis for
I2(A).
Let G be the collection of all 2 × 2 minors of A. It suMces to show that the

leading terms of G generate the leading term ideal of I2(A). By contradiction, suppose
F ∈ I2(A), and T , the leading term of F , is not generated by the leading terms of
G. Clearly, from the nature of I2(A), T is a monomial with at least two diQerent
indeterminates. We consider a new partial ordering on the indeterminates of SA, de(ned
by

xi1 ::: in 4 xj1 ::: jn ⇔ il 6 jl ∀l= 1; : : : ; n:
Suppose xi1 ::: in and xj1 ::: jn are any two diQerent indeterminates present in T . Without
loss of generality, assume that xi1 ::: in ¡ xj1 ::: jn , i.e. there exists a positive integer u such
that il = jl for all l = 1; : : : ; u − 1, and iu ¡ ju. It is easy to see that if xi1 ::: in � xj1 ::: jn
then there exists another integer v¿u such that iv ¿ jv. In this case,

xi1 ::: iv−1jviv+1 ::: in ¡ xi1 ::: in ; xj1 ::: jn ¡ xj1 ::: jv−1ivjv+1 ::: jn :

Thus, xi1 ::: in xj1 ::: jn is the leading term of

xi1 ::: in xj1 ::: jn − xi1 ::: iv−1jviv+1 ::: in xj1 ::: jv−1ivjv+1 ::: jn ∈ G;

whence T is generated by the leading terms of G, a contradiction. Hence, these two
indeterminates must be comparable, i.e. xi1 ::: in 4 xj1 ::: jn . This is true for any two diQerent
indeterminates of T . Therefore, T can be rewritten as

T = xt11 ::: t1nxt21 ::: t2n : : : xtp1 ::: tpn ;

for some positive integer p¿ 2, where

xt11 ::: t1n 4 xt21 ::: t2n 4 · · · 4 xtp1 ::: tpn :

Now, let [yi;1 : : : : : yi;ri ] represent the homogeneous coordinates of Pri−1 for all
i = 1; : : : ; n. Since I2(A) is the de(ning ideal of the Segre embedding

Pr1−1 × · · · × Prn−1 ,→ PPri−1;

F vanishes when we substitute the indeterminate xi1 ::: in by
∏n

l=1 yl; il for all (i1; : : : ; in).
It is also clear that after this substitution, F becomes a polynomial on the variables
yi; j. This polynomial is zero for all values of the variables yi; j, so it must be the
zero polynomial (since the ground (eld t is in(nite). This implies that there must
be a term T ′ of F (T ′ �= T ) which cancels T after the substitution. Suppose xk1 ::: kn
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is an indeterminate present in T ′. Since T ′ cancels T after the substitution, for each
l=1; : : : ; n, kl ∈ {t1l; : : : ; tpl}. From the partial ordering on the indeterminates in T , it is
now clear that kl ¿ t1l for all l=1; : : : ; n, whence xt11 ::: t1n 6 xk1 ::: kn . If xt11 ::: t1n ¡ xk1 ::: kn for
every indeterminate xk1 ::: kn in T ′, then T ¡T ′, which is a contradiction since T is the
leading term of F . Otherwise, suppose xt11 ::: t1n is contained in T ′, then by considering
T=xt11 ::: t1n and T ′=xt11 ::: t1n , and continuing the process, we eventually would, again, get a
contradiction.
The theorem is proved.

Remark. From the proof above, it is easy to see that the 2× 2 minors of A form a
GrFobner basis for I2(A) under any monomial ordering on SA that satis(es the condition
that if g = xi1 ::: in xj1 ::: jn − xp1 :::pnxq1 :::qn is an element of G, where xp1 :::pn 4 xq1 :::qn , then
xi1 ::: in xj1 ::: jn is the leading term of g. Degree reverse lexicographic monomial ordering
is merely one of those monomial orderings that satis(es this condition. We choose this
ordering since it is practical in most computational algebra packages, such as CoCoA
and Macaulay2.
The theorem gives rise to an interesting corollary.

Corollary 1.15. Suppose V1; : : : ; Vn are vector spaces of dimensions r1; : : : ; rn. Then;
the homogeneous coordinate ring of the Segre embedding

P(V1)× · · · × P(Vn) ,→ P(V1 ⊗ · · · ⊗ Vn)

is a Kozsul algebra.

