M ehler Integral Transforms A ssociated with J acobi Functions with R espect to the Dual V ariable

N. Ben Salem and K. Trimèche

Department of Mathematics. Facultv of Sciences of Tunis. Campus Universitaire. 1060.
metadata, citation and similar papers at core.ac.uk

R eceived J anuary 30, 1996

We prove a M ehler representation for J acobi functions $\varphi_{\lambda}^{(\alpha, \beta)}(t)$ with respect to the dual variable λ. We exploit this representation to define a pair of dual integral transforms $\chi_{\alpha, \beta}$ and its transposed ${ }^{t} \chi_{\alpha, \beta}$. We define two second order difference operators $P_{\alpha, \beta}$ and Q such that $\varphi_{\lambda}^{(\alpha, \beta)}(t)$ is an eigenfunction of $P_{\alpha, \beta}$ with respect to the dual variable λ, and $\chi_{\alpha, \beta}$ and ${ }^{t} \chi_{\alpha, \beta}$ are permutation operators between $P_{\alpha, \beta}$ and Q. Next we give some spaces of functions on which $\chi_{\alpha, \beta}$ and ${ }^{t} \chi_{\alpha, \beta}$ are isomorphisms and we establish inversion formulas for these transforms. © 1997 A cademic Press

INTRODUCTION

A J acobi function $t \rightarrow \varphi_{\lambda}^{(\alpha, \beta)}(t)$ of order (α, β) with $\alpha \geq-1 / 2, \beta \in \mathbb{R}$, and $\lambda \in \mathbb{C}$, is defined as the even C^{∞}-function on \mathbb{R} which satisfies the differential equation,

$$
\left\{\begin{array}{l}
\frac{d^{2} u}{d t^{2}}+\frac{A_{\alpha, \beta}^{\prime}(t)}{A_{\alpha, \beta}(t)} \frac{d u}{d t}+\left(\lambda^{2}+(\alpha+\beta+1)^{2}\right) u=0 \\
u(0)=1, \quad \frac{d}{d t} u(0)=0
\end{array}\right.
$$

where

$$
A_{\alpha, \beta}(t)=2^{2(\alpha+\beta+1)}(\operatorname{sh} t)^{2 \alpha+1}(\operatorname{ch} t)^{2 \beta+1} .
$$

For special values of α and β, the J acobi functions are interpreted as spherical functions on non-compact riemannian symmetric spaces of rank one; for more details see the very interesting survey of T. H. K oornwinder [13].

It is well known that the function $\varphi_{\lambda}^{(\alpha, \beta)}(t)$ possesses a M ehler representation given by

$$
\begin{equation*}
\forall t>0, \forall \lambda \in \mathbb{C}, \quad \varphi_{\lambda}^{(\alpha, \beta)}(t)=\int_{0}^{\infty} K_{\alpha, \beta}(t, s) \cos \lambda s d s \tag{0.1}
\end{equation*}
$$

where $K_{\alpha, \beta}(t,),. t>0$, is a nonnegative function continuous on $]-t, t[$ and supported in $[-t, t]$. This Mehler representation was exploited by T. H. Koornwinder to define an integral transform (called the Abel transform) $F_{\alpha, \beta}$ (see [11]), which relates the Fourier-J acobi transform $\mathrm{F}_{\alpha, \beta}$ and the Fourier-cosine transform F_{0}, that is,

$$
\begin{equation*}
\mathrm{F}_{\alpha, \beta}=\mathrm{F}_{0} \circ \mathrm{~F}_{\alpha, \beta} . \tag{0.2}
\end{equation*}
$$

Here $F_{\alpha, \beta}$ is given for an even C^{∞}-function on \mathbb{R}, with compact support, by

$$
\begin{equation*}
\mathrm{F}_{\alpha, \beta}(f)(\lambda)=(2 \pi)^{-1 / 2} \int_{0}^{\infty} f(t) \varphi_{\lambda}^{(\alpha, \beta)}(t) A_{\alpha, \beta}(t) d t \tag{0.3}
\end{equation*}
$$

We assume that $\alpha \geq \beta \geq-1 / 2$; then the inverse of the Fourier-Jacobi transform is given by

$$
\begin{equation*}
\mathrm{F}_{\alpha, \beta}^{-1}(f)(t)=(2 \pi)^{-1 / 2} \int_{0}^{\infty} \mathrm{F}_{\alpha, \beta}(f)(\lambda) \varphi_{\lambda}^{(\alpha, \beta)}(t) \frac{d \lambda}{\left|c_{\alpha, \beta}(\lambda)\right|^{2}} \tag{0.4}
\end{equation*}
$$

where

$$
c_{\alpha, \beta}(\lambda)=\frac{2^{\alpha+\beta+1-i \lambda} \Gamma(i \lambda) \Gamma(\alpha+1)}{\Gamma((\alpha+\beta+1+i \lambda) / 2) \Gamma((\alpha-\beta+1+i \lambda) / 2)} .
$$

In this work, we are interested with a dual M ehler representation of the J acobi function $\varphi_{\lambda}^{(\alpha, \beta)}(t)$ with respect to the dual argument λ. M ore precisely, we shall prove that the function $\varphi_{\lambda}^{(\alpha, \beta)}(t)$ possesses the integral representation

$$
\begin{equation*}
\forall t \geq 0, \forall \lambda_{0} \in \mathbb{R}, \quad \varphi_{\lambda_{0}}^{(\alpha, \beta)}(t)=\frac{2}{\pi} \int_{0}^{\infty} b_{\alpha, \beta}\left(\lambda_{0}, \lambda\right) \cos \lambda t d \lambda . \tag{0.5}
\end{equation*}
$$

This result was pointed out by M. Flensted-J ensen and T. H. K oornwinder in a remark made at the end of the paper [8]; also they indicated that the
nonnegativity of the kernel $b_{\alpha, \beta}$ should be obtained by using an addition formula for the function $\varphi_{\lambda_{0}}^{(\alpha, \beta)}$ given in the same paper. Here we work out in details this remark, we establish the nonnegativity of the kernel $b_{\alpha, \beta}$, we state some properties of the kernel $b_{\alpha, \beta}$, and we mark out the contrast between this kernel and the kernel $K_{\alpha, \beta}$ defined in (0.1).

We observe that we can write formula (0.5) as

$$
\begin{equation*}
\forall t \geq 0, \forall \lambda_{0} \in \mathbb{R}, \quad \varphi_{\lambda_{0}}^{(\alpha, \beta)}(t)=\chi_{\alpha, \beta}(\cos (. t))\left(\lambda_{0}\right), \tag{0.6}
\end{equation*}
$$

where

$$
\begin{equation*}
\chi_{\alpha, \beta}(f)\left(\lambda_{0}\right)=\frac{2}{\pi} \int_{0}^{\infty} b_{\alpha, \beta}\left(\lambda_{0}, \lambda\right) f(\lambda) d \lambda, \tag{0.7}
\end{equation*}
$$

with f an even continuous and bounded function on \mathbb{R}.
Hence this allows us to define a pair of dual integral transforms which we call the dual M ehler transform denoted $\chi_{\alpha, \beta}$ and given by the formula (0.7) and its transposed ${ }^{t} \chi_{\alpha, \beta}$ defined for an even continuous function f on \mathbb{R}, with compact support, by

$$
\begin{equation*}
{ }^{t} \chi_{\alpha, \beta}(f)(\lambda)=\int_{0}^{\infty} b_{\alpha, \beta}\left(\lambda_{0}, \lambda\right) f\left(\lambda_{0}\right) d \nu_{\alpha, \beta}\left(\lambda_{0}\right), \tag{0.8}
\end{equation*}
$$

where $\nu_{\alpha, \beta}$ is the measure given by $d \nu_{\alpha, \beta}(\lambda)=(2 \pi)^{-1 / 2}\left(d \lambda /\left|c_{\alpha, \beta}(\lambda)\right|^{2}\right)$. The transform ${ }^{t} \chi_{\alpha, \beta}$ is related to the inverse Fourier-Jacobi transform $\mathrm{F}_{\alpha, \beta}^{-1}$ defined by (0.4), by the relation analogous to (0.2),

$$
\begin{equation*}
\mathrm{F}_{\alpha, \beta}^{-1}=\mathrm{F}_{0}{ }^{-1}{ }^{\circ}{ }^{t} \chi_{\alpha, \beta}, \tag{0.9}
\end{equation*}
$$

here F_{0} denotes the Fourier-cosine transform.
In this paper, we construct a second order difference operator $P_{\alpha, \beta}$ such that $\varphi_{\lambda}^{(\alpha, \beta)}(t)$ is an eigenfunction of the operator $P_{\alpha, \beta}$ with respect to the dual variable λ; precisely we state that for all λ in \mathbb{C} and $t \geq 0$, we have

$$
P_{\alpha, \beta}\left(\varphi_{\lambda}^{(\alpha, \beta)}(t)\right)=-\operatorname{ch} 2 t \varphi_{\lambda}^{(\alpha, \beta)}(t) .
$$

Next we study the transforms $\chi_{\alpha, \beta}$ and ${ }^{t} \chi_{\alpha, \beta}$ and we establish some results analogous to the ones given by K. Trimeche for the J. L. Lions transmutation operators (see [19]), especially

- We prove that $\chi_{\alpha, \beta}$ and ${ }^{t} \chi_{\alpha, \beta}$ are permutation operators between $P_{\alpha, \beta}$ and a second order difference operator Q.
- We define and characterize spaces of functions on which the transforms $\chi_{\alpha, \beta}$ and ${ }^{t} \chi_{\alpha, \beta}$ are topological isomorphisms.
- We prove the following inversion formulas for $\chi_{\alpha, \beta}$ and ${ }^{t} \chi_{\alpha, \beta}$ when applied to some spaces of functions,

$$
\begin{array}{ll}
f=\chi_{\alpha, \beta} \mathrm{M}_{0}{ }^{t} \chi_{\alpha, \beta} f ; & f={ }^{t} \chi_{\alpha, \beta} \chi_{\alpha, \beta} \mathrm{M}_{0} f, \\
f=\chi_{\alpha, \beta}{ }^{t} \chi_{\alpha, \beta} \mathrm{M} f ; & f={ }^{t} \chi_{\alpha, \beta} \mathrm{M} \chi_{\alpha, \beta} f,
\end{array}
$$

where M_{0} and M are pseudo-differential operators.
We conclude this introduction with a summary of the content of this paper. In the first section we recall the properties of the Jacobi functions. The second section contains the addition formula for J acobi functions, the dual M ehler representation of the function $\varphi_{\lambda}^{(\alpha, \beta)}(t)$, and the properties of the kernel $b_{\alpha, \beta}\left(\lambda_{0}, \lambda\right)$. In the third section we define and study the pair of dual integral transforms $\chi_{\alpha, \beta}$ and ${ }^{t} \chi_{\alpha, \beta}$. The next section contains the definition of two second order difference operators $P_{\alpha, \beta}$ and Q such that $\varphi_{\lambda}^{(\alpha, \beta)}(t)$ is an eigenfunction of the operator $P_{\alpha, \beta}$ with respect to the dual variable λ; moreover we establish that $\chi_{\alpha, \beta}$ and ${ }^{t} \chi_{\alpha, \beta}$ are permutation operators between $P_{\alpha, \beta}$ and Q. In the last section we give inversion formulas for the transforms $\chi_{\alpha, \beta}$ and ${ }^{t} \chi_{\alpha, \beta}$.

