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Abstract

Let G=(V; E) be any graph with n vertices, m edges and no isolated vertices. For some � with
0¡�61 and a set S ⊆V , we say that S is �-dominating if for all v ∈ V−S; |N (v)∩S|¿�|N (v)|.
The size of a smallest such S is called the �-domination number and is denoted by �(G). In
this paper, we introduce �-domination, discuss bounds for 1=2(G) for the King’s graph, and give
bounds for �(G) for a general �, 0¡�61. Furthermore, we show that the problem of deciding
whether �(G)6k is NP-complete. c© 2000 Elsevier Science B.V. All rights reserved.

1. Introduction

Graph terminology not presented here can be found in Chartrand and Lesniak [1].
Let G=(V; E) be a graph with n vertices, m edges and no isolated vertices. Consider an
s× t chessboard. The King’s graph K[s× t] is formed by letting each vertex represent
one cell of the chessboard and joining two vertices in the graph if and only if the cells
represented by these vertices are a King’s move apart on the chessboard. (A King can
move one cell either horizontally, vertically or diagonally.)
A puzzle mentioned by David Woolbright [15] involves occupying each cell of a 6×6

array with a guard or a prisoner, subject only to the constraint that every prisoner is
adjacent to at least as many guards as prisoners (where adjacency is vertical, horizontal
or diagonal). It was shown by Mark Liatti [10] that the size of a smallest set of guards
is, in this case, 14 as shown in Fig. 1.
This puzzle generalizes to a graph invariant in the following way. We may say that

the Woolbright number of a graph G is the size of a smallest set of vertices with the
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Fig. 1. A half-dominating set for K[6× 6].

property that every vertex not in S has at least as many neighbors in S as neighbors
not in S. Solving the puzzle above then amounts to �nding the Woolbright number of
the King’s graph K[6× 6].
The (open) neighborhood N (v) of a vertex v ∈ V is the set of vertices which are

adjacent to v. The closed neighborhood N [v] of v is N (v)∪{v}. For any set S ⊆V , the
neighborhood N (S) of S is de�ned as ∪v∈S N (v), and the closed neighborhood N [S]
of S is N (S) ∪ S. Generalizing the Woolbright number, we introduce the concept of
�-domination: For any � with 0¡�61 and a set S ⊆V , we say that S is �-dominating
if for all v ∈ V − S, |N (v) ∩ S|¿�|N (v)|. The size of a smallest such S is called the
�-domination number and is denoted by �(G). Thus the Woolbright number of a graph
G is 1=2(G). The size of a largest minimal such set S is called the upper �-domination
number and is denoted by ��(G).
Recall that a set S ⊆V is said to dominate a graph if every vertex in the graph is

either in S or is adjacent to a vertex in S. Stated in the current context, we might
say that for every vertex v ∈ V − S; |N (v) ∩ S|¿1. The size of a smallest such set is
called the domination number and is denoted by (G). The size of a largest minimal
dominating set is called the upper domination number and is denoted by �(G). Since a
smallest �-dominating set is a dominating set, it is immediate to see that (G)6�(G)
for all G and for every �.
The following results for speci�c graphs are straightforward and are given without

proof.

Proposition 1. If Pn is a path with n vertices; then

�(Pn) = dn=3e if 0¡�6 1
2 ;

�(Pn) = bn=2c if 1=2¡�61:
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Proposition 2. If Cn is a cycle with n vertices; then

�(Cn) = dn=3e if 0¡�6 1
2 ;

�(Cn) = dn=2e if 1=2¡�61:

Proposition 3. If Kn is a complete graph with n vertices; then

�(Kn) = d�(n− 1)e:

Proposition 4. If Km;n is a complete bipartite graph with 16m6n; then

�(Km;n) = min{d�me+ d�ne; m}:

