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Abstract--We deal with the problem of how to arrange n points in the plane with a given mean and 
minimal variance. Ordinary and multiple multidimensional scaling are outlined, investigated in the 
symmetrical case and applied to congenital abnormalities. 

1. A R R A N G E M E N T  O F  P O I N T S  I N  T H E  P L A N E  W I T H  D I S T A N C E  
O F  M I N I M A L  V A R I A N C E  

Certain extremum requirements imply regularity. This was illustrated by some examples in Ref. 
[1]: the area of an n-gon of given perimeter is maximized by the regular n-gon; among all convex 
polyhedra containing a ball, the circumscribed cube has the least total edge-length etc. In what 
follows we deal with the problem how to arrange n points in the plane with a given mean and 
minimal variance. (The solution conjectured and given below is not regular for n > 6, but it is 
symmetrical and consists of regular parts.) This problem is equivalent with the following: determine 
the points x,, x2 . . . . .  x, in the plane so as to minimize the sum of squares 

n - 1  

v = Z Z (K-Irx,- x lr) 
i = 1  j = i + l  

of the deviations of the distances between pairs of them from a given constant K. Moreover, we 
would like to determine the value P of V for this optimal configuration. The latter formulation 
of the problem suggests its connection with mechanics: V can be regarded as the potential of C 2 
springs with length K and spring constant 2 between each pair x i, xj of points. 

As V depends on the xis only through their distances, the configuration obtained for the solution 
of the problem is obviously indeterminate with respect to translation, rotation and reflection. 
Almost the same can be true for uniform expansion or contraction: they result in similar 
configurations, and obviously V(K)= K2V(1). Therefore, we assume that K = 1. 

The general solution of the problem is not known. As V is the function of the xis, i.e.-- 
denoting by X~k the kth coordinate of the ith point--that of the unknown variables 
Xll,X12,X21,X22 . . . . .  Xnl,Xn2 , a solution can be obtained by the minimization of a 2n-variate 
function without constraint. Such minimizing procedures are usually gradient- or Fletcher-type 
algorithms, which are not able to distinguish between a local and a global minimum, therefore they 
need a good initial configuration. 

Let z,, z2 . . . . .  zn be the vertices of the (n - 1)-dimensional regular unit n-hedron, then obviously 
V is 0, i.e. minimal for these z~s. Let 

Ii 0 . . .  i1  

. . .  

I =  

O . . .  
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be the identity, 

J =  

D 

1 1 
1 1 

. . .  1- 

• . . l 

the unit matrix, and 

i - - J .  
n 

Let ;h >i 22 > 0 be the two largest eigenvalues of B. 

Definition 

Let re0 be the ith eigenvector of B, 

By,i) = ~iv(0, 

normalized according to v~0v0~ = 2~, i = 1, 2. The rows of the matrix [v¢,~, v¢2)] are called the principal 
coordinates of the configuration Z = (z~, z2 . . . . .  z,) in two dimensions. 

Remark 

21 = 22 = ); vcL) and vc2 ~ are two arbitrary orthogonal vectors of  the (n - 1)-dimensional subspace 
orthogonal to the vector (1, 1 , . . . ,  1) x. 

Theorem 

Amongst all projections of Z onto planes, the quantity 

" [ ] Z L 1-11x,-x ll 2 
i=| j= i+|  

(which is positive, because projecting a configuration reduces the interpoint distances) is minimized 
when Z is projected onto its principal coordinates in two dimensions [2]. 

This theorem suggests a possible choice of initial configuration: choose the configuration in the 
plane whose coordinates are determined by the first two eigenvectors of B. V can be minimized 
iteratively, starting with this configuration. The iteration can be the repeated application of  the 
following procedure: the negative gradient vector of the 2n-variate function V = V(x~, x2 . . . . .  x,) 
is determined (explicitly calculated), and by performing a line search in the direction of this vector 
the new coordinates of the points x~ are calculated (i = 1, 2 . . . . .  n). At computer realization it is 
worthwhile taking the gradients of the functions 

1 - 1 1 x i - x  j , i = 1 ,  2 . . . . .  n, 
j = l  

j g i  

instead of  the gradient of V (moving only one point at the same time instead of n points. By this 
both computer time and memory demand decrease). 