1. THE JACOBI FUNCTIONS

In this section we recall the properties of the J acobi functions; for more details see $[6,7,13]$.

For $\alpha>-\frac{1}{2}, \beta \in \mathbb{R}, \lambda \in \mathbb{C}, t \geq 0$, the Jacobi function $\varphi_{\lambda}^{(\alpha, \beta)}(t)$ is defined by

$$
\begin{equation*}
\varphi_{\lambda}^{(\alpha, \beta)}(t)={ }_{2} F_{1}\left(\frac{1}{2}(\rho+i \lambda), \frac{1}{2}(\rho-i \lambda) ; \alpha+1 ;-\operatorname{sh}^{2} t\right), \tag{1.1}
\end{equation*}
$$

where $\rho=\alpha+\beta+1$ and ${ }_{2} F_{1}$ is the G auss hypergeometric function.
The function $t \rightarrow \varphi_{\lambda}^{(\alpha, \beta)}(t)$ is the unique solution of the differential equation

$$
\left\{\begin{array}{l}
\Delta_{\alpha, \beta} \varphi_{\lambda}^{(\alpha, \beta)}(t)=-\left(\lambda^{2}+\rho^{2}\right) \varphi_{\lambda}^{(\alpha, \beta)}(t), \tag{1.2}\\
\varphi_{\lambda}^{(\alpha, \beta)}(0)=1, \quad \frac{d}{d t} \varphi_{\lambda}^{(\alpha, \beta)}(0)=0,
\end{array}\right.
$$

where $\Delta_{\alpha, \beta}$ is the J acobi differential operator

$$
\begin{equation*}
\Delta_{\alpha, \beta}=\frac{1}{A_{\alpha, \beta}(t)} \frac{d}{d t}\left[A_{\alpha, \beta}(t) \frac{d}{d t}\right] \tag{1.3}
\end{equation*}
$$

with

$$
\begin{equation*}
A_{\alpha, \beta}(t)=2^{2 \rho}(\operatorname{sh} t)^{2 \alpha+1}(\operatorname{ch} t)^{2 \beta+1} . \tag{1.4}
\end{equation*}
$$

In this paper we assume that $\alpha \geq \beta \geq-1 / 2$.
We have the following properties of the function $\varphi_{\lambda}^{(\alpha, \beta)}(t)$.
(i) For $t \geq 0, \lambda \in \mathbb{C}$ with $||m \lambda| \leq \rho$,

$$
\begin{equation*}
\left|\varphi_{\lambda}^{(\alpha, \beta)}(t)\right| \leq 1 . \tag{1.5}
\end{equation*}
$$

(ii) For all $n \in \mathbb{N}$, there exists $k_{n}>0$ such that for all $\lambda \in \mathbb{C}$ and $t \geq 0$,

$$
\begin{equation*}
\left|\frac{d^{n}}{d t^{n}} \varphi_{\lambda}^{(\alpha, \beta)}(t)\right| \leq k_{n}(1+t)(1+|\lambda|)^{n} e^{(\||\mathrm{m} \lambda|-\rho) t} . \tag{1.6}
\end{equation*}
$$

(iii) There exists $k>0$ such that for all $\lambda \in \mathbb{C}, t \geq 0$, and $n \in \mathbb{N}$,

$$
\begin{equation*}
\left|\frac{d^{n}}{d \lambda^{n}} \varphi_{\lambda}^{(\alpha, \beta)}(t)\right| \leq k(1+t)^{n+1} e^{(\||m \lambda|-\rho) t} . \tag{1.7}
\end{equation*}
$$

(iv)

$$
\begin{align*}
&(\Gamma(\alpha+1))^{-1} \frac{d}{d t} \varphi_{\lambda}^{(\alpha, \beta)}(t) \\
&=-\frac{1}{4}\left[(\alpha+\beta+1)^{2}+\lambda^{2}\right] \\
& \times(\Gamma(\alpha+2))^{-1} \operatorname{sh} 2 t \varphi_{\lambda}^{(\alpha+1, \beta+1)}(t) \tag{1.8}
\end{align*}
$$

(v)

$$
\begin{align*}
& (\Gamma(\alpha+2))^{-1} \frac{d}{d t}\left[(\operatorname{sh} 2 t)^{-1} A_{\alpha+1, \beta+1}(t) \varphi_{\lambda}^{(\alpha+1, \beta+1)}(t)\right] \\
& \quad=16(\Gamma(\alpha+1))^{-1} A_{\alpha, \beta}(t) \varphi_{\lambda}^{(\alpha, \beta)}(t) \tag{1.9}
\end{align*}
$$

(vi) The function $t \rightarrow \varphi_{\lambda}^{(\alpha, \beta)}(t)$ possesses the M ehler representation

$$
\begin{equation*}
\varphi_{\lambda}^{(\alpha, \beta)}(t)=\int_{0}^{t} K_{\alpha, \beta}(t, u) \cos \lambda u d u, \quad t>0, \lambda \in \mathbb{C} \tag{1.10}
\end{equation*}
$$

where $K_{\alpha, \beta}(t,$.$\left.) is a nonnegative even function continuous on \right]-t, t[$ and of support $[-t, t]$.

1.1. The Fourier-Jacobi Transform and Its Inverse

Let us define the following functions spaces (see [6, pp. 146-147]).

- $\mathrm{D}_{*, R}(\mathbb{R})$ the space of even C^{∞}-functions on \mathbb{R} with support in $[-R, R]$ for $R>0$. This space is provided with the topology of uniform convergence of functions and their derivatives.
- $D_{*}(\mathbb{R})$ the space of even C^{∞}-functions on \mathbb{R} with compact support,

$$
\mathrm{D}_{*}(\mathbb{R})=\bigcup_{R \geq 0} \mathrm{D}_{*, R}(\mathbb{R}) ;
$$

this space shall be given the inductive limit topology.

- $S_{*}(\mathbb{R})$ the space of even C^{∞}-functions on \mathbb{R}, rapidly decreasing, equipped with the usual Schwartz-topology.
- $S_{*}^{r}(\mathbb{R})=\left\{(\text { ch } t)^{-2 \rho / r} S_{*}(\mathbb{R})\right\}$, for $0<r \leq 2$. This space shall be equipped with the topology given by $S_{*}(\mathbb{R})$.

Clearly $S_{*}^{r}(\mathbb{R})$ is invariant under $\Delta_{\alpha, \beta}$ and we notice that the semi-norms defined by

$$
\begin{equation*}
Q_{n, m}(f)=\sup _{t \geq 0}\left|(\operatorname{ch} t)^{2 \rho / r}(1+t)^{n} \Delta_{\alpha, \beta}^{m} f(t)\right| \tag{1.11}
\end{equation*}
$$

are continuous on $S_{*}^{r}(\mathbb{R})$.
$-D_{r}=\{\lambda \in \mathbb{C} /||m \lambda| \leq(2 / r-1) \rho\}$.

- $\mathbb{H}_{*, R}(\mathbb{C})$ the space of even, entire, rapidly decreasing functions ψ of exponential type R, that is, for all $n \in \mathbb{N}, P_{n}(\psi)=\sup _{\lambda \in \mathbb{C}} \mid(1+$ $\left.\lambda^{n}\right) e^{-R| | m \lambda \mid} \psi(\lambda) \mid<+\infty$.
$\mathbb{H}_{*, R}(\mathbb{C})$ is equipped with the topology defined by the semi-norms P_{n}.
$-\mathbb{H}_{*}(\mathbb{C})=\cup_{R \geq 0} \mathbb{H}_{*, R}(\mathbb{C})$, equipped with the inductive limit topology.
- H_{*}^{r} the space of even holomorphic functions ψ in the interior of D_{r}, C^{∞} in D_{r}, and rapidly decreasing, that is,

$$
\forall m, n \in \mathbb{N}, \quad P_{n, m}(\psi)=\sup _{\lambda \in D_{r}}\left|\left(1+\lambda^{n}\right) \frac{d^{m}}{d \lambda^{m}} \psi(\lambda)\right|<+\infty .
$$

Notice that $H_{*}^{2}=S_{*}(\mathbb{R})$ and if $r \leq s$ then $H_{*}^{r} \subseteq H_{*}^{s}$.