2. Preliminary results

We will be interested in studying the relationship between the �-domination param-
eter and other domination-related parameters. One can easily �nd that more than 80
types of domination and domination-related parameters have appeared in the literature
(see [9]). Although this new parameter adds to the list in a unique way, it is related
to other types of domination.
Fink and Jacobson [5] introduced the concept of r-domination. A set S ⊆V is

r-dominating if for every vertex v ∈ V − S, |N (v) ∩ S|¿r. That is, every vertex
not in the r-dominating set S has at least r of its neighbors in S. For k-regular
graphs, r-domination and �-domination are the same when � = r=k, but for general
graphs, these two concepts are di�erent. Dunbar et al. [4] introduced the concept of
signed domination. A function f : V → {−1; 1} is called a signed dominating func-
tion if for every vertex v ∈ V , f(N [v])¿1. The signed domination number s(G)
equals the minimum weight of a signed dominating function f of G. Note that if f
is a signed dominating function, for every u with f(u) = −1, more than half of u’s
neighbors have weight 1. Thus, signed domination is similar to, but not the same as,
1
2 -domination.
We have already mentioned that for any graph G the standard domination parameter

(G) is a lower bound for �(G). An upper bound is found by examining the vertex
cover number. The vertex cover number �0(G) is the size of a smallest set of vertices
S such that every edge has at least one end vertex in S. Clearly, 1(G) = �0(G).
For any graph G and for any �, with 0¡�61, if S is any set of minimum size

which �-dominates G, we will call S a �-set. Similarly, if S is a set of minimum
size which dominates G, we call S a -set. An immediate result is the following:
If �1¡�2, then �1 (G)6�2 (G). Since 1(G) = �0(G), we obtain the following
proposition.

Proposition 5. For any graph G; (G)6�(G)6�0(G) for all � with 0¡�61.
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Next su�cient conditions are examined to guarantee that the parameter �(G) equals
its upper or lower bound. In any graph G, we will denote the maximum (minimum)
degree of a vertex by �(G) (respectively, �(G)).

Proposition 6. If G has maximum degree �(G); then the following holds: if
0¡�61=�(G); then �(G) = (G).

Proof. Since every �-set is a dominating set, (G)6�(G) for all �. Let S be a -set.
If v 6∈ S, since S is a dominating set we know |N (v) ∩ S|¿1 and by de�nition of
�(G), |N (v)|6�(G). So |N (v) ∩ S|¿1¿��(G)¿�|N (v)|. Thus S is an �-dominating
set and hence �(G)6|S|= (G).

The converse to Proposition 6 does not hold. The double star is the graph obtained
by joining the vertices of maximum degree in the two stars K1;r and K1; s. This graph
has �(G) = 2 = (G), even when �= 1

2¿ 1=�(G).

Proposition 7. Let G be a graph. If 1¿�¿ (�(G)− 1)=�(G); then �(G) = �0(G).

Proof. Suppose G is a graph and S is a �-set, with �¿ (�(G)− 1)=�(G). Let v be
a vertex with v =∈ S. Then |N (v) ∩ S|¿ (�(G) − 1)|N (v)|=�(G). Thus �(G)|N (v) ∩
S|¿�(G)|N (v)| − |N (v)|. Let k¿0 be an integer satisfying k = |N (v) − S|. Then
|N (v)|−k= |N (v)∩S|, and so �(G)[|N (v)|−k]¿�(G)|N (v)|−|N (v)|. Thus �(G)k ¡
|N (v)|. If k¿1, this contradicts the de�nition of maximum degree. Hence k=0. Since
v was an arbitrary vertex outside S, it must be true that every vertex in V − S has its
open neighborhood contained in S. So there is no edge in G with both end vertices
in V − S. Consequently, S is a vertex cover for G and �0(G)6|S|. Since the reverse
inequality always holds, we must have equality.

Thus we have established su�cient conditions for the �-domination number to achieve
two parameters which bound it. Clearly, equality is obtained for any graph with equal
domination and vertex covering number. These are examined in [8,13]. One such class
is trees whose non-stem vertices form an independent set. (A stem is a vertex adjacent
to a vertex of degree 1.)
It seems natural to search for other su�cient conditions which imply that

�(G) = (G) or �(G) = �0(G). However, consider the family of complete graphs
G = Kn for n¿4. If 1=�(G)¡�6(�(G) − 1)=�(G), then (G)¡�(G)¡�0(G). So
any condition that guarantees �(G) = (G) for all graphs G must also imply that
�=�(G), and any condition that guarantees �(G)= �0(G) for all graphs G must imply
that �¿ (�(G)− 1)=�(G).
It is also natural at this point to consider the question of intermediate values; i.e., if

(G)=r, �0(G)=t and r ¡ s¡ t, is there always a value of � for which �(G)=s? This
question is answered in the negative by the following example: Consider a cycle Cn,
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for n¿11. This graph has (Cn) = dn=3e and �0(Cn) = dn=2e. However, by Propo-
sition 2, �(Cn) is equal to (Cn) or �0(Cn) for all �.