Proof. This follows from the fact that all 2× 2 minors of A are quadratic forms.

1.4. Three-dimensional box-shaped matrices

In the last part of this section, we brieRy look at a particular class of box-shaped ma-
trices, those of dimension 3. Besides the usual matrices, three-dimensional box-shaped
matrices are the easiest that can be visualized. To visualize all the 2× 2 minors of a
three-dimensional box-shaped matrix, one only needs to take any two lines parallel to
one of the axes, and looks at their intersection with any two planes parallel to the other
two axes of our (xed system of coordinates. Three-dimensional box-shaped matrices
not only describe the Segre embedding of the product of three projective spaces, but
also give a tool in studying certain blowup surfaces, as it will be discussed in the next
section. We (rst extend the notion of a box-shaped matrix of indeterminates to that of
a weak box-shaped matrix of indeterminates.

De�nition. Suppose A=(aijk)(i; j; k)∈B is a box-shaped matrix of forms in a ring S. For
each integer l let A(x; l) be the matrix given by the collection {aijk | (i; j; k) ∈ B; i= l}.
We call A(x; l) an x-section of the box-shaped matrix A. The y- and z-sections of A
are de(ned similarly.
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De�nition. A box-shaped matrix A= (xijk)(i; j; k)∈B, with box-shaped realization B, of
forms in a domain S is called a weak box-shaped matrix of indeterminates if
(a) All the entries in A are indeterminates of S, i.e. algebraically independent over t.
(b) 〈I2(A); xr1r2r3〉=

⋂3
l=1 Il where the ideals Il are de(ned as that of a general n-dimen-

sional box-shaped matrix.
(c) There exists an integral point (i; j; k) ∈ B such that when we set all indeterminates

other than xijk of t[A] to zero, the ideal I2(A) is the zero ideal.
(d) The ideals of 2× 2 minors of sections Ax; i, Ay;j and Az; k are prime ideals.
With this bigger class of box-shaped matrices, the primeness of their ideals of 2 × 2
minors still holds.

Proposition 1.16. I2(A) is a prime ideal in t[A] for any weak box-shaped matrix of
indeterminates A.

Proof. First, we can always re-arrange the indices such that (i; j; k) becomes (1; 1; 1).
The proof now follows in the same lines as that of Theorem 1.6.

2. Projective embeddings of blowup surfaces

Let X ⊆ P2 be a set of s = (d+12 ) points (d ∈ Z; d ¿ 1) that are in generic
position. Let P2(X) be the blowup of P2 along the points of X, and let IX=

⊕
t¿d It ⊆

R=t[w1; w2; w3] be the de(ning ideal of X. Let 1t be the surface obtained by embedding
P2(X) using the linear system It (t=d+n; n¿ 1). In this section, we give an explicit
description for a system of de(ning equations for 1t for any t. We start by a simple
result, which could be of folklore.

Lemma 2.1. Suppose S; R and T are Noetherian commutative rings with identity,
and  : S → R and  :R → T are surjective ring homomorphisms. Suppose also
that f1; f2; : : : ; fn are generators for ker ⊆ S and g1; g2; : : : ; gm are generators for
ker  ⊆ R. Let pj be a preimage of gj for all j, then f1; : : : ; fn; p1; : : : ; pm give a set
of generators for ker ( ◦  ) ⊆ S.

Proof. Clearly fi’s and pj’s are all in ker( ◦  ). Moreover, if x ∈ ker( ◦  ) then
either  (x) = 0 or  (x) is a linear combination of the gj’s. The result is now trivial.