Give H_{*}^{r} the topology defined by the semi-norms $P_{n, m}$ which can equivalently be defined by the semi-norms

$$
\begin{equation*}
P_{n, m}^{0}(\psi)=\sup _{\lambda \in D_{r}}\left\{\left|\frac{d^{n}}{d \lambda^{n}}\left(\left(\lambda^{2}+\rho^{2}\right)^{m} \psi(\lambda)\right)\right|\right\} . \tag{1.12}
\end{equation*}
$$

We note that all these spaces are F réchet spaces.
Notations. We denote by

$$
\begin{align*}
& d \mu_{\alpha, \beta}(t)=(2 \pi)^{-1 / 2} 2^{2 \rho}(\operatorname{sh} t)^{2 \alpha+1}(\text { ch } t)^{2 \beta+1} d t \tag{1.13}\\
& d \nu_{\alpha, \beta}(\lambda)=(2 \pi)^{-1 / 2}\left|c_{\alpha, \beta}(\lambda)\right|^{-2} d \lambda \tag{1.14}
\end{align*}
$$

where

$$
\begin{equation*}
c_{\alpha, \beta}=\frac{2^{\rho-i \lambda} \Gamma(i \lambda) \Gamma(\alpha+1)}{\Gamma((\alpha+\beta+1+i \lambda) / 2) \Gamma((\alpha-\beta+1+i \lambda) / 2)} . \tag{1.15}
\end{equation*}
$$

- $L^{p}\left(\left[0,+\infty\left[, d \mu_{\alpha, \beta}\right), p \geq 1\right.\right.$, the space of measurable functions f on $[0,+\infty[$, such that

$$
\int_{0}^{+\infty}|f(t)|^{p} d \mu_{\alpha, \beta}(t)<+\infty .
$$

- $L^{p}\left(\left[0,+\infty\left[, \mathrm{d} \nu_{\alpha, \beta}\right), p \geq 1\right.\right.$, the space of measurable functions h on $[0,+\infty[$, such that

$$
\int_{0}^{\infty}|h(\lambda)|^{p} d \nu_{\alpha, \beta}(\lambda)<+\infty .
$$

Definition 1.1. (i) The Fourier-Jacobi transform $\mathrm{F}_{\alpha, \beta}$ of $f \in$ $L^{1}\left(\left[0,+\infty\left[, \mathrm{d} \mu_{\alpha, \beta}\right)\right.\right.$ is defined by

$$
\begin{equation*}
\mathrm{F}_{\alpha, \beta}(f)(\lambda)=\int_{0}^{\infty} f(t) \varphi_{\lambda}^{(\alpha, \beta)}(t) d \mu_{\alpha, \beta}(t) \tag{1.16}
\end{equation*}
$$

(ii) The inverse Fourier-J acobi transform $\mathrm{F}_{\alpha, \beta}^{-1}$ of $h \in L^{1}([0,+\infty[$, $\left.\mathrm{d} \nu_{\alpha, \beta}\right)$ is defined by

$$
\begin{equation*}
\mathrm{F}_{\alpha, \beta}^{-1}(h)(t)=\int_{0}^{\infty} h(\lambda) \varphi_{\lambda}^{(\alpha, \beta)}(t) d \nu_{\alpha, \beta}(\lambda) . \tag{1.17}
\end{equation*}
$$

Theorem 1.1. The Fourier-Jacobi transform $\mathrm{F}_{\alpha, \beta}$ is an isomorphism
(i) from $\mathrm{D}_{*}(\mathbb{R})$ onto $\mathbb{H}_{*}(\mathbb{C})$,
(ii) from $S_{*}^{r}(\mathbb{R})$ onto H_{*}^{r}.
(See [6, p. 146].)

1.2. The Convolution Structure

The J acobi function $\varphi_{\lambda}^{(\alpha, \beta)}$ satisfies the following product formula

$$
\begin{equation*}
\forall t, s>0, \quad \varphi_{\lambda}^{(\alpha, \beta)}(t) \varphi_{\lambda}^{(\alpha, \beta)}(s)=\int_{0}^{\infty} \varphi_{\lambda}^{(\alpha, \beta)}(r) W_{\alpha, \beta}(t, s, r) d \mu_{\alpha, \beta}(r), \tag{1.18}
\end{equation*}
$$

where $W_{\alpha, \beta}(t, s,$.$) is a nonnegative function compactly supported and such$ that

$$
\begin{equation*}
\int_{0}^{\infty} W_{\alpha, \beta}(t, s, r) d \mu_{\alpha, \beta}(r)=1 . \tag{1.19}
\end{equation*}
$$

The formula (1.18) allows us to define the generalized translation operator $T_{r}, r \geq 0$, by

$$
\begin{align*}
\forall r, s>0, & T_{r} f(s)=\int_{0}^{\infty} f(t) W_{\alpha, \beta}(t, s, r) d \mu_{\alpha, \beta}(t), \tag{1.20}\\
\forall r \geq 0, & T_{r} f(0)=f(r),
\end{align*}
$$

and the convolution associated with $\Delta_{\alpha, \beta}$ of two functions f and g in $D_{*}(\mathbb{R})$ by the relation

$$
\begin{equation*}
f * g(t)=\int_{0}^{\infty} T_{t} f(s) g(s) d \mu_{\alpha, \beta}(s) . \tag{1.21}
\end{equation*}
$$

Notice that for $\alpha>\beta>-1 / 2$, we can also write this in the form

$$
\begin{equation*}
f * g(t)=\int_{0}^{\infty} f(s) \int_{0}^{1} \int_{0}^{\pi} g(\Lambda(t, s, r, \psi)) d \tilde{m}_{\alpha, \beta}(r, \psi) d \mu_{\alpha, \beta}(s) \tag{1.22}
\end{equation*}
$$

where

$$
\begin{equation*}
\Lambda(t, s, r, \psi)=\operatorname{Arcch}\left(\left|\operatorname{ch} t \operatorname{ch} s+r e^{i \psi} \operatorname{sh} t \operatorname{sh} s\right|\right) \tag{1.23}
\end{equation*}
$$

and

$$
\begin{align*}
d \tilde{m}_{\alpha, \beta}(r, \psi)= & \frac{2 \Gamma(\alpha+1)}{\sqrt{\Pi} \Gamma(\alpha-\beta) \Gamma(\beta+1 / 2)} r^{2 \beta+1} \\
& \times\left(1-r^{2}\right)^{\alpha-\beta-1}(\sin \psi)^{2 \beta} d r d \psi . \tag{1.24}
\end{align*}
$$

Remark. It is well known that the formula (1.18) generates a hypergroup structure on $\mathbb{R}_{+}=[0,+\infty[$ in the sense of J ewett (see [5, 10]), called the Jacobi hypergroup of non-compact type. Its dual is identified with $K=\mathbb{R}_{+} \cup i[0, \rho]$.

1.3. The Dual Convolution Structure

It was established (see $[3,8]$) that the function $\varphi_{\lambda}^{(\alpha, \beta)}(t)$ satisfies a product formula with respect to the argument λ in $\mathbb{R}_{+} \cup i\left(\left[0, s_{0}\right] \cup\{\rho\}\right)$, $s_{0}=\min (\alpha+\beta+1, \alpha-\beta+1)$. M ore precisely we have the following result: for $\lambda_{1}, \lambda_{2} \in \mathbb{R}_{+} \cup i\left(\left[0, s_{0}\right] \cup\{\rho\}\right)$, there exist unique finite nonnegative measures μ_{1} on \mathbb{R}_{+}and μ_{2} on $\left.i\right] 0, \rho$] such that for every $t \geq 0$, we have

$$
\begin{equation*}
\varphi_{\lambda_{1}}^{(\alpha, \beta)}(t) \varphi_{\lambda_{2}}^{(\alpha, \beta)}(t)=\int_{0}^{\infty} \varphi_{\lambda}^{(\alpha, \beta)}(t) d \mu_{1}(\lambda)+\int_{i] 0, \rho]} \varphi_{\lambda}^{(\alpha, \beta)}(t) d \mu_{2}(\lambda) . \tag{1.25}
\end{equation*}
$$

The measures μ_{1} and μ_{2} satisfy the following properties.
(i) If $\left|\left|m \lambda_{1}\right|+\| m \lambda_{2}\right|<\rho$ then $\mu_{2}=0$ and $d \mu_{1}(\lambda)=$ $a_{\alpha, \beta}\left(\lambda_{1}, \lambda_{2}, \lambda\right) d \nu_{\alpha, \beta}(\lambda)$, where $a_{\alpha, \beta}\left(\lambda_{1}, \lambda_{2}, \lambda\right)$ is a nonnegative function and $\nu_{\alpha, \beta}$ is the measure defined by the relation (1.14).
(ii) If $\left\|m \lambda_{1}\left|+\| m \lambda_{2}\right| \geq \rho\right.$, we have
supp $\mu_{1} \subset \mathbb{R}_{+} \quad$ and $\quad \lambda_{1}+\lambda_{2}-i \rho \in \operatorname{supp} \mu_{2} \subset i\left[0, \frac{\lambda_{1}+\lambda_{2}}{i}-\rho\right]$.
M. Flensted-J ensen and T. H. K oornwinder have given some properties of the kernel $a_{\alpha, \beta}\left(\lambda_{1}, \lambda_{2}, \lambda\right)$; in particular we have:

$$
\begin{equation*}
\int_{0}^{\infty} a_{\alpha, \beta}\left(\lambda_{1}, \lambda_{2}, \lambda\right) d \nu_{\alpha, \beta}(\lambda)=1 \tag{1.26}
\end{equation*}
$$

- the function $a_{\alpha, \beta}$ is analytic on $\left\{\left(\lambda_{1}, \lambda_{2}, \lambda\right) \in \mathbb{C}^{3} /\left\|m \lambda_{1}\left|+\| m \lambda_{2}\right|\right.\right.$

- for fixed λ_{1} and $\lambda_{2} \in \mathbb{R}, \lambda \rightarrow a_{\alpha, \beta}\left(\lambda_{1}, \lambda_{2}, \lambda\right)$ is an analytic function on the strip $\{\lambda \in \mathbb{C} / \| \mathrm{m} \lambda \mid<\rho\}$.