3. Nordhaus–Gaddum-type results

For any graph G with n vertices, the complement of G, denoted �G, is de�ned in the
following way: V ( �G) = V (G), and two vertices u and v are adjacent in �G if and only
if u and v are not adjacent in G. Nordhaus and Gaddum [12] provided best possible
bounds on the sum of the chromatic number of a graph and its complement. We seek
bounds for the sum of the �-domination number of a graph and its complement.
First, we state the following result which follows from an unpublished theorem by

Cowen and Emerson (1985). Its proof appears in a survey article by Woodall [14].
For any graph G= (V; E) and a set C = {1; 2; : : : ; k}, we de�ne a coloring of G to be
a function f : V → C. We denote by Si the set of all vertices with label i.

Theorem 8. Let G = (V; E) be a graph; let C = {1; 2; : : : ; k} and let p1; p2; : : : ; pk be
non-negative real numbers such that �ipi¿1. Then there exists a coloring f : V → C
such that |N (v) ∩ Si|6pf(v)|N (v)| for each vertex v.

The following result on the �-domination number follows from Theorem 8.

Theorem 9. If 0¡�¡ 1; then for any graph G; �(G) + 1−�(G)6n.

Proof. We let k =2, let p1 = �, and p2 = 1− �. Then Theorem 8 provides a coloring
of the vertices of G such that |N (v) ∩ Si|6pf(v)|N (v)| for each vertex v.
Suppose now that v 6∈ S1, i.e., f(v) = 2. By Theorem 8 |N (v) ∩ S2|6p2|N (v)|=

(1− �)|N (v)|. Hence

|N (v) ∩ S1|= |N (v)| − |N (v) ∩ S2|¿|N (v)| − (1− �)|N (v)|= �|N (v)|:

Since this is true for any vertex not in S1, we see that S1 forms an �-dominating set
for G. In the same way it is easy to see that S2 is a (1 − �)-dominating set for G.
Therefore, �(G) + 1−�(G)6|S1|+ |S2|= n.

The upper bound in Theorem 9 is achieved for a complete graph Kn whenever
�(n − 1) is not an integer. However, a good lower bound for this expression is not
possible. If G is a star (K1; n−1), then �(G) + 1−�(G) = 2 for all values of �. Fur-
ther, if G is a complete graph on n vertices, we can use Proposition 3 to see that
n− 16�(G) + 1−�(G)6n for all values of �.
The following corollaries are immediate.

Corollary 10. For any graph G; 1=2(G)6bn=2c.
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This bound is sharp for all n, since 1=2(Kn) = d(n− 1)=2e. The following corollary
is of the Nordhaus-Gaddum type for �= 1

2 .

Corollary 11. If G and �G have no isolates; then

1=2(G) + 1=2( �G)6n:

This bound is sharp as shown by examining C4. We do not have a Nordhaus–
Gaddum-type result for general �. However, it is possible to obtain a generalization
for Theorem 9 in a natural way.

Corollary 12. Let G be a graph. If for some k¿2; �1+�2+· · ·+�k ; where 0¡�i ¡ 1
for all i; then �1 (G) + �2 (G) + · · ·+ �k (G)6kn=2.

Proof. The proof is by induction on k. If k=2, we have �1+�261. By Theorem 9 we
have �1 (G) + �2 (G)6�1 (G) + 1−�1 (G)6n. Assume that k ¿ 2 and the result holds
for integers less than k. At least one of the values �i must satisfy �i6 1

2 . Without loss
of generality assume �k6 1

2 . Then from Corollary 10 we know �k (G)6n=2. Finally,
using the inductive hypothesis, we see that [�1 (G)+�2 (G)+· · ·+�k−1 (G)]+�k (G)6
(k − 1)n=2 + n=2 = kn=2.

A universal vertex is a vertex of degree n− 1. A slightly more general result than
Corollary 11 is obtained.