To proceed, it follows from [7] that IX is minimally generated in degree d. By
the Hilbert–Burch theorem (see also [1]) these generators are the d × d minors of a
d× (d+ 1) matrix, say L, of linear forms

L= (Lij); Lij ∈ R1 for i = 1; 2; : : : ; d and j = 1; 2; : : : ; d+ 1:
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In this notation,

IX = (F1; : : : ; Fd+1); Fi = (−1)i+1det(L \ ith column):

For � = (�1; �2; �3), we write w� for w�1
1 w�2

2 w�3
3 , and denote |�| = �1 + �2 + �3. A

system of generators of the vector space It is given by (
n+2
2 )(d + 1) forms w�Fj for

j = 1; 2; : : : ; d+ 1 and |�|= n.
Consider the rational map

’ :P2 → Pp; p=
(

n+ 2
2

)
(d+ 1)− 1;

given by ’(P)=[w�Fj] (we order the �’s by lexicographic ordering with w1¿w2¿w3).
1t embedded in Pp is given by the closure of the image of ’.
Let z1=wn

1 ; z2=wn−1
1 w2; : : : ; zu=wn

3, where u=( n+22 ) (again, we arrange the terms in
lexicographic order). We use homogeneous coordinates [xij]16i6u;16j6d+1 of Pp such
that

’([w1 :w2 :w3]) = [xij] where xij = ziFj: (2.1)

The vector space dimension of It is (n+1)d+ (
n+2
2 ), so there must be (

n+1
2 )d depen-

dence relations among the w�Fj’s. Those relations can be found as follows.
Let 5 = (51; 52; 53) with |5|= n− 1. For each l= 1; 2; : : : ; d, we have

0 = det
(

w5Ll1w5Ll2 : : : w5Lld+1

L

)
=

d+1∑
j=1

Lljw5Fj:

Since Llj =
∑3

k=1 �ljkwk , so by grouping similar terms, we get∑
|�|=n;16j6d+1

6l�jw�Fj = 0; ∀l= 1; 2; : : : ; d;

where

6l�j =
∑

w5wk=w�

�ljk for each l; � and j:

These are the dependence relations of the w�Fj’s. In terms of zi’s, we can rewrite them
as ∑

i; j

6lijziFj = 0; ∀l= 1; 2; : : : ; d:

These give rise to the following equations:∑
16i6u;16j6d+1

6lijxij = 0; ∀l= 1; 2; : : : ; d: (2.2)

There are d relations of the form (2.2) for each 5, and the number of such 5’s is
( n+12 ). By abuse of notation, we denote the collection of all these (

n+1
2 )d relations by

(2.2). The relations in (2.2) would be independent relations if we can show that the
( n+12 )d× ( n+22 )(d+ 1) matrix E of the coeMcients 6lij has maximal rank. Indeed, we
shall use a similar argument to that given by Geramita and Gimigliano [4].
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Lemma 2.2. E has maximal rank.

Proof. We assume, without loss of generality, that none of the points of X is P =
[0 : 0 : 1], and that the (rst minor of L, F1, does not vanish at P. Suppose

L= A1w1 + A2w2 + A3w3;

where the Ais have entries in the ground (eld. This means that A3 has maximal rank
d (since F1(P) �= 0).
If we arrange the 5s in lexicographic order with w1¿w2¿w3 then E would have

the form

E=



A1 : : : A2 : : : A3 0
: : : A1 : : : A2 : : : A3 0
: : : : : : : : : : : : : : : : : : : : : : : :
: : : : : : : : : : : : : : : : : : : : : A3




(The A3 of the latter row is totally on the right of the A3 of the former row). On each
A3, take d columns that give a matrix A′

3 which has non-zero determinant. Putting them
all together, we obtain a ( n+12 )d× ( n+12 )d matrix, which looks like the following:

E′ =



A′
3

A′
3 0

X
. . .

A′
3


 ;

a lower-triangular matrix. Clearly, detE′ = (det A′
3)
( n+12 ) �= 0. Thus, the matrix E has

maximal rank.

Obviously, on ’(P2 \X), the coordinates of the points satisfy the equations in (2.2).
These are the equations coming from the dependence relations of the w�Fj’s that we
are looking for.
Consider the matrix

M =



x11 x12 : : : x1 d+1

x21 x22 : : : x2 d+1

: : : : : : : : : : : :
xu1 xu2 : : : xu d+1


 :