Even in case of the above initialization it can occur that only a local minimum of V is produced. 
The danger of its occurrence can be decreased in such a way that sum of qth powers is written 
instead of  sum of  squares in V, and the value of q is changed in the course of the algorithm. 
According to computational experiences, the algorithm is the most effective if after the initialization 
q is chosen for 3, then as soon as V already decreases only to a small extent (the points x~ change 
scarcely), its value is taken first for 2, then for 1, and finally again for 2. 

Proceeding in the above fashion, the algorithm gives arrangements in which the points are 
s i tuated--for  n = 3,4 . . . . .  65 - -on  vertices of concentric regular polygons (regular polygons 
inscribed into concentric circles). For example, for n = 9, 16 and 23 we have, respectively, (i) a 
regular octagon and its centre; (ii) a regular 12-gon and within this a concentric square; (iii) a 

1 1 , . .  1 
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F i g .  1. A r r a n g e m e n t s  o f  m i n i m a l  v a r i a n c e  f o r  n = 9 ,  16  a n d  2 3 .  

1 3 9  

regular 16-gon, within this a concentric regular hexagon, and their common centre (Fig. 1). The 
numbers my of  vertices of  the various polygons for some other n s are exhibited in Table 1 (from 
outside inwards). For  the final value P of  the term V the equation 

P = 8.CL2, (1) 

and here for /7 ,  under 4 ~ n ~< 65 the inequality 

0.1716 ~< B. ~< 0.1807, 

was obtained 

(0.1716 = 3 - 2X/~ = B4; 0.1807 = 
75 - 36w/3 

70 

as the value of  n approaches 65, the value of  B, approaches 0.176). 

= B 7 ,  

T a b l e  I.  N u m b e r s  o f  ver t ices  o f  p o l y g o n s  

n m I m 2 m 3 m 4 

3 3 - -  - -  m 

4 4 - -  - -  - -  
5 5 - -  - -  - -  
6 6 - -  - -  - -  
7 6 1 - -  - -  

10 9 I - -  - -  
15 12 3 - -  - -  
20  15 5 - -  - -  
25  17 7 1 - -  
30  19 9 2 - -  
35 21 I0 4 -- 

40 24 II 5 -- 

45 25 12 7 1 
50  28 13 8 1 
55 29  15 8 3 
60  30  16 10 4 
65  32 17 12 4 
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2. M U L T I D I M E N S I O N A L  SCALING 

Let us assume that we are investigating M objects and n arbitrary variables characterizing them. 
Most of multivariate statistical methods work with data of the variables observed on the objects. 
In contrast with these methods, in case of multidimensional scaling (MDS) we can ' t - -or  don't  want 
to--observe directly the data points as M points in n-dimensional Euclidean space, but we have 
only indirect information about them. This information may concern the distance (dissimilarity) 
or- -on  the contrary--proximity (similarity) of the objects or/and variables. MDS deals with the 
following problem: how can the objects or/and variables be drawn in the space on the basis of an 
(M x M), (n x n) or (M x n) distance of similarity matrix (data matrix of MDS), in other words 
how can an M-tuple or/and an n-tuple of points be constructed in low-dimensional Euclidean 
space with the property that Euclidean distance of the points should reflect distance (dissimilarity) 
of the objects or/and variables as well as possible? 

Tasks involving MDS can be classified according to a few organizing concepts. A major one 
is whether the data of MDS (i.e. the distances or similarities) represent one or two sets of things. 
If  they represent one set of things (either the objects, or the variables), they are called one-mode, 
if two sets of things (the objects and the variables), they are called two-mode. 

In case of MDS with one-mode data the set of things represented by the rows of the data matrix 
of MDS is the same as the set of things represented by the columns. In such a case the data matrix 
is square and symmetric. Depending on whether the rows and columns represent the objects or 
the variables, we speak of MDS of the objects or that of the variables. 

In case of MDS with two-mode data the set of things represented by the rows differs from the 
set of things represented by the columns. In such a case the data matrix is rectangular. MDS with 
two-mode data is called also multidimensional unfolding (MDU). In what follows we deal with the 
MDS of the variables (i.e. MDS with one-mode data, representing the variables). For more details 
on MDS [3, 4], Chap. 14 of Ref. [2], Chap. 5 of Ref. [5], furthermore Refs [6-8] are recommended 
to the reader. 