Corollary 13. If G and �G have no isolates; and if 0¡�¡ 1; then

�(G) + 1−�( �G)6b(3n=2)c − 2:

Proof. Without loss of generality, we may assume that �6 1
2 . Then �(G)61=2(G)6

bn=2c. Since G has no isolates, �G has no universal vertex. So there are two vertices,
x and y, such that xy is not an edge in �G. The set V − {x; y} is thus a vertex cover
for �G of cardinality n − 2. Therefore, 1−�( �G)6�0( �G)6n − 2. Combining these we
see that �(G) + 1−�( �G)6b(3n=2)c − 2.

It is straightforward to see that this upper bound is achieved if G = mK2 and
�61=(n− 2).

4. Bounds on �(G )

Let S be an �-dominating set with |S|=�(G). Let M be the set of edges between S
and V−S. Counting the edges from S to V−S, we see that |M |6�v∈S deg(v). Further,
counting the number of edges from V − S to S, we see that |M |¿�v∈V−S� deg(v).
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Combining these it is clear that

�(G)|S|¿�v∈S deg(v)¿�v∈V−S� deg(v)¿��(G)|V − S|: (1)

Using (1) we obtain the following proposition.

Proposition 14. For any graph G with minimum degree �(G) and maximum degree
�(G);

�(G)¿
��(G)n

�(G) + ��(G)
:

Using Theorem 9 we can obtain an upper bound on �(G).

Proposition 15. For any graph G with minimum degree �(G) and maximum degree
�(G);

�(G)6
�(G)n

�(G) + (1− �)�(G) :

Proof. By Theorem 9, we know that �(G)6n− 1−�(G). Then using Proposition 14,
we see that this quantity is no larger than

n− (1− �)�(G)n
�(G) + (1− �)�(G)

and the result follows.

The following corollary is immediate.

Corollary 16. For any tree T and for any � with 0¡�61;

�n
�(T ) + �

6�(T )6
�(T )n

�(T ) + 1− � :

A di�erent lower bound is obtained by again using (1).

Proposition 17. For any graph G with m edges;

�(G)¿
2�m

(�+ 1)�(G)
:

Proof. First, we may observe that since

�v∈S deg(v)¿�v∈V−S� deg(v)

we also obtain

��v∈S deg(v) + �v∈S deg(v)¿��v∈S deg(v) + �v∈V−S� deg(v)

(�+ 1)|S|�(G)¿(�+ 1)�v∈S deg(v)¿��v∈V deg(v) = �2m
and the result follows.
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We may also use Proposition 17 to �nd another upper bound. The proof is similar
to that of Proposition 15 and is omitted here.

Proposition 18. For any graph G with maximum degree �(G) and m edges;

�(G)6
(2− �)�(G)n− (2− 2�)m

(2− �)�(G) :

Next, we will consider bounds for regular graphs. If every vertex of a graph G has
degree k, we say that G is k-regular. Clearly, if G is k-regular, then 1=k(G) = (G).
In a k-regular graph, the number of edges m = kn=2 and �(G) = �(G) = k. The next
corollary follows from Propositions 17 and 18.

Corollary 19. For a k-regular graph G; and for any � with 0¡�61;
�n
1 + �

6�(G)6
n

2− � :

Letting � = i=k where i is an integer with 16i6k, we obtain the following lower
bound.

Corollary 20. If G is a k-regular graph and i is an integer with 16i6k; then
i=k(G)¿d[i=(i + k)]ne.

To see that this result is sharp, let H be any (k − i)-regular graph with 2k vertices,
and let S be a set of 2i independent vertices. Construct G by forming the join of i of the
vertices of S with k of the vertices of H , and then joining the rest of the S vertices with
the rest of the vertices of H . It is immediate to see that G is k-regular, that n=2k+2i,
and that the set S is a i=k -dominating set for G of cardinality 2i = [i=(i + k)]n.
Corollary 19 provides an upper bound as well.