It is easy to see that the points of ’(P2 \X) satisfy all the 2×2 minors of M . Denote
the collection of these equations by (∗∗).
Moreover, on ’(P2 \X), each column of M has the form


z1Fj

z2Fj

: : :
zuFj


 ;

where z1=wn
1 ; : : : ; zu=wn

3 for some point [w1 :w2 :w3] ∈ P2\X. Clearly, the zi’s satisfy
the de(ning equations of the Veronese surfaces, which are known to be the 2 × 2
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minors of certain Catalecticant matrices (see [21] for de(nition). Thus, on ’(P2 \X),
the coordinates x1j; x2j; : : : ; xuj satisfy the 2 × 2 minors of the Catalecticant matrix
Cat(1; n − 1; 3) of size 3 × ( n+12 ), for all j = 1; 2; : : : ; d + 1. Denote the collection of
these equations by (∗ ∗ ∗).
From (2.1), on ’(P2 \X), we have

x1j=z1 = x2j=z2 = · · ·= xuj=zu for all j = 1; 2; : : : ; d+ 1:

This can be rewritten as a number of systems of equations, one for each i=1; 2; : : : ; u;

xij=zi = x1j=z1;
xij=zi = x2j=z2

...
xij=zi = xuj=zu:

for j = 1; 2; : : : ; d+ 1:

Those relations give us, for each i = 1; 2; : : : ; u :

(Si)




xijz1 − x1jzi = 0
xijz2 − x2jzi = 0

...
xijzu − xujzi = 0

for j = 1; 2; : : : ; d+ 1:

It is not hard to see that if the coordinates of Q = [xij] ∈ Pp and P = [zi] ∈ Pu−1

satisfy system (Si) for some i, where zi �= 0, then they satisfy systems (Si) for all i.
Before going further, we prove a similar proposition to that of [4].

Proposition 2.3. Let Q = [xij] be a point on Pp; and suppose the coordinates of Q
satisfy equations in (∗∗): Then there exists a unique P = [z1 : : : : : zu] ∈ Pu−1 such
that the homogeneous coordinates of P and Q satisfy the systems (Si) for all i.

Proof. Since the coordinates of Q satisfy equations in (∗∗), the matrix M (Q) has rank
1, i.e. the rows of M (Q) are all multiples of any non-zero row of M (Q). Suppose
the (rst row of M (Q) is not identically zero (similar argument works for other rows).
Then there exist �i, for i = 2; : : : ; u, such that

xij = �ix1j for all j = 1; 2; : : : ; d+ 1:

We want P ∈ Pu−1 such that the coordinates of P and Q satisfy the systems (Si) for
all i. We (rst consider such P that the coordinates of P and Q satisfy (S1). This is the
same as solving for z1; : : : ; zu from (S1). The coeMcients matrix becomes (projectively)
a collection of

Nj =




0 0 0 : : : 0
−�2 1 0 : : : 0
−�3 0 1 : : : 0
...

. . .
−�u 0 0 : : : 1


 for j = 1; 2; : : : ; d+ 1:
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Since Nj is independent of j and has rank exactly u− 1, system (S1) has exactly one
projective solution, that gives a unique point P ∈ Pu−1. Moreover, this P clearly has
non-zero z1 entry. Thus, the coordinates of P and Q satisfy (Si) for all i. Hence, P
exists and is unique.

Let V be the algebraic set in Pp de(ned by all the equations in (2.2), (∗∗) and
(∗ ∗ ∗). We have the following theorem.

Theorem 2.4. V = 1t as sets.

Proof. Clearly, ’(P2 \X) ⊆ V. Since V is closed, 1t is integral (so 1t is irreducible,
and 1t = ’(P2 \X)), we have

1t ⊆ V:

We only need to show that

V ⊆ 1t:

Having Proposition 2.3, if we can show that for any points P = [z1 : : : : : zu] and
Q=[xij] such that the coordinates of Q satisfy the equations in (2.2), (∗∗) and (∗∗∗),
and coordinates of P and Q satisfy the systems (Si) for all i, Q must be in 1t , then
we will have V ⊆ 1t , and so are done. Suppose P and Q are such points. We can
always assume that z1 �= 0. Consider the system of equations given by all the equations
in (S1) (if instead, zi �= 0, then we look at the system (Si)). As a system of linear
equations in indeterminates (note the way we have rearranged the indices)

{xij | 16 j 6 d+ 1; 16 i 6 u};
the coeMcients matrix is

A=




B
B
. . .

B


 ;

where

B=




0 0 0 : : : 0
z2 −z1 0 : : : 0
z3 0 −z1 : : : 0
...