The formula (1.25) bears a dual convolution structure on the subset S of K defined by $S=\mathbb{R}_{+} \cup i\left(\left[0, s_{0}\right] \cup\{\rho\}\right)$. This dual convolution is given for a continuous and bounded function f on K with support in S, by

$$
\begin{equation*}
\delta_{\lambda_{1}} \# \delta_{\lambda_{2}}(f)=\int_{K} f(\lambda) d \mu_{\lambda_{1}, \lambda_{2}}(\lambda) \tag{1.27}
\end{equation*}
$$

where $\delta_{\lambda_{i}}, j=1,2$, is the point measure at λ_{j} and $\mu_{\lambda_{1}, \lambda_{2}}$ is the measure on K defined by the dual product formula (1.25), that is,

$$
\int_{K} f(\lambda) d \mu_{\lambda_{1}, \lambda_{2}}(\lambda)=\int_{0}^{\infty} f(\lambda) d \mu_{1}(\lambda)+\int_{i] 0, \rho]} f(\lambda) d \mu_{2}(\lambda) .
$$

The formula (1.27) defines the generalized dual translation operators T_{λ}, $\lambda \in S$, defined for a continuous and bounded function f on S by

$$
\begin{equation*}
\mathrm{T}_{\lambda_{1}} f\left(\lambda_{2}\right)=\delta_{\lambda_{1}} \# \delta_{\lambda_{2}}(f) . \tag{1.28}
\end{equation*}
$$

In particular for $f, g \in L^{1}\left(\left[0, \infty\left[, d \nu_{\alpha, \beta}\right)\right.\right.$ the dual convolution product is given by

$$
\begin{equation*}
f \# g\left(\lambda_{1}\right)=\int_{0}^{\infty} \int_{0}^{\infty} f\left(\lambda_{2}\right) g\left(\lambda_{3}\right) a_{\alpha, \beta}\left(\lambda_{1}, \lambda_{2}, \lambda_{3}\right) d \nu_{\alpha, \beta}\left(\lambda_{2}\right) d \nu_{\alpha, \beta}\left(\lambda_{3}\right) . \tag{1.29}
\end{equation*}
$$

It is clear that if $f, g \in L^{1}\left(\left[0,+\infty\left[, d \nu_{\alpha, \beta}\right)\right.\right.$, then $f \# g \in L^{1}\left(\left[0,+\infty\left[, d \nu_{\alpha, \beta}\right)\right.\right.$ and

$$
\begin{equation*}
\mathbf{F}_{\alpha, \beta}^{-1}(f \# g)=\mathbf{F}_{\alpha, \beta}^{-1}(f) \mathbf{F}_{\alpha, \beta}^{-1}(g), \tag{1.30}
\end{equation*}
$$

where $\mathrm{F}_{\alpha, \beta}^{-1}$ is given by the formula (1.17).

2. DUAL MEHLER REPRESENTATION FOR JACOBI FUNCTIONS

M. Flensted-Jensen and T. H. Koornwinder have announced without proof in Remark 4.12 of [8, p. 150] the existence of a Mehler type representation for the Jacobi function $\varphi_{\lambda}^{(\alpha, \beta)}(t)$ with respect to the argument λ. In this section we shall deal with this representation. Especially we shall prove the existence of a nonnegative kernel $b_{\alpha, \beta}\left(\lambda_{0}, \lambda\right)$ such that

$$
\begin{equation*}
\forall t \geq 0, \forall \lambda_{0} \in \mathbb{R}, \quad \varphi_{\lambda_{0}}^{(\alpha, \beta)}(t)=\frac{2}{\pi} \int_{0}^{\infty} b_{\alpha, \beta}\left(\lambda_{0}, \lambda\right) \cos \lambda t d \lambda . \tag{2.1}
\end{equation*}
$$

Next we give some properties of this kernel.
Proposition 2.1. Let $\alpha \geq \beta \geq-1 / 2, \alpha+\beta+1>0, \gamma \geq \delta \geq-1 / 2$, and $\gamma+\delta<\alpha+\beta$. Then for all $\lambda \in \mathbb{R}$, the function $t \rightarrow \varphi_{\lambda}^{(\alpha, \beta)}(t)$ belongs to $L^{p}\left(\left[0,+\infty\left[, d \mu_{\gamma, \delta}\right)\right.\right.$ for some p in $[1,2[$.

Proof. From the relation (1.6) there exists $k_{0}>0$ such that for all $\lambda \in \mathbb{R}, t \geq 0$,

$$
\left|\varphi_{\lambda}^{(\alpha, \beta)}(t)\right| \leq k_{0}(1+t) e^{-(\alpha+\beta+1) t} .
$$

Let $p=(\alpha+\beta+\gamma+\delta+2) /(\alpha+\beta+1)$; it is clear that p is in $[1,2[$. Then the function $t \rightarrow \varphi_{\lambda}^{(\alpha, \beta)}(t)$ belongs to $L^{p}\left(\left[0,+\infty\left[, d \mu_{\gamma, \delta}\right)\right.\right.$.

Proposition 2.2. Let $\alpha \geq \beta \geq-1 / 2, \alpha+\beta+1>0, \gamma \geq \delta \geq-1 / 2$, and $\gamma+\delta<\alpha+\beta$. Then the kernel $b_{\alpha, \beta, \gamma, \delta}$ given by

$$
\begin{equation*}
b_{\alpha, \beta, \gamma, \delta}\left(\lambda_{0}, \lambda\right)=\int_{0}^{\infty} \varphi_{\lambda_{0}}^{(\alpha, \beta)}(t) \varphi_{\lambda}^{(\gamma, \delta)}(t) d u_{\gamma, \delta}(t) \tag{2.2}
\end{equation*}
$$

is well defined for $\lambda_{0}, \lambda \in \mathbb{C}$ such that $\left\|\mathrm{m} \lambda_{0}|+\| \mathrm{m} \lambda|<\alpha+\beta-\gamma-\delta\right.$.
Proof. From Proposition 2.1, there exists $p \in\left[1,2\left[\right.\right.$ such that for $\lambda_{0} \in \mathbb{R}$ the function $t \rightarrow \varphi_{\lambda_{0}}^{(\alpha, \beta)}(t)$ is in $L^{p}\left(\left[0, \infty\left[, d \mu_{\gamma, \delta}\right)\right.\right.$. Then for all $\lambda_{0} \in \mathbb{R}$ the function $\mathrm{F}_{\gamma, \delta}\left(\varphi_{\lambda_{0}}^{(\alpha, \beta)}\right)$ given by

$$
\forall \lambda \in \mathbb{R}, \quad F_{\gamma, \delta}\left(\varphi_{\lambda_{0}}^{(\alpha, \beta)}\right)(\lambda)=\int_{0}^{\infty} \varphi_{\lambda_{0}}^{(\alpha, \beta)}(t) \varphi_{\lambda}^{(\gamma, \delta)}(t) d \mu_{\gamma, \delta}(t)
$$

is well defined.
We put

$$
\begin{equation*}
b_{\alpha, \beta, \gamma, \delta}\left(\lambda_{0}, \lambda\right)=F_{\gamma, \delta}\left(\varphi_{\lambda_{0}}^{(\alpha, \beta)}\right)(\lambda) . \tag{2.3}
\end{equation*}
$$

Then the kernel $b_{\alpha, \beta, \gamma, \delta}\left(\lambda_{0}, \lambda\right)$ is well defined for $\lambda_{0}, \lambda \in \mathbb{R}$.
Now using the fact that the function $\left(\lambda_{0}, \lambda\right) \rightarrow \varphi_{\lambda_{0}}^{(\alpha, \beta)}(t) \varphi_{\lambda}^{(\gamma, \delta)}(t), t \geq 0$, is analytic in \mathbb{C}^{2} and the relation

$$
\begin{aligned}
& A_{\gamma, \delta}(t)\left|\varphi_{\lambda_{0}}^{(\alpha, \beta)}(t) \varphi_{\lambda}^{(\gamma, \delta)}(t)\right| \\
& \quad \leq k_{0}(1+t)^{2} \exp \left[\left(|\operatorname{Im}(\lambda)|+\left|\operatorname{Im}\left(\lambda_{0}\right)\right|-(\alpha+\beta-\gamma-\delta)\right) t\right]
\end{aligned}
$$

we can extend by analytic continuation the function $b_{\alpha, \beta, \gamma, \delta}$ for $\lambda_{0}, \lambda \in \mathbb{C}$ such that $\left||m \lambda|+\left|\left|m \lambda_{0}\right|<\alpha+\beta-\gamma-\delta\right.\right.$.

In the following, with the help of an addition formula for the Jacobi functions given by M. Flensted-J ensen and T. H. Koornwinder in [8], we shall prove the nonnegativity of the kernel $b_{\alpha, \beta, \gamma, \delta}\left(\lambda_{0}, \lambda\right)$ given by formula (2.3) for $\lambda_{0}, \lambda \in \mathbb{R}$. Before establishing this property we shall recall some results related to the Jacobi functions (see [2, 8]).

The associated J acobi function $\varphi_{\lambda, k, l}^{(\alpha, \beta)}$ is defined by

$$
\begin{align*}
& \varphi_{\lambda, k, l}^{(\alpha, \beta)}(t)=(\operatorname{sh} t)^{k+l}(\operatorname{ch} t)^{k+l} \varphi_{\lambda}^{(\alpha+k+l, \beta+k-l)}, \\
& \text { for } k, l \in \mathbb{Z}, k \geq l \geq 0 . \tag{2.4}
\end{align*}
$$

We denote for $n, m \in \mathbb{Z}, n \geq m \geq 0$,

$$
\Pi_{n, m}^{(\alpha, \beta)}=\frac{\begin{array}{c}
(2 n-2 m+2 \beta+1)(n+m+\alpha+\beta+3 / 2) \\
\times(\alpha+1)_{m}(2 \beta+2)_{n-m}(\alpha+\beta+5 / 2)_{n} \tag{2.5}
\end{array}}{(n-m+2 \beta+1)(m+\alpha+\beta+3 / 2)}
$$

and

$$
\begin{equation*}
R_{n, m}^{(\alpha, \beta)}(x, y)=R_{m}^{(\alpha, \beta+n-m+1 / 2)}(2 y-1) y^{(n-m) / 2} R_{n-m}^{(\beta, \beta)}\left(y^{-1 / 2} x\right), \tag{2.6}
\end{equation*}
$$

where $R_{n}^{(\alpha, \beta)}$ is the Jacobi polynomial such that $R_{n}^{(\alpha, \beta)}(1)=1$.
We have the following addition formula (see [8]).
Theorem 2.1. Let $\alpha>\beta>-1 / 2$. For $x, y \in \mathbb{R}, \lambda \in \mathbb{C}, r \in[0,1]$, $\psi \in[0, \pi]$, we have

$$
\begin{align*}
\varphi_{\lambda}^{(\alpha, \beta)} & (\Lambda(-x, y, r, \psi)) \\
= & \sum_{k=0}^{\infty} \sum_{l=0}^{k} \gamma_{k, l}^{(\alpha, \beta)}(\lambda) \varphi_{\lambda, k, l}^{(\alpha, \beta)}(x) \varphi_{\lambda, k, l}^{(\alpha, \beta)}(y) \Pi_{k, l}^{(\alpha-\beta-1, \beta-1 / 2)} \\
& \quad \times R_{k, l}^{(\alpha-\beta-1, \beta-1 / 2)}\left(r \cos \psi, r^{2}\right) . \tag{2.7}
\end{align*}
$$

The function $\Lambda(-x, y, r, \psi)$ is given by the relation (1.23) and

$$
\gamma_{k, l}^{(\alpha, \beta)}(\lambda)=\frac{\begin{array}{l}
((1 / 2)(\alpha+\beta+1+i \lambda))_{k}((1 / 2)(\alpha+\beta+1-i \lambda))_{k} \\
\times((1 / 2)(\alpha-\beta+1+i \lambda))_{l}((1 / 2)(\alpha-\beta+1-i \lambda))_{l}
\end{array}}{\left[(\alpha+1)_{k+l}\right]^{2}} .
$$

The series converge absolutely and uniformly for (x, y, r, ψ) in all compact subsets of $\mathbb{R}^{2} \times[0,1] \times[0, \pi]$.