Corollary 21. If G is k-regular; then

i=k(G)6
⌈

kn
2k − i

⌉
:

5. The King’s graph

We return to the original problem of �nding 1=2(G), where G = K[s× t]. We may
think of the King’s graph K[s × t] as having s rows of vertices and t columns of
vertices. For any K[s× t] graph, if S is a 1=2-set for the graph, then we say a column
is empty if the column has no vertices in S. Similarly, a full column is one which
has all its vertices in S. First, we look at small King’s graphs. It is immediate to
see that 1=2(K[2 × 1]) = 1. Moreover, 1=2(K[2 × 2]) = 1=2(K[2 × 3]) = 2. Finally,
1=2(K[2× 4]) = 4. For larger values of t we have the following result.
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Proposition 22. For a 2× t King’s graph; 1=2(K[2× t]) = t − 1; for all t¿5.

Proof. We will use induction on t to show that t−1 is an upper bound for 1=2(K[2×t]).
Let G be a K[2 × 5] graph. Then the vertices in the second and fourth columns
1
2 -dominate the graph, and so 1=2(K[2 × 5])64. The vertices in the second and �fth
columns together with a vertex from the third column show that 1=2(K[2 × 6])65.
Next assume that 1=2(K[2× k])6k − 1 for all k with 56k6t − 1, and consider the
graph K[2× t] for some t¿7. If the �rst two columns are omitted, the resulting graph
has a 1=2-set S ′ with cardinality at most t−3. Now, adding in the second column to S ′
yields a set S which 1

2 -dominates the graph K[2× t]. Thus 1=2(K[2× t])6|S|= t− 1.
To show that t− 1 is a lower bound for 1=2(K[2× t]), assume S is a 1=2-set. Let x

be the number of columns in the graph with both vertices in S. Let y be the number of
columns with exactly one vertex in S, and let z be the number of columns in the graph
with no vertices in S. It is immediate to see that an empty column (except column
t) is followed by a full column within two steps to the right. Thus z6x + 1. Clearly,
|S| = 2x + y. Therefore, we have t = x + y + z62x + y + 1. So t − 16|S|, and the
result follows.

The following lemma will be useful in determining the Woolbright number of a 3× t
King’s graph.

Lemma 23. If G is a 3 × t King’s graph; then there exists a 1=2-set S with the
property that following every empty column (except column t) there is a full column
within two steps to the right.

Proof. Suppose G is a 3 × t King’s graph with a 1=2-set S and assume column j is
empty. If column j + 1 is full, the result holds. If column j + 1 has one vertex in S,
it must be the vertex in the middle row, in which case column j + 2 is full and we
are done.
Suppose column j+ 1 has two vertices in S. Then column j+ 2 must have at least

two vertices in S to cover the vertex in column j + 1 which is not in S. We may
create a 1=2-set S ′ in the following way. Shift one vertex of S from column j + 1 to
the empty spot in column j + 2, and move the remaining vertex (if necessary) to the
middle position in column j + 1. The set S ′ is then a 1

2 -dominating set with the same
number of vertices as S.
When this process is repeated for every empty column except for column t, the

result follows.

Proposition 24. If G is a 3× t King’s graph; then 1=2(G) = t.

Proof. Let G be a 3× t King’s graph. Then a 1
2 -dominating set is found by choosing

all vertices on the second row of G. Thus if S is a 1=2-set for G, we know |S|6t.
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Next, we show that t is also a lower bound for 1=2(G). Let S be any 1=2-set for G.
Let w be the number of columns of G which have all three vertices in S. Similarly, let
x (respectively, y and z) be the number of columns of G with two (respectively, one
and zero) vertices in S. Then |S|= 3w+ 2x+ y and t = x+ y+ z+w. By Lemma 23
we know that z6w+1. Thus t62w+ x+ y+1 and consequently |S| − t¿w+ x− 1.
If w= x= 0, then we must also have z= 0, and so every column has one vertex in

S. Thus |S| = t and we are done. If at least one of w or x is positive, then we have
|S|¿t + w + x − 1¿t. In either case t is a lower bound for the cardinality of S, and
the result follows.

For larger K[s× t] graphs, we seek bounds for the 1
2 -domination number. The �rst

is obvious from the previous proof.

Proposition 25. Let k and t be positive integers. Then

1=2(K[(2k + 1)× t])6kt:

Proof. We may �nd a 1
2 -dominating set for such a graph by choosing all t vertices in

each of the k even-numbered rows of the graph.