. . .
zu 0 0 : : : −z1


 :

Clearly, B has rank u− 1, and has a non-trivial solution [z1 : : : : : zu]. Therefore, the
solution to A must have the form

[xij] = [c1z1: c1z2: : : : : c1zu: c2z1: : : : : c2zu: : : : : cd+1z1: : : : : cd+1zu];
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where c1; : : : ; cd+1 are constants not all zero, and the indeterminates are ordered by
16 j 6 d+ 1 and 16 i 6 u.
Now, since the coordinates of Q also satisfy the equations in (∗ ∗ ∗), which are the

de(ning equations of Veronese surfaces, there exists a unique point T =[w1 :w2 :w3] ∈
P2 such that z1 = wn

1 ; z2 = wn−1
1 w2; : : : ; zu = wn

3. Thus,

Q = [c1wn
1 : : : : : cd+1w

n
3]: (2.3)

Lastly, the coordinates of Q satisfy ( n+12 )d equations in (2.2), so

L(T )




c1
c2
: : :
cd+1


=



0
0
: : :
0


 :

If T �∈ X, then L(T ) has rank exactly d. Thus,


c1
c2
: : :
cd+1


= :




F1(T )
F2(T )
: : :

Fd+1(T )


 : (2.4)

This implies that Q ∈ 1t .
If T ∈ X, then L(T ) has rank exactly d− 1, so there is a two-dimensional solution

space, and these resulting Qs lie on a line of V, which is one of the exceptional lines
of 1t .
Hence, we always have Q ∈ 1t . We have proved that V = 1t as sets.

To continue our study, we let S = t[xij] be the homogeneous coordinate ring of Pp.
Suppose C is the Catalecticant matrix Cat(1; n− 1; 3) of indeterminates {zi}06i6( n+22 )

.

C is of size 3 × ( n+12 ). Consider the box B of size (d + 1) × 3 × ( n+12 ). Let A
be the box-shaped matrix obtained by assigning each integral point (i; j; k) of B the
indeterminate xil where l is the integer such that zl is at the (j; k)-position in C.

Lemma 2.5. A is a weak box-shaped matrix of indeterminates.

Proof. Clearly, each x-section of A has its ideal of 2× 2 minors as the de(ning ideal
of a Veronese surface, so its ideal of 2 × 2 minors is a prime ideal. Also, each y-
and z-section of A is a matrix of indeterminates, whence whose ideal of 2× 2 minors
is also a prime ideal. Moreover, x111 surely satis(es property (c) of A being a weak
box-shaped matrix. It remains to show that

〈I2(A); x(d+1)3( n+1
2

)〉=
3⋂

l=1

Il:

For convenience, we let r1=d+1; r2=3; r3=(
n+1
2 ), and consider A as a box-shaped

matrix of size r1 × r2 × r3. We shall (rst prove that

I2 ∩ I3 = 〈I2(A); {xir2r3 |i = 1; : : : ; r1}〉:
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The proof will go in the same line as that of part (a) of Lemma 1.1. Firstly, it is clear
that 〈I2(A); {xir2r3 | i=1; : : : ; r1}〉 ⊆ I2 ∩ I3. It remains to show the other inclusion. Let
F ∈ I2 ∩ I3. Doing exactly as we did before, we end up with F = F ′ +G′ +G, where
F ′; G′ ∈ I2(A), and

G =
∑
ik

Gikxir2k ;

where Gik ’s are independent of the variables xijr3 . Again, we have G ∈ I3, so we can
write

G = H +
∑
i; j

Hijxijr3 ;

where H ∈ I2(A3). We may assume that the Hir2 ’s are independent of all the vari-
ables {xijr3 | j �= r2}. By the nature of the 2 × 2 minors of A and the symmetry (in
construction) of Catalecticant matrices, it can be seen that if a 2 × 2 minor of A

has one indeterminate belonging to {xijr3 | (i; j; r3) ∈ B} then it must have at least
two adjacent indeterminates belonging to {xijr3 | (i; j; r3) ∈ B}. Thus, by re-grouping
and rewriting, we can always assume that H is also independent of the indeterminates
{xijr3 |(i; j; r3) ∈ B}. Now, clearly, G=H +

∑
i Hir2xir2r3 ∈ 〈I2(A); {xir2r3 |i= 1; : : : ; r1}〉.