Let D = [dv] be an arbitrary distance matrix (it means the following: D is symmetric, and 

d,,=O, du>~O, i~j ) .  

k-dimensional points xl, x2 . . . . .  xn are to be determined in such a way that denoting by a U the 
Euclidean distance of xi and xj, the matrix [a~] should be "similar" to D in some sense. Usually 
not only the points xl, but also the dimension k is unknown. In practice, this latter one is mostly 
chosen for 1, 2 or 3, because then the variables are in fact drawn by the points. In many cases 
there is a point configuration in some p-dimensional Euclidean space R p the interpoint distance 
matrix of which is just D (i.e. D is Euclidean). This configuration can be accepted as solution to 
the MDS problem only if p can be chosen for k. However, in practice p is usually too large for 
this. 

The deviation between an arbitrary distance matrix [du] and the Euclidean distance matrix [au] 
of some point configuration X in the course of MDS is measured mostly by one of the following 
terms: 

~ l  ~ ( d 0 - 4 )  2, (2) 
i=l  j = i + l  

n - I  

E ~, c,,(d~J-'~J) 2, (3) 
i=l  j= i+ l  

n--I n [n--I  n 

i=l  j = i + l  [ i f f i l  j = i + l  

[the cqs are given weighting factors; expression (2) is the special case of expression (3) belonging 
to c U = 1]. Each of the above terms is the function of X, i.e. an (n x k)-variate function. Therefore 
the MDS problem is solved similarly to the algorithm described in the previous section. The 
problem of the arrangement of minimal variance is equivalent to MDS under k = 2, dq = 1 and 
deviation measure (2). 
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3. M U L T I P L E  MDS 

Let yj, Y2 . . . . .  YM be arbitrary objects characterized by the dichotomous variables 
W~, W2 . . . .  , W, indicating the presence or absence of  the characters A1, A2 . . . . .  A.. Let us assume 
that our task is MDS of  the variables. In accordance with the previous section it means the 
following: distances are constructed between the variables, and the variables are to be put in 
low-dimensional Euclidean space in such a way that Euclidean distances of  the points correspond- 
ing to the variables should differ from distances of  the variables to as small extent as possible. In 
order to be well scalable, the variables must be consistent in the following sense: if two variables 
are near to a third one, they must be near to one another too. Let us assume for instance (Example 
1) that n = 3, M = 44, the first 19 objects have the characters A1 and A2, the following 14 ones 
A1 and A3, and the last 11 ones A2 and A 3. To these objects the distance matrix 

of the variables can be assigned. On its basis the variables can be well scaled (see Fig. 2). Let us 
assume now (Example 2) that M = 33, the first 19 objects have the characters A~ and A2, and the 
other 14 ones AI and A3. To these objects the distance matrix 

6o 0 
of the variables can be assigned. On its basis the variables can be scaled only badly. Let us try 
therefore to scale them on the basis of  the first 19 and the other 14 objects separately! To these 
sets of objects (which can be regarded as clusters) the distance matrices 

[0 [i 060i0 l 3 0 and 0 

60 60 60 

of the variables can be assigned. On their basis the variables--on two planes!--can already be well 
scaled (see Fig. 3). 

Multiple multidimensional scaling (MMDS), see Ref. [9], deals with cases similar to Example 2, 
with the problem arising if the consistency is not fulfilled: the objects are to be divided into disjoint 
clusters as homogeneously as possible, where the homogeneity of a cluster is measured by the 
goodness of (ordinary) MDS of  the variables under it. We would like to determine the positive 
integer p, the disjoint clusters 

Y, ,  Y2 . . . . .  Yp c {Yl, Y2 . . . . .  YM} = Y 

of the objects with the property that 

~ Y , . = Y ,  
m=| 

furthermore, the points x~ "~ of  R k (i = 1, 2 . . . . .  n; m = 1, 2 . . . . .  p)  which represent the variables 
in the sense that the closeness of  the points x~ '~ and x} m~ corresponds to the proximity of  the 
variables Wi and Wj under Y,~. 

A3 

A1 A2 

Fig. 2. MDS in the consistent case (Example 1). 
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~ 2  

Fig. 3. MDS on two planes in the inconsistent case (Example 2). 