Next, we examine graphs of the form K[s × t], with s an even integer, and t suf-
�ciently large. First, we note that, 1=2(K[4 × 4])67, by taking as our 1

2 -dominating
set all the vertices in the third column, together with the vertices v11; v31; v32 where vij
denotes the vertex in row i and column j. It is straightforward to see that six vertices
will not su�ce as a 1=2-dominating set for K[4×4], and hence 1=2(K[4×4])=7.

Proposition 26. If G = K[4× t]; then 1=2(G)62t − 2 for t¿5.

Proof. By selecting the second and fourth columns of K[4× 5], a 1
2 -dominating set is

found with eight vertices, so 1=2(K[4× 5])68. Moreover, for t = 6, by selecting the
second and �fth columns, together with two vertices from di�erent rows in columns
three or four, we have 1=2(K[4 × 6])610. Thus the result holds for t = 5 and 6.
Suppose G is a K[4 × t] graph for some t¿7 and assume that the result holds for
all K[4× j] graphs with 56j¡ t. Let G′ be the graph obtained from G by omitting
the last two columns. Then G′ = K[4 × (t − 2)]. Let S ′ be a 1=2-set for G′. Then
|S ′|62(t − 2)− 2 by our inductive hypothesis. Create a 1

2 -dominating set S for G by
adding all the vertices of column t−1 to the vertices in S ′. Then |S|62t−6+4=2t−2
and the result follows.

That the bound in Proposition 26 is not always sharp is seen by noting that there
exists a 1

2 -dominating set of size 13 for the graph K[4× 8], as shown in Fig. 2. Thus
for the graph G = K[4× 8], 1=2(G)¡ 14.
It should be recalled here that the Woolbright number for the graph K[6 × 6] has

been shown to be 14 [15]. Further, by noting that the graph K[6 × 5] has the same
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Fig. 2. A half-dominating set for K[4× 8].

1
2 -domination number as the graph K[5 × 6], Proposition 25 yields the value 12 as
an upper bound for 1=2(K[6 × 5]). Using these two facts as the basis statements, an
inductive argument yields the following upper bound.

Proposition 27. For t¿5; 1=2(K[6× t])63t − 3.

Finally, we may use these propositions to �nd an upper bound for 1=2(K[s × t])
for any even integer s¿6. Suppose s= 2k for some k¿3. Then using Proposition 25
we again �nd that 1=2(K[2k × 5]) = 1=2(K[5 × 2k])62(2k)6(k)(5) − 3. And using
Proposition 27 we obtain 1=2(K[2k × 6])63(2k) − 3 = 6k − 3. With these facts as a
basis step, the proof of the following proposition follows by induction as before.

Proposition 28. For k¿3 and t¿5; 1=2(K[2k × t])6kt − 3.

6. �-Irredundance and �-independence

We begin with two de�nitions. Let S ⊆V . We say S is an irredundant set if
for all x ∈ S there is a vertex y ∈ N [x] which is not in S − {x} such that |N (y) ∩
(S−{x})|=0. We let IR(G) (ir(G)) denote the size of a largest (respectively, smallest
maximal) irredundant set of vertices in G. Any minimal dominating set is a maximal
irredundant set. We say S is an independent set if no two vertices in S are adjacent,
or equivalently, if v ∈ S, |N (v) ∩ S|= 0. Let �(G) (i(G)) denote the size of a largest
(respectively, smallest maximal) independent set of vertices. Any maximal independent
set is a minimal dominating set. This gives the inequality for all graphs G [2]

ir(G)6(G)6i(G)6�(G)6�(G)6IR(G):

We say S is an �-irredundant set if the following condition holds. For all x ∈ S there
is a vertex y ∈ N [x] which is not in S − {x} such that |N (y) ∩ (S − {x})|¡�|N (y)|.
It may be noted here that every minimal �-dominating set is a maximal �-irredundant

set. We will let IR�(G) (ir�(G)) denote the size of a largest (respectively, smallest
maximal) �-irredundant set of vertices in G.
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In light of the relationship between �-domination and �-irredundance, the following
inequality chain emerges.

ir�(G)6�(G)6��(G)6IR�(G):

Lemma 29. Let �1¡�2 be positive real numbers both less than 1. Then for any
graph G;

IR�1 (G)6IR�2 (G):

Proof. Let S be an �1-irredundant set with |S| = IR�1 (G). We claim that S is an
�2-irredundant set. Let x ∈ S. Then there exists a y 6∈ S − {x}, with y ∈ N [x], such
that |N (y) ∩ (S − {x})|¡�1|N (y)|¡�2|N (y)| and the result follows.