We have shown that I2 ∩ I3 = 〈I2(A); {xir2r3 |i = 1; : : : ; r1}〉.
It now follows in the same line of the proof of part (b) of Lemma 1.1 that

〈I2(A); {xir2r3 |i = 1; : : : ; r1}〉 ∩ I3 = 〈I2(A); xr1r2r3〉:
The lemma is proved.

We obtain the main result of this section as follows.

Theorem 2.6. The subscheme 1t in Pp is de>ned by ( n+12 )d linear forms and the
2× 2 minors of a box-shaped matrix of linear forms.

Proof. Let S = t[xij] be the homogeneous coordinate ring of Pp. Let A be the weak
box-shaped matrix of indeterminates as above, and again, let I2(A) be the ideal of
2× 2 minors of A in t[A]. We also let I be the ideal generated by I2(A) and all the
linear equations in (2.2). Let V be the subscheme of Pp de(ned by I.
It is easy to see that I contains all the equations in (2.2), (∗∗) and (∗ ∗ ∗), so as

sets, V ⊆ V (where V is the subvariety of Pp de(ned by the equations in (2.2), (∗∗)
and (∗ ∗ ∗)).
Suppose now that P=[w1 :w2 :w3] ∈ P2 \X and Q=[xij]=’(P). Let z1 =w1n; z2 =

w1n−1w2; : : : ; zu = w3n then xij = ziFj(P). Consider a 2 × 2 minors a(K;L;M;N ) of A

corresponding to the 4 points K; L;M and N in the box-shaped realization of A. There
are 3 possibilities for the tuple (K; L;M; N ).
Case 1: K = (i; j; k); L= (m; j; p); M = (m; n; p) and N = (i; n; k) for some integers

i; j; k; m; n and p (when the projections of K; L;M; N on the zx-plane collapse to a line).
Case 2: K = (i; j; k); L= (m; j; k); M = (m; n; p) and N = (i; n; p) for some integers

i; j; k; m; n and p (when the projections of K; L;M; N on the yz-plane collapse to a line).
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Case 3: K = (i; j; k); L= (m; n; k); M = (m; n; p) and N = (i; j; p) for some integers
i; j; k; m; n; and p (when the projections of K; L;M; N on the xy-plane collapse to a
line).
By the construction of A and the fact that [z1 : : : : : zu] is in the Veronese surface,

i.e. it satis(es all the 2× 2 minors of C, it is easy to check that Q satis(es the minors
a(K;L;M;N ). This is true for any Q ∈ ’(P2 \X) and any 2× 2 minors a(K;L;M;N ) of A,
so ’(P2 \X) ⊆ V, whence V ⊆ V.
We have shown that in all cases, V ⊆ V. Hence, as sets, V= V = 1t .
Now, by Proposition 1.16, we know that I2(A) is a prime ideal. Consider the fol-

lowing sequence of surjective ring homomorphisms:

t[xij]
 →t[w�tj]

 →t[w�Fj];

de(ned in the obvious way; that is, both  and  send t to t, and  sends xij to w�tj
where w� is labelled zi, and  sends w�tj to w�Fj.
We note that in proving equalities (2.3) and (2.4), we actually proved more. Firstly,

the proof of (2.3) and the fact that I2(A) is a prime ideal imply that I2(A) is the kernel
of  . Secondly, the proof of (2.4) shows that if we consider the equations in (2.2)
as polynomials over the w�tj’s, then those polynomials are zero exactly when tj = Fj

(since tj=Fj at all but a (nite set of points X). This implies that t[w�tj]=a � t[w�Fj],
where a is the ideal generated by the images of the equations in (2.2) through  . Thus,
a is the kernel of  . Now, by Lemma 2.1, we conclude that I is the kernel of  ◦  .
In other words, I is the de(ning ideal of 1t embedded in Pp (since the homogeneous
coordinate ring of 1t embedded in Pp is exactly t[w�Fj]). The theorem is proved.

Remark. When t = d+ 1, our box-shaped matrix A collapses to be a normal matrix
of size 3× (d+1), and the above result coincides with that obtained by Geramita and
Gimigliano in [4].
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