Remarks. (i) From the relation $\varphi_{\lambda}^{(\alpha,-1 / 2)}(2 x)=\varphi_{2 \lambda}^{(\alpha, \alpha)}(x)$ we deduce that for $\alpha=\beta>-1 / 2$ or $\alpha>\beta=-1 / 2$, Theorem 2.1 still holds, but it degenerates to a single series.
(ii) Let $\lambda \in \mathbb{C}, \alpha \geq \beta>-1 / 2$, or $\alpha>\beta=-1 / 2$. Then $\gamma_{k, l}^{(\alpha, \beta)}(\lambda)$ ≥ 0, for all k, l, if and only if $\lambda \in \mathbb{R} \cup i\left(\left[-s_{0}, s_{0}\right] \cup\{ \pm \rho\}\right)$, where $s_{0}=$ $\min (\alpha+\beta+1, \alpha-\beta+1)$.

Lemma 2.1. Let $F \in L^{p}\left(\left[0,+\infty\left[, d \mu_{\gamma, \delta}\right), 1 \leq p<2\right.\right.$. Then $\mathrm{F}_{\gamma, \delta}(F)(\lambda)$ ≥ 0 for all $\lambda \in\left[0,+\infty\left[\right.\right.$ if and only if for all $g \in D_{*}(\mathbb{R})$,

$$
\begin{equation*}
\int_{0}^{\infty} F * g(t) \bar{g}(t) d \mu_{\gamma, \delta}(t) \geq 0 \tag{2.8}
\end{equation*}
$$

Here $*$ denotes the convolution associated with the Jacobi operator $\Delta_{\gamma, \delta}$.
(See [8, p. 147].)
Lemma 2.2. Let $\alpha>\beta>-1 / 2, \gamma>\delta>-1 / 2$. Then for all $k, l \in \mathbb{Z}$, $k \geq l \geq 0$, we have
$a_{k, l, \alpha, \beta, \gamma, \delta}=(-1)^{k-l} \int_{0}^{1} \int_{0}^{\pi} R_{k, l}^{(\alpha-\beta-1, \beta-1 / 2)}\left(r \cos \psi, r^{2}\right) d \tilde{m}_{\gamma, \delta}(r, \psi) \geq 0$,
where $d \tilde{m}_{\gamma, \delta}$ is defined as in (1.24).
Proof. From [1, 12], the integral $\int_{0}^{1} \int_{0}^{\Pi} R_{k, l}^{(\alpha-\beta-1, \beta-1 / 2)}\left(r \cos \psi, r^{2}\right)$ $d \tilde{m}_{\gamma, \delta}(r, \psi)$ is zero if $(k-l)$ is odd and has the same sign as ($\beta-$ $\delta)_{(1 / 2)(k-l)}$ if $(k-l)$ is even.

Theorem 2.2. Let $\alpha>\beta>-1 / 2, \gamma>\delta>-1 / 2$, and $\gamma+\delta<\alpha+$ β. Then for all $\lambda_{0}, \lambda \in \mathbb{R}$, the kernel $b_{\alpha, \beta, \gamma, \delta}$ is nonnegative.

Proof. From the relation (2.3), we have for all $\lambda_{0}, \lambda \in \mathbb{R}$

$$
b_{\alpha, \beta, \gamma, \delta}\left(\lambda_{0}, \lambda\right)=F_{\gamma, \delta}\left(\varphi_{\lambda_{0}}^{(\alpha, \beta)}\right)(\lambda) .
$$

In view of Proposition 2.1 and Lemma 2.1, we have to prove that

$$
\forall \lambda_{0} \in \mathbb{R}, \quad \int_{0}^{\infty}\left(\varphi_{\lambda_{0}}^{(\alpha, \beta)} * g\right)(t) \bar{g}(t) d \mu_{\gamma, \delta}(t) \geq 0,
$$

for all $g \in \mathrm{D}_{*}(\mathbb{R})$.
We write

$$
\begin{aligned}
& \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} g\left(t_{1}\right) \overline{g\left(t_{2}\right)} \varphi_{\lambda_{0}}^{(\alpha, \beta)}\left(t_{3}\right) W_{\alpha, \beta}\left(t_{1}, t_{2}, t_{3}\right) d \mu_{\gamma, \delta}\left(t_{1}\right) \\
& \quad \times d \mu_{\gamma, \delta}\left(t_{2}\right) d \mu_{\gamma, \delta}\left(t_{3}\right)
\end{aligned}
$$

U sing (1.22), we deduce that

$$
\begin{aligned}
& \int_{0}^{\infty} \varphi_{\lambda_{0}}^{(\alpha, \beta)}\left(t_{3}\right) W_{\alpha, \beta}\left(t_{1}, t_{2}, t_{3}\right) d \mu_{\gamma, \delta}\left(t_{3}\right) \\
& \quad=\int_{0}^{1} \int_{0}^{\Pi} \varphi_{\lambda_{0}}^{(\alpha, \beta)}\left(\Lambda\left(t_{1}, t_{2}, r, \psi\right)\right) d \tilde{m}_{\gamma, \delta}(r, \psi) .
\end{aligned}
$$

Now by applying the addition formula (2.7) we find that

$$
\begin{aligned}
\int_{0}^{1} \int_{0}^{\Pi} & \varphi_{\lambda_{0}}^{(\alpha, \beta)}\left(\Lambda\left(t_{1}, t_{2}, r, \psi\right)\right) d \tilde{m}_{\gamma, \delta}(r, \psi) \\
= & \sum_{k=0}^{\infty} \sum_{l=0}^{k} \gamma_{k, l}^{(\alpha, \beta)}\left(\lambda_{0}\right) \varphi_{\lambda_{0}, k, l}^{(\alpha, \beta)}\left(t_{1}\right) \varphi_{\lambda_{0}, k, l}^{(\alpha, \beta)}\left(t_{2}\right) \\
& \quad \times \Pi_{k, l}^{(\alpha-\beta-1, \beta-1 / 2)}(-1)^{k-l} \\
& \quad \times \int_{0}^{1} \int_{0}^{\Pi} R_{k, l}^{(\alpha-\beta, \beta-1 / 2)}\left(r \cos \psi, r^{2}\right) d \tilde{m}_{\gamma, \delta}(r, \psi)
\end{aligned}
$$

Consequently, we deduce that

$$
\begin{aligned}
\int_{0}^{\infty} \varphi_{\lambda_{0}}^{(\alpha, \beta)} & * g(t) \bar{g}(t) d \mu_{\gamma, \delta}(t) \\
= & \int_{0}^{\infty} \int_{0}^{\infty} g\left(t_{1}\right) \overline{g\left(t_{2}\right)} \sum_{k=0}^{\infty} \sum_{l=0}^{k} \gamma_{k, l}^{(\alpha, \beta)}\left(\lambda_{0}\right) \varphi_{\lambda_{0}, k, l}^{(\alpha, \beta)}\left(t_{1}\right) \varphi_{\lambda_{0}, k, l}^{(\alpha, \beta)}\left(t_{2}\right) \\
& \times \Pi_{k, l}^{(\alpha-\beta-1, \beta-1 / 2)} a_{k, l, \alpha, \beta, \gamma, \delta} d \mu_{\gamma, \delta}\left(t_{1}\right) d \mu_{\gamma, \delta}\left(t_{2}\right) \\
= & \sum_{k=0}^{\infty} \sum_{l=0}^{k} \gamma_{k, l}^{(\alpha, \beta)}\left(\lambda_{0}\right) \Pi_{k, l}^{(\alpha-\beta-1, \beta-1 / 2)} a_{k, l, \alpha, \beta, \gamma, \delta} \\
& \times\left|\int_{0}^{\infty} g(t) \varphi_{\lambda_{0}, k, l}^{(\alpha, \beta)}(t) d \mu_{\gamma, \delta}(t)\right|^{2} .
\end{aligned}
$$

By Lemma 2.2 and the fact that $\gamma_{k, i}^{(\alpha, \beta)}\left(\lambda_{0}\right) \geq 0$ for all $\lambda_{0} \in \mathbb{R}$, we deduce that

$$
\begin{equation*}
\forall \lambda_{0} \in \mathbb{R}, \quad \int_{0}^{\infty} \varphi_{\lambda_{0}}^{(\alpha, \beta)} * g(t) \bar{g}(t) d \mu_{\gamma, \delta}(t) \geq 0 \tag{2.10}
\end{equation*}
$$

for all $g \in D_{*}(\mathbb{R})$ and we obtain that $b_{\alpha, \beta, \gamma, \delta}\left(\lambda_{0}, \lambda\right)$ is nonnegative for all $\lambda_{0}, \lambda \in \mathbb{R}$.

Lemma 2.3. Let $F \in L^{p}\left(\left[0,+\infty\left[, d \mu_{\alpha, \beta}\right), p \in[1,2[\right.\right.$, such that F is essentially bounded in some neighbourhood of 0 and $\mathrm{F}_{\alpha, \beta}(F) \geq 0$. Then $\mathrm{F}_{\alpha, \beta}(F) \in L^{1}\left(\left[0,+\infty\left[, d \nu_{\alpha, \beta}\right)\right.\right.$ and we have

$$
F(t)=\int_{0}^{\infty} F_{\alpha, \beta}(F)(\lambda) \varphi_{\lambda}^{(\alpha, \beta)}(t) d \nu_{\alpha, \beta}(\lambda),
$$

almost everywhere on $[0,+\infty$.
(See [8, pp. 147-148].)