Proposition 30. For any graph G and any 0¡�61; IR(G)6IR�(G).

Proof. Let S be an IR-set. Then for all x ∈ S, there is a vertex y 6∈ S − {x}, with
y ∈ N [x] and with |N (y) ∩ (S − {x})|= 0¡�|N (y)|. So IR�(G)¿|S|= IR(G).

Using Proposition 30 we have the following inequality:

�(G)6IR(G)6IR�(G):

On the other hand, ��(G) is not comparable with the standard upper domination
parameters. Consider an s × t chessboard. The Rook’s graph R[s × t] is formed by
letting each vertex represent one cell of the chessboard and joining two vertices in the
graph if and only if the cells represented by these vertices are a Rook’s move apart
on the chessboard. (A Rook can move any number of squares either horizontally or
vertically.) In the graph R[5 × 5] (the Rook’s graph on a 5X 5 board), we see that
�1=8(G) = �(G) = 5, while IR(G) = 6. The prism is the graph constructed by joining
two copies of C3 by a perfect matching. In the prism, we have �2=3(G) = 4 while
IR(G) = 3. Furthermore for this graph, IR3=4(G) = 4, so the inequality of Proposition
30 can be strict. To see that ��(G) is not comparable with �(G), again the prism
provides an example of a graph with �2=3(G) = 4 and �(G) = 3. Finally, construct a
graph G by adding two leaves to each vertex of a path on three vertices. This graph
has �2=3(G) = 5 while �(G) = 6.
For any graph G, we know that IR(G)6n−�(G) [3]. Although this inequality does

not hold for �-irredundance, (again using the prism) we do know that IR�(G)6n−(G)
as shown below.

Proposition 31. For any graph G; IR�(G)6n− (G).

Proof. Let S be an �-irredundant set with |S| = IR�(G). We claim that V − S is a
dominating set. For if not we may assume that there is a vertex x ∈ S which is not
dominated by V − S. Then N [x]⊆ S. But since S is an �-irredundant set, there is a



J.E. Dunbar et al. / Discrete Mathematics 211 (2000) 11–26 23

vertex y in N [x] such that y is not in S−{x}, for which |N (y)∩ (S−{x})|¡�|N (y)|
which is a contradiction.

We say S is an �-independent set if S is an independent set that is also an
�-dominating set. We let ��(G) (i�(G)) denote the size of a largest (respectively,
smallest maximal) �-independent set. Note that not every graph has an �-independent
set for all �. For example, the graph Kn for n¿3, does not have an �-independent set
for any �¿ 1=(n − 1). On the other hand, every graph has an �-independent set for
�=�(G) and here i�(G) = i(G). Now, if S is an �-independent set for some �, 0¡�,
then S is a minimal �-dominating set, since the set S − {x} is no longer dominating
for all x ∈ S. Thus we get the following inequalities for those graphs G which have
an �-independent set.

�(G)6i�(G)6��(G)6��(G);

i(G)6i�(G)6��(G)6�(G):

A classical theorem in graph theory is due to Gallai [6].

Proposition 32 (Gallai [6]). For any graph G; �0(G) + �0(G) = n:

We use Gallai’s result to obtain another bound on the �-domination number.

Proposition 33. Suppose that G has an �-independent set for some �; 0¡�61. Then
�(G)6bn=2c.

Proof. By the above inequalities and by Gallai’s theorem, �(G)6i�(G)6�(G) =
n− �0(G). Furthermore, �(G)6�0(G). Thus, �(G)6n=2.

7. Complexity results

In this section, we will consider the complexity of computing �(G). We will state the
corresponding decision problem and show that it is NP-complete. In [7], the following
two decision problems are shown to be NP-complete:

VERTEX-COVER
Instance: Graph G = (V; E), positive integer k.
Question: Does G have a vertex cover S with |S|6k?

3-REGULAR DOMINATION
Instance: 3-regular graph G = (V; E), positive integer k.
Question: Does G have a dominating set S with |S|6k?

For each �, 0¡�, we will show that the following decision problem is NP-complete.
The proof is based on a result by McRae [11].
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�-DOMINATION
Instance: Graph G = (V; E), positive integer k.
Question: Does G have an �-dominating set S with |S|6k?