Let eg; be the value--1 or 0 - - o f  the variable W~ observed on the object yg (g = 1, 2 . . . . .  M; 
= 1, 2 . . . . .  n), and let 

eg = [egl, eg2 . . . . .  egn] v 

(g = 1, 2 . . . . .  M). As objects with the same % are indistinguishable, let us assume that 

egl = eg2 =:" g t  = g2, 

and the objects have multiplicities. As the allocation of the various objects must obviously depend 
on the variables having value 1 on them, MMDS can't do anything with the objects on which at 
most one variable has value 1. Therefore, let us assume that on each object at least two variables 
have value 1. For arbitrary combination Gg of characters let the number of characters belonging 
to G, be called the side of Gg, furthermore, let us denote by O(Gg) the number of objects which 
have the characters belonging to Gg, but others not, and by N the number of objects different with 
respect to the characters and having at least two of them. Then each object yg corresponds to a 
character combination Gg with side not less than 2, and has multiplicity O(Gg) (g = 1, 2 . . . . .  N). 

Let 

n~  )=  ~ O(Gg) (4) 
g:yg E Ym 

egi, egi = ! 

(the number of those objects of the ruth cluster in which Ai and A s are present), and 

n--I 
E(") = E ~ [n,~m'llx~ m ' -  x~m'l[ 2 + (K --Ilx~ m) -- x}')[I)2], i=1 j=i+l 

then 

P 
E = ~ E (m), n=l 

which is the MMDS function (K is an appropriate constant), is minimized by the alternate 
application of the following two procedures: (1) optimal classification of the objects among the 
actual clusters; (2) optimal allocation of the variables for the actual classification of the objects. 

In the second procedure for m = 1, 2 . . . . .  p E ~m) is (in the course of the various steps not 
minimized, but only) decreased similarly to the algorithm described in Section 1. Let the distances 

K 
d~?) = n~7 ) + 1 
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between the variables and the corresponding weights c!~ "),1 = n,~") + 1 be introduced, and let 

v(m) = 2 
i= l j=i+ I 

c!e,)ra(e,~_ Ilxlm,_ U L~U 

then [E ( " ) -  V (m)] does not change in these, gradient steps (see Ref. [9]), thus MMDS is 
generalization of  MDS. 

In the first procedure for g = 1, 2 , . . . ,  N 

the 

n - !  

v;,= E iix o,-x m,[12 
i = l  j = i + l  

egi=l egj=l 

is minimized in m. Ref. [9] proves that E is monotone decreasing in this step (in the gradient steps 
obviously). 

Let us denote by T the algorithm which minimizes U~ m) in m in the first procedure and decreases 
E (m) in the second procedure. In the course of T some clusters can become almost or entirely empty. 
It is reasonable to cease such clusters (by which p naturally decreases) in such a way that some 
object yg having belonged to them is put into that cluster of  the remaining ones under which U(g m) 
is minimal. For- -among others--this reason it is worthwhile choosing the initial value o f p  large. 
Initial clusters can be obtained, e.g. by applying the k-means (see Ref. [10]), more precisely in our 
case p-means method to the objects yg on the basis of the vectors eg. Initial point configurations 
under the various initial clusters can be chosen similarly to Section 1. 

It would be good to evaluate MMDS of some data field from as many as two points of view. 
The mathematical evaluation of the goodness of MMDS compared with other clustering methods 
is problematic theoretically. Namely the various clustering methods differ from one another 
decisively just in the criteria they give to the goodness of clustering. According to its own criterion 
each method is the best, however the criteria can't be compared objectively. (For more thorough 
investigations of the comparison of clusterings see, e.g. Refs [11, 12].) One can evaluate how well 
the objects of the concrete data field can be clustered with respect to MMDS theoretically in the 
following way. Let us assume that at the end of MMDS of the data field under some K the number 
of clusters is p and the value of E is 

E* = E*(n, p,p, K), 

where 

p n--I  n--I  

2 ~, ~. n~ r'' ~, ~ Or(i,j) 
m = l  i=l j=i+l i = l  j = i + [  

c2o 

Or(i,j) denotes the number of objects which have the characters Ai, Aj, and possibly others too. 
Let us consider the respective data fields which belong to the pair (n,/~) of  values, and are optimal 
and pessimal with respect to MMDS. Let us denote by Eop t and E~s~ the values of the term E at 
the end of MMDS of these data fields under the above values of p and K. One can characterize 
how good the concrete data field is with respect to MMDS in a natural way by the term 