Proposition 2.3. Let $\alpha>\beta>-1 / 2, \gamma>\delta>-1 / 2$, and $\gamma+\delta<$ $\alpha+\beta$. Then we have

$$
\begin{equation*}
\forall \lambda_{0} \in \mathbb{R}, \forall t \geq 0, \quad \varphi_{\lambda_{0}}^{(\alpha, \beta)}(t)=\int_{0}^{\infty} b_{\alpha, \beta, \gamma, \delta}\left(\lambda_{0}, \lambda\right) \varphi_{\lambda}^{(\gamma, \delta)}(t) d \nu_{\gamma, \delta}(\lambda) \tag{2.11}
\end{equation*}
$$

Proof. The result is a consequence of Theorem 2.2 and Lemma 2.3.
Proposition 2.4. Let $\alpha>\beta>-1 / 2$. Then for all $\lambda_{0}, \lambda \in \mathbb{R}$, we have

$$
\begin{equation*}
\lim _{(\gamma, \delta) \rightarrow(-1 / 2,-1 / 2)} b_{\alpha, \beta, \gamma, \delta}\left(\lambda_{0}, \lambda\right)=(2 \pi)^{-1 / 2} \int_{0}^{\infty} \varphi_{\lambda_{0}}^{(\alpha, \beta)}(t) \cos \lambda t d t . \tag{2.12}
\end{equation*}
$$

Proof. For all $\lambda_{0}, \lambda \in \mathbb{R}$, we have

$$
\begin{aligned}
b_{\alpha, \beta, \gamma, \delta}\left(\lambda_{0}, \lambda\right)= & (2 \pi)^{-1 / 2} 2^{2(\gamma+\delta+1)} \\
& \times \int_{0}^{\infty} \varphi_{\lambda_{0}}^{(\alpha, \beta)}(t) \varphi_{\lambda}^{(\gamma, \delta)}(t)(\operatorname{sh} t)^{2 \gamma+1}(\operatorname{ch~} t)^{2 \delta+1} d t .
\end{aligned}
$$

If we impose that $-1 / 2 \leq \delta \leq \gamma$ and $\gamma+\delta+1<(1 / 2)(\alpha+\beta+1)$, we deduce that there exists a constant $k>0$ such that for all $t \geq 0$

$$
\left|\varphi_{\lambda_{0}}^{(\alpha, \beta)}(t) \varphi_{\lambda}^{(\gamma, \delta)}(t)(\operatorname{sh} t)^{2 \gamma+1}(\operatorname{ch} t)^{2 \delta+1}\right| \leq k^{2}(1+t)^{2} e^{-(1 / 2)(\alpha+\beta+1) t} .
$$

Now by applying the dominated convergence theorem we deduce the result.

Remark. We recall that the Fourier-cosine F_{0} is defined for an even and integrable function f on \mathbb{R} (with respect to the Lebesgue measure) by

$$
\forall \lambda \in \mathbb{R}, \quad \mathrm{F}_{0}(f)(\lambda)=\int_{0}^{\infty} f(t) \cos \lambda t d t .
$$

Its inverse $\mathrm{F}_{0}{ }^{-1}$ is given for a regular function h by

$$
\forall t \geq 0, \quad \mathrm{~F}_{0}^{-1}(h)(t)=\frac{2}{\pi} \int_{0}^{\infty} h(\lambda) \cos \lambda t d \lambda .
$$

Hence we see that

$$
\lim _{(\gamma, \delta) \rightarrow(-1 / 2,-1 / 2)} b_{\alpha, \beta, \gamma, \delta}\left(\lambda_{0}, \lambda\right)=(2 \pi)^{-1 / 2} F_{0}\left(\varphi_{\lambda_{0}}^{(\alpha, \beta)}\right)(\lambda) .
$$

Theorem 2.3. Let $\alpha \geq \beta \geq-1 / 2,(\alpha, \beta) \neq(-1 / 2,-1 / 2)$. Then the function $\varphi_{\lambda_{0}}^{(\alpha, \beta)}(t)$ possesses the following dual Mehler representation

$$
\begin{equation*}
\forall t \geq 0, \forall \lambda_{0} \in \mathbb{R}, \quad \varphi_{\lambda_{0}}^{(\alpha, \beta)}(t)=\frac{2}{\pi} \int_{0}^{\infty} b_{\alpha, \beta}\left(\lambda_{0}, \lambda\right) \cos \lambda t d \lambda, \tag{2.13}
\end{equation*}
$$

where $b_{\alpha, \beta}\left(\lambda_{0}, \lambda\right)$ is a nonnegative kernel.
Proof. (i) Let $\alpha>\beta>-1 / 2$, and $\lambda_{0} \in \mathbb{R}$. We put for all $\lambda \in \mathbb{R}$

$$
\begin{equation*}
b_{\alpha, \beta}\left(\lambda_{0}, \lambda\right)=F_{0}\left(\varphi_{\lambda_{0}}^{(\alpha, \beta)}\right)(\lambda) . \tag{2.14}
\end{equation*}
$$

By using the nonnegativity of the function $\lambda \rightarrow b_{\alpha, \beta}\left(\lambda_{0}, \lambda\right)$ and Corollary 1.26 of [14], we deduce from the inversion formula of the Fourier-cosine transform F_{0} that

$$
\varphi_{\lambda_{0}}^{(\alpha, \beta)}(t)=\frac{2}{\pi} \int_{0}^{\infty} b_{\alpha, \beta}\left(\lambda_{0}, \lambda\right) \cos \lambda t d \lambda
$$

(ii) For $\beta=-1 / 2$, we proceed in the same way as in (i).
(iii) For $\alpha=\beta>-1 / 2$, the result is deduced from the relation $\varphi_{\lambda}^{(\alpha,-1 / 2)}(2 t)=\varphi_{2 \lambda}^{(\alpha, \alpha)}(t)$.

Example. For $\alpha=1 / 2$ and $\beta=-1 / 2$, a computation gives the kernel $b_{1 / 2,-1 / 2}\left(\lambda_{0}, \lambda\right)$. We have

$$
\begin{aligned}
\forall \lambda_{0}, \lambda & \in \mathbb{R}, \quad b_{1 / 2,-1 / 2}\left(\lambda_{0}, \lambda\right) \\
& =\frac{\pi \operatorname{sh} \pi \lambda_{0}}{2 \lambda_{0}}\left[\frac{\operatorname{ch} \pi \lambda+\operatorname{ch} \pi \lambda_{0}}{\left(\operatorname{ch} \pi\left(\lambda_{0}+\lambda\right)+1\right)\left(\operatorname{ch~} \pi\left(\lambda_{0}-\lambda\right)+1\right)}\right] .
\end{aligned}
$$

Remark. There is a striking contrast between the kernel $K_{\alpha, \beta}(t, u)$ given in (1.10) defining the M ehler representation of $\varphi_{\lambda}^{(\alpha, \beta)}(t)$ with respect to the variable t and the kernel $b_{\alpha, \beta}\left(\lambda_{0}, \lambda\right)$ defining the dual M ehler representation of $\varphi_{\lambda_{0}}^{(\alpha, \beta)}(t)$ with respect to the argument λ. In particular the function $\lambda \rightarrow b_{\alpha, \beta}\left(\lambda_{0}, \lambda\right)$ has no compact support in contrast with the function $u \rightarrow K_{\alpha, \beta}(t, u)$.

In the following we shall give the main properties of the kernel $b_{\alpha, \beta}$.
Properties of the Kernel $b_{\alpha, \beta}$
Theorem 2.4. The kernel $b_{\alpha, \beta}$ satisfies the following properties.
(i) For all $\lambda_{0}, \lambda \in \mathbb{R}, b_{\alpha, \beta}$ is nonnegative and we have

$$
\frac{2}{\pi} \int_{0}^{\infty} b_{\alpha, \beta}\left(\lambda_{0}, \lambda\right) d \lambda=1
$$

(ii) The kernel $b_{\alpha, \beta}\left(\lambda_{0}, \lambda\right)$ can be extended to an even analytic function on the set $\left\{\left(\lambda_{0}, \lambda\right) \in \mathbb{C}^{2} /\left\|m \lambda_{0}|+\| m \lambda|<\rho\right\}\right.$.
(iii) For all $\lambda \in \mathbb{R}$, the function $\lambda_{0} \rightarrow b_{\alpha, \beta}\left(\lambda_{0}, \lambda\right)$ is even and analytic on the strip $\left\{\lambda_{0} \in \mathbb{C} / \| m \lambda_{0} \mid<\rho\right\}$.
(iv) There exists a constant $c>0$, such that for all $\lambda \in \mathbb{C}$ and $\lambda_{0} \in \mathbb{C}$, $\left|\left|m \lambda_{0}\right|+||m \lambda|<\rho\right.$, we have

$$
\left|b_{\alpha, \beta}\left(\lambda_{0}, \lambda\right)\right| \leq c\left(\frac{1}{\rho-\| \mathrm{m} \lambda_{0} \mid}+\frac{1}{\left(\rho-\| \mathrm{m} \lambda_{0}\right)^{2}}\right) .
$$

(v) For all $\lambda_{0} \in \mathbb{C}, \| m \lambda_{0} \mid<\rho$, the function $\lambda \rightarrow b_{\alpha, \beta}\left(\lambda_{0}, \lambda\right)$ is in $S_{*}(\mathbb{R})$.