Theorem 34. For every � with 0¡�61; the problem �-DOMINATION is NP-
complete.

Proof. We prove the theorem by considering the following cases separately: (1) �=1;
(2) 0¡�6 1

3 ; (3)
1
3¡�¡ 1.

Case 1: If � = 1, then �(G) = �0(G), the vertex covering number of G and since
VERTEX COVER is known to be NP-complete [7], the result follows.
Case 2: 0¡�61=3. Suppose G is a 3-regular graph, then by Proposition 6, �(G)=

(G). Since 3-REGULAR DOMINATION is known to be NP-complete [7], the result
follows.
Case 3: 1=3¡�¡ 1. For this case, we will use a transformation from 3-REGULAR

DOMINATION. Suppose � is a �xed number such that 1
3¡�¡ 1, and let x be the

smallest integer such that (x + 1)=(x + 3)¿�. Let y be the largest integer with y¿x
and x=y¿�. Let Y be a complete graph on y + 1 vertices, and let X = {v1; v2; : : : ; vx}
be any x vertices of Y .
Now, let G be a 3-regular graph. Join each vertex of X to every vertex of G, and

denote the resulting graph as G∗. Since �, x and y are �xed, this transformation can
be done in polynomial time. We will show that G has a dominating set of size at most
k if and only if G∗ has an �-dominating set of size at most x + k.
Suppose �rst that G has a dominating set S with |S|6k. Form the set D = S ∪ X .

It is straightforward to verify that this is an �-dominating set for G∗ with |D|6x+ k.
Now, suppose G∗ has an �-dominating set with size at most x + k. Out of the

�-dominating sets of G∗ of size at most x+k, choose one which uses as many vertices
from X as possible. Call this set D. Then there must be a vertex in Y − X that is not
in D. We will show that the set D ∩ V (G) forms a dominating set for G of size at
most k.

Claim 1. D ∩ V (G) is a dominating set for G.

Proof of Claim 1. Let v ∈ V (G)−D. By the choice of x, (x+1)=(x+3)¿�¿x=(x+2),
so that �(x + 3)¿x(x + 3)=(x + 2)¿x. Now, deg(v) = x + 3, and since D is an
�-dominating set for G∗; |N (v) ∩ D|¿�(x + 3)¿x, so that |N (v) ∩ D|¿x + 1 and v
must have a neighbor in D ∩ V (G). Thus D ∩ V (G) is a dominating set for G.

Claim 2. |D ∩ V (G)|6k.

Proof of Claim 2. Let u ∈ Y − (X ∪ D). By the choice of y, x=y¿�¿x=(y + 1)
so that �y¿x − �. Now, |N (u) ∩ D|¿�y¿x − �¿x − 1. Thus |D ∩ Y |¿x so that
|D ∩ V (G)|6k.
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Since the 3-REGULAR DOMINATION problem is known to be NP-complete [7],
the �-DOMINATION problem is also NP-complete for 1=3¡�¡ 1.
Combining all the cases, the theorem is proved.

8. Open problems

We close with the following open problems:

1. For n odd and �¿ 1
2 , we note that �(Cn)¿�(Pn). Thus it is possible for �(G) to

increase when an edge is added to G. We have not tried to ascertain which graphs
have this property or the e�ect on �(G) caused by deleting an edge or a vertex
from G.

2. If the value of � ranges between 0 and 1, we have minimal results concerning the
behavior of the sum �(G) + 1−�(G). We know that for some classes of graphs
(paths, cycles, stars) this value is constant and does not change with �. Further, we
know that for complete graphs, the value alternates between n and n−1, depending
on whether �(n − 1) is an integer. But for graphs outside these classes and for
general �, we have not addressed the problem.

3. Although we have a Nordhaus–Gaddum-type bound for �= 1
2 , a bound for general

� has not been established. Also characterizations of graphs achieving the bounds
in Section 3 have not been found.

4. There exist examples of graphs for which ir�(G)¿ ir(G) for some �. For example,
the graph Kn for n¿4 has ir(Kn)=1, and ir1=2(Kn)=bn=2c. We do not know whether
ir�(G) is comparable to ir(G) for all G.
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