E* - gop t 
Ep~ss - Eopt ' 

(5) 

which can't be less than 0 and greater than 1. Its determination would need the knowledge of the 
values Eop t and E~ss. However they are unknown, because the optimal and pessimal data fields are 
unknown too. In the next section we will consider a data field which is though not pessimal, but 
from the point of view of clustering bad. Let us denote by Eba a the value of E at the end of MMDS 
of this data field under the above p and K. In a fortunate case (E~a- E~ss) and g o p  t a r e  small 
enough, thus expression (5) can be substituted for (E*/Eb~d). 
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4. MMDS IN THE S Y M M E T R I C A L  CASE 

In the operation of MMDS the function E characterizing MMDS has a decisive role. It was 
specified in such a way that it depends only on the joint occurrences of the various pairs of 
characters. It implies that if the probabilities of the occurrences of the various characters are 
different, the procedure doesn't become aware of independence: it brings two characters close to 
one another even if they occur often together only because both of them are frequent. (However, 
this is on purpose: in many cases--e.g, in the statistical investigation of congenital abnormalities, 
out of which MMDS has grown--it  is an important requirement that typical character combina- 
tions should not remain unobserved.) One can easily accomplish that the procedure should become 
aware of independence: in definition (4) of n~ ') the sum is to be divided by the term 

E E o(c)/ E 
g:Yg~ Ym g:Yg~ Ym [g:Yg• Yra 

eg,= l eg3=l 

However, if the probabilities of the occurrences of the various characters are equal to each other, 
it is not necessary. Therefore, independence was investigated in this, symmetrical case. Particularly, 
a data field with the property 

Or(i, j)  - # 

(1 ~< i < j  ~< n) was considered. Then taking the number p of the clusters of objects constant, 
MMDS gave clusters of objects under which no cluster of characters became distinct and the points 
corresponding to the characters were situated symmetrically, according to Section 1. For the value 
/~(n, #, p, K) of the term E at the end of MMDS of the data field under given values of n, #, p and 
K, the equation 

ff,(n, #, p, K) = pK2 + 

was obtained [for 17 see expression (1)]. 

5. MMDS OF C O N G E N I T A L  ABNORMALI TI ES  

From the conception until the birth structural defects may develop in the embryo and fetus. Such 
a defect is called congenital abnormality (CA). Within the CAs the multiple congenital abnormalities 
(MCAs), which are the concurrences of two or more different CAs in the same person, have a 
special importance. A major purpose of their statistical analysis, reported in details in Ref. [13], 
was to explain the possible cause(s) of combination of CAs within MCAs. The analysis was based 
on children born in Hungary 1970-1976 (Data field 1) and 1977-1982 (Data field 2). Under Data 
field 1 n = 40, M = 1,186,776 and N = 881, under Data field 2 n = 45, M = 937,320 and N = 867. 

The statistical investigation of MCAs can be based on different alternative hypotheses. There 
are two models which are reasonable, general and effective. The Gaussian threshold model assumes 
that for any member of the population there is a measure of any CA which can be expressed in 
a real number. In other words, a background variable L~, the so-called liability is assigned to Ai. 
According to the model, the joint distribution of the Lis are multidimensional Gaussian. The fact 
that somebody has Ai mean that his (or her) liability exceeds a threshold T~ characteristic for the 
population. The mixture model assumes that the probability distribution of MCAs is the mixture 
of distributions having the property that in each of them the CAs are independent. 

One of the main aims of the statistical investigation of MCAs was the classification of children 
with CAs on the basis of the occurrences of the CAs, and by this the detection of characteristic 
CA combinations. MMDS was elaborated for solving this task. We can ascertain its adequacy in 
such a way that to clusters of CAs generated randomly or produced systematically we generate 
a random data field, and examine whether the classification of the generated children by MMDS 
has the property that under the various clusters of children the clusters of CAs become distinct. 
For generating the random children we must first, of course, specify the hypothesis and model 
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(describing MCAs) on the basis of which the generation will be performed. The problem of the 
inconsistency of the variables W~ requiring MMDS doesn't arise under the Gaussian threshold 
model, therefore we generated data fields on the basis of the mixture model. Their MMDS gave 
favourable results, ascertaining the adequacy of MMDS of the "real" data fields [13]. 
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