Proof. (i) The nonnegativity of $b_{\alpha, \beta}$ is already shown. On the other hand we have

$$
\frac{2}{\pi} \int_{0}^{\infty} b_{\alpha, \beta}\left(\lambda_{0}, \lambda\right) d \lambda=\varphi_{\lambda_{0}}^{(\alpha, \beta)}(0)=1
$$

(ii) We have

$$
\forall \lambda, \lambda_{0} \in \mathbb{R}, \quad b_{\alpha, \beta}\left(\lambda_{0}, \lambda\right)=\int_{0}^{\infty} \varphi_{\lambda_{0}}^{(\alpha, \beta)}(t) \cos \lambda t d t
$$

By using (1.6), there exists $k_{0}>0$ such that

$$
\forall \lambda, \lambda_{0} \in \mathbb{C}, \forall t \geq 0, \quad\left|\varphi_{\lambda_{0}}^{(\alpha, \beta)}(t) \cos \lambda t\right| \leq k_{0}(1+t) e^{\left(\| m \lambda_{0}|+||m \lambda|-\rho) t\right.} .
$$

Hence we deduce that $b_{\alpha, \beta}$ is well defined on the set $\left\{\left(\lambda_{0}, \lambda\right) \in\right.$ $\mathbb{C}^{2} /\left|\left|m \lambda_{0}\right|+||m \lambda|<\rho\}\right.$ and it is analytic on this set.
(iii) It is a consequence of (ii).
(iv) Using (1.6) we obtain for all $\lambda_{0} \in \mathbb{C}, \| m \lambda_{0} \mid<\rho$, and $\lambda \in \mathbb{R}$

$$
\left|b_{\alpha, \beta}\left(\lambda_{0}, \lambda\right)\right| \leq \int_{0}^{\infty}\left|\varphi_{\lambda_{0}}^{(\alpha, \beta)}(t) \cos \lambda t\right| d t \leq k_{0} \int_{0}^{\infty}(1+t) e^{\left(\left|\left|m \lambda_{0}\right|-\rho\right) t\right.} d t
$$

and integration by parts gives the result.
(v) Let $\lambda_{0} \in \mathbb{C}, \| m \lambda_{0} \mid<\rho$, and $\lambda \in \mathbb{R}$. We have for all $n, m \in \mathbb{N}$

$$
\begin{aligned}
\lambda^{2 m} \frac{d^{2 n}}{d \lambda^{2 n}} b_{\alpha, \beta}\left(\lambda_{0}, \lambda\right) & =(-1)^{n} \int_{0}^{\infty} t^{2 n} \varphi_{\lambda_{0}}^{(\alpha, \beta)}(t) \lambda^{2 m} \cos \lambda t d t \\
& =(-1)^{n+m} \int_{0}^{\infty} t^{2 n} \varphi_{\lambda_{0}}^{(\alpha, \beta)}(t)\left(\frac{d^{2 m}}{d t^{2 m}} \cos \lambda t\right) d t
\end{aligned}
$$

By integration by parts we obtain

$$
\lambda^{2 m} \frac{d^{2 n}}{d \lambda^{2 n}} b_{\alpha, \beta}\left(\lambda_{0}, \lambda\right)=(-1)^{n+m} \int_{0}^{\infty} \frac{d^{2 m}}{d t^{2 m}}\left(t^{2 n} \varphi_{\lambda_{0}}^{(\alpha, \beta)}(t)\right) \cos \lambda t d t .
$$

Taking into account the relation (1.6) we conclude that the function $\lambda \rightarrow b_{\alpha, \beta}\left(\lambda_{0}, \lambda\right)$ is in $S_{*}(\mathbb{R})$.

3. DUAL MEHLER TRANSFORMS ASSOCIATED WITH THE JACOBI FUNCTIONS

In this section, using the dual M ehler representation of the functions $\varphi_{\lambda}^{(\alpha, \beta)}(t)$ given in Theorem 2.3, we shall define integral transforms with the kernel $b_{\alpha, \beta}$ which we call the dual M ehler transform and its transposed. Next we give some properties of these transforms.
Notations. We denote by

- $C_{*}^{\infty}(\mathbb{R})$ the space of even C^{∞}-functions on \mathbb{R}.
- $C_{*, b}(\mathbb{R})$ the space of even, continuous, and bounded functions on \mathbb{R}.
- For $f \in C_{*, b}(\mathbb{R}),\|f\|_{\infty}=\sup _{x \in \mathbb{R}}|f(x)|$.

Definition 3.1. The dual M ehler transform denoted by $\chi_{\alpha, \beta}$ is defined by

$$
\begin{equation*}
\forall \lambda_{0} \in \mathbb{R}, \quad \chi_{\alpha, \beta}(f)\left(\lambda_{0}\right)=\frac{2}{\pi} \int_{0}^{\infty} b_{\alpha, \beta}\left(\lambda_{0}, \lambda\right) f(\lambda) d \lambda, \tag{3.1}
\end{equation*}
$$

where $b_{\alpha, \beta}$ is the kernel given by the formula (2.14).
Remark. We have for all $\lambda_{0} \in \mathbb{R}$ and $t \geq 0$,

$$
\begin{equation*}
\varphi_{\lambda_{0}}^{(\alpha, \beta)}(t)=\chi_{\alpha, \beta}(\cos (. t))\left(\lambda_{0}\right) . \tag{3.2}
\end{equation*}
$$

Proposition 3.1. (i) For $f \in C_{*, b}(\mathbb{R}), \quad \chi_{\alpha, \beta}(f) \in C_{*, b}(\mathbb{R})$ and we have $\left\|\chi_{\alpha, \beta}(f)\right\|_{\infty} \leq\|f\|_{\infty}$.
(ii) If $f \in L^{1}([0,+\infty[, d \lambda)$ (the space of integrable functions on $[0,+\infty[$ with respect to the Lebesgue measure $d \lambda$), then the function $\lambda_{0} \rightarrow \chi_{\alpha, \beta}(f)\left(\lambda_{0}\right)$ is well defined on the strip $\| \mathrm{m} \lambda_{0} \mid<\rho$ and it is analytic on this strip.
Proof. These results are deduced easily from the properties of the kernel $b_{\alpha, \beta}$.

Definition 3.2. The transposed of $\chi_{\alpha, \beta}$ denoted by ${ }^{t} \chi_{\alpha, \beta}$ is defined for $g \in L^{1}\left(\left[0,+\infty\left[, d \nu_{\alpha, \beta}\right)\right.\right.$ by

$$
\begin{equation*}
\forall \lambda \in \mathbb{R}, \quad{ }^{t} \chi_{\alpha, \beta}(g)(\lambda)=\int_{0}^{\infty} b_{\alpha, \beta}\left(\lambda_{0}, \lambda\right) g\left(\lambda_{0}\right) d \nu_{\alpha, \beta}\left(\lambda_{0}\right) . \tag{3.3}
\end{equation*}
$$

From the analyticity of the kernel $b_{\alpha, \beta}$ we deduce the following result.
Proposition 3.2. For $g \in L^{1}\left(\left[0,+\infty\left[, d \nu_{\alpha, \beta}\right)\right.\right.$, the function ${ }^{t} \chi_{\alpha, \beta}(g)$ is analytic on the strip $||m \lambda|<\rho$.

Proposition 3.3. For $f \in L^{1}\left(\left[0,+\infty[, d \lambda)\right.\right.$ and $g \in L^{1}\left(\left[0,+\infty\left[, d \nu_{\alpha, \beta}\right)\right.\right.$, we have the following duality relation

$$
\begin{equation*}
\int_{0}^{\infty} \chi_{\alpha, \beta}(f)\left(\lambda_{0}\right) g\left(\lambda_{0}\right) d \nu_{\alpha, \beta}\left(\lambda_{0}\right)=\frac{2}{\pi} \int_{0}^{\infty} f(\lambda)^{t} \chi_{\alpha, \beta}(g)(\lambda) d \lambda . \tag{3.4}
\end{equation*}
$$

Proof. The relation (3.4) is obtained by using Definitions 3.1 and 3.2 and Fubini's theorem.

Proposition 3.4. Forg in $S_{*}(\mathbb{R})$, the function ${ }^{t} \chi_{\alpha, \beta}(g)$ belongs to $S_{*}(\mathbb{R})$.
Proof. Let $g \in S_{*}(\mathbb{R})$. We have

$$
\forall \lambda \in \mathbb{R}, \quad \chi_{\alpha, \beta}(g)(\lambda)=\int_{0}^{\infty} b_{\alpha, \beta}\left(\lambda_{0}, \lambda\right) g\left(\lambda_{0}\right) d \nu_{\alpha, \beta}\left(\lambda_{0}\right) .
$$

It is clear that the function ${ }^{t} \chi_{\alpha, \beta}(g) \in C_{*}^{\infty}(\mathbb{R})$.
For all $n \in \mathbb{N}$, we have

$$
\forall \lambda \in \mathbb{R}, \quad \lambda^{2 n t} \chi_{\alpha, \beta}(g)(\lambda)=\int_{0}^{\infty} \lambda^{2 n} b_{\alpha, \beta}\left(\lambda_{0}, \lambda\right) g\left(\lambda_{0}\right) d \nu_{\alpha, \beta}\left(\lambda_{0}\right) .
$$

Now by using the expression of $b_{\alpha, \beta}$, the relation (1.6), and the last formula of the proof of Theorem 2.4, we deduce that there exists $C_{n}>0$, such that

$$
\forall \lambda, \lambda_{0} \in \mathbb{R}, \quad\left|\lambda^{2 n} b_{\alpha, \beta}\left(\lambda_{0}, \lambda\right)\right| \leq C_{n}\left(1+\left|\lambda_{0}\right|\right)^{2 n} .
$$

Since $g \in S_{*}(\mathbb{R})$ and the measure $\nu_{\alpha_{i} \beta}$ is tempered we deduce that $\lambda^{2 n t} \chi_{\alpha, \beta}(g)(\lambda)$ is bounded. We proceed in the same way to prove that for all $n, m \in \mathbb{N}$, the function

$$
\lambda \rightarrow \lambda^{2 n} \frac{d^{2 m}}{d \lambda^{2 m}}{ }^{t} \chi_{\alpha, \beta}(g)(\lambda)
$$

is bounded.

Corollary 3.1. For all $g \in S_{*}(\mathbb{R})$, we have the formula

$$
\begin{equation*}
\mathrm{F}_{\alpha, \beta}^{-1}(g)=\mathrm{F}_{0}^{-1} \circ^{\mathrm{t}} \chi_{\alpha, \beta}(g), \tag{3.5}
\end{equation*}
$$

where $\mathrm{F}_{\alpha, \beta}^{-1}$ denotes the inverse Fourier-Jacobi transform defined by (1.15) and F_{0} the Fourier-cosine transform.
Proof. In the same way as in Proposition 3.3, for $f \in C_{*, b}(\mathbb{R})$ and $g \in S_{*}(\mathbb{R})$ the duality relation (3.4) holds, that is,

$$
\int_{0}^{\infty} \chi_{\alpha, \beta}(f)\left(\lambda_{0}\right) g\left(\lambda_{0}\right) d \nu_{\alpha, \beta}\left(\lambda_{0}\right)=\frac{2}{\pi} \int_{0}^{\infty} f(\lambda)^{t} \chi_{\alpha, \beta}(g)(\lambda) d \lambda
$$

We apply this relation to the function $f(\lambda)=\cos \lambda u, u \geq 0$, and $g \in$ $S_{*}(\mathbb{R})$. So that we obtain

$$
\int_{0}^{\infty} \chi_{\alpha, \beta}(\cos (. u))\left(\lambda_{0}\right) g\left(\lambda_{0}\right) d \nu_{\alpha, \beta}\left(\lambda_{0}\right)=\frac{2}{\pi} \int_{0}^{\infty}(\cos \lambda u)^{t} \chi_{\alpha, \beta}(g)(\lambda) d \lambda
$$

We deduce

$$
\int_{0}^{\infty} \varphi_{\lambda_{0}}^{(\alpha, \beta)}(u) g\left(\lambda_{0}\right) d \nu_{\alpha, \beta}(\lambda)=\frac{2}{\pi} \int_{0}^{\infty} t^{t} \chi_{\alpha, \beta}(g)(\lambda) \cos \lambda u d \lambda,
$$

which gives the relation (3.5).
Lemma 3.1. The Fourier-cosine transform F_{0} is a topological isomorphism from $S_{*}^{r}(\mathbb{R})$ onto $H_{*}^{2 r /(r+2)}, 0<r \leq 2$.

Proof. Let f be in $S_{*}^{r}(\mathbb{R})$. There exists g in $S_{*}(\mathbb{R})$ such that $f(t)=$ (ch $t)^{-2 \rho / r} g(t)$. Then we have

$$
\mathrm{F}_{0}(f)(\lambda)=\int_{0}^{\infty} g(t)(\mathrm{ch} t)^{-2 \rho / r} \cos \lambda t d t
$$

So we deduce that the function $\lambda \rightarrow \mathrm{F}_{0}(f)(\lambda)$ is even, holomorphic in the strip $\left||m \lambda|<(2 / r) \rho\right.$, and C^{∞} in the closed strip $\left.\| \mathrm{m} \lambda\right| \leq(2 / r) \rho$.

M oreover, for all $n, m \in \mathbb{N}$, there exists a positive constant $k_{n, m}$ such that for all $\lambda \in D_{2 r /(r+2)}$, we have

$$
\begin{aligned}
\mid(1+ & \left.\lambda^{n}\right) \left.\frac{d^{m}}{d \lambda^{m}} \mathrm{~F}_{0}(f)(\lambda) \right\rvert\, \\
\leq & k_{n, m} \sum_{j=0}^{n} \int_{0}^{+\infty}\left((1+t)^{m+2} f^{(j)}(t)(\mathrm{ch} t)^{2 \rho / r}\right)(\mathrm{ch} t)^{-2 \rho / r} \\
& \times e^{(2 \rho / r) t}(1+t)^{-2} d t \\
\leq & 2^{\rho} k_{n, m} \sum_{j=0}^{n} N_{j, m+2}(f)
\end{aligned}
$$

where

$$
N_{j, m}(f)=\sup _{t \geq 0}(1+t)^{m}(\operatorname{ch} t)^{2 \rho / r}\left|f^{(j)}(t)\right|
$$

($N_{j, m}$ are the semi-norms on $S_{*}^{r}(\mathbb{R})$).
Thus

$$
P_{n, m}\left(\mathrm{~F}_{0}(f)\right) \leq 2^{\rho} k_{n, m} \sum_{j=0}^{n} N_{j, m+2}(f),
$$

where $P_{n, m}$ are the semi-norms defined in Subsection 1.1.
H ence $\mathrm{F}_{0}\left(S_{*}^{r}(\mathbb{R})\right.$) is included continuously in $H_{*}^{2 r /(r+2)}$.
Now let $h \in H_{*}^{2 r /(r+2)}$. We have

$$
\begin{aligned}
\mathrm{F}_{0}^{-1}(h)(t) & =\frac{2}{\pi} \int_{0}^{\infty} h(\lambda) \cos \lambda t d \lambda \\
& =\frac{1}{\pi} \int_{-\infty}^{+\infty} h(\lambda) e^{i \lambda t} d \lambda .
\end{aligned}
$$

By using the Cauchy integral theorem, we obtain

$$
\mathrm{F}_{0}^{-1}(h)(t)=\frac{e^{-(2 / r) \rho t}}{\pi} \int_{-\infty}^{+\infty} h\left(\sigma+i \frac{2}{r} \rho\right) e^{i \sigma t} d \sigma .
$$

Thus we obtain that $\mathrm{F}_{0}{ }^{-1}(h) \in S_{*}^{r}(\mathbb{R})$.
W e conclude by observing that $S_{*}^{r}(\mathbb{R})$ and $H_{*}^{2 r /(r+2)}$ are Fréchet spaces.
Theorem 3.1. For $0<r \leq 2$, the transform ${ }^{t} \chi_{\alpha, \beta}$ is a topological isomorphism from H_{*}^{r} onto $H_{*}^{2 r /(r+2)}$.

Proof. From Fubini's theorem and Theorem 2.3, we have for all f in H_{*}^{r} and $\lambda_{0} \in D_{r}$

$$
\begin{aligned}
\mathrm{F}_{0} \circ \mathrm{~F}_{\alpha, \beta}^{-1}(f)\left(\lambda_{0}\right) & =\int_{0}^{\infty}\left(\int_{0}^{\infty} f(\lambda) \varphi_{\lambda}^{(\alpha, \beta)}(t) d \nu_{\alpha, \beta}(\lambda)\right) \cos \lambda_{0} t d t \\
& =\int_{0}^{\infty}\left(\int_{0}^{\infty} \varphi_{\lambda}^{(\alpha, \beta)}(t) \cos \lambda_{0} t d t\right) f(\lambda) d \nu_{\alpha, \beta}(\lambda) \\
& =\int_{0}^{\infty} b_{\alpha, \beta}\left(\lambda, \lambda_{0}\right) f(\lambda) d \nu_{\alpha, \beta}(\lambda) \\
& ={ }^{t} \chi_{\alpha, \beta}(f)\left(\lambda_{0}\right) .
\end{aligned}
$$

Hence

$$
\begin{equation*}
{ }^{t} \chi_{\alpha, \beta}(f)=\mathrm{F}_{0} \circ \mathrm{~F}_{\alpha, \beta}^{-1}(f) . \tag{3.6}
\end{equation*}
$$

The result is obtained by using Theorem 1.1(ii) and the previous lemma.
Theorem 3.2. The transform $\chi_{\alpha, \beta}$ is defined on H_{*}^{1} and it is injective on this space.

Proof. Let $h \in H_{*}^{1}$. For $\lambda_{0} \in \mathbb{R}$ we have

$$
\chi_{\alpha, \beta}(h)\left(\lambda_{0}\right)=\int_{0}^{\infty} b_{\alpha, \beta}\left(\lambda_{0}, \lambda\right) h(\lambda) d \lambda .
$$

It is evident that $\chi_{\alpha, \beta}(h)$ is well defined.
By using the duality relation (3.4) we deduce that if $\chi_{\alpha, \beta}(h)=0$, then for all $g \in S_{*}(\mathbb{R})$,

$$
\int_{0}^{\infty} h(\lambda)^{t} \chi_{\alpha, \beta}(g)(\lambda) d \lambda=0 .
$$

From Theorem 3.1, for $g=\left({ }^{t} \chi_{\alpha, \beta}\right)^{-1}(h)$, we conclude that $h=0$.

4. PERMUTATION RELATIONS BETWEEN DIFFERENCE OPERATORS

It is well known that the Jacobi function $t \rightarrow \varphi_{\lambda}^{(\alpha, \beta)}(t)$ is an eigenfunction of the operator $\Delta_{\alpha, \beta}$. Also, it is well known that the M ehler representation of the Jacobi function $\varphi_{\lambda}^{(\alpha, \beta)}(t)$ with respect to the variable t permits us to define the A bel transform and its dual which are permutation operators between the differential operator $\Delta_{\alpha, \beta}$ given in (1.3) and $d^{2} / d t^{2}$ (see $[18,19]$. Natural questions arise: whether or not the Jacobi function $\varphi_{\lambda}^{(\alpha, \beta)}(t)$ is an eigenfunction of an operator with respect to the dual variable λ and whether or not the operators $\chi_{\alpha, \beta}$ and ${ }^{t} \chi_{\alpha, \beta}$ are permutation operators with some operators to define. In this section we shall give an answer to these questions. Especially we shall define a second order difference operator $P_{\alpha, \beta}$ such that the J acobi function $\varphi_{\lambda}^{(\alpha, \beta)}(t)$ is an eigenfunction of $P_{\alpha, \beta}$ corresponding to the eigenvalue $-\mathrm{ch} 2 t$. Next we shall define another second order difference operator Q such that $\chi_{\alpha, \beta}$ and ${ }^{t} \chi_{\alpha, \beta}$ are permutation operators between $P_{\alpha, \beta}$ and Q.

Proposition 4.1. For all $\lambda \in \mathbb{C}$ and $t \geq 0$, the Jacobi function $\varphi_{\lambda}^{(\alpha, \beta)}(t)$ satisfies the equation

$$
\begin{align*}
(i \lambda & +\rho)(i \lambda-1)\left[\frac{1}{2}(i \lambda-\rho)+\alpha+1\right] \varphi_{\lambda-2 i}^{(\alpha, \beta)}(t) \\
& +(i \lambda-\rho)(i \lambda+1)\left[\frac{1}{2}(i \lambda-\rho)+\beta\right] \varphi_{\lambda+2 i}^{(\alpha, \beta)}(t) \\
& -i \lambda\left(\alpha^{2}-\beta^{2}\right) \varphi_{\lambda}^{(\alpha, \beta)}(t)=-i \lambda\left(\lambda^{2}+1\right) \operatorname{ch} 2 t \varphi_{\lambda}^{(\alpha, \beta)}(t) \tag{4.1}
\end{align*}
$$

Proof. We have for all $\lambda \in \mathbb{C}$ and $t \geq 0$

$$
\varphi_{\lambda}^{(\alpha, \beta)}(t)=R_{1 / 2(i \lambda-\rho)}^{(\alpha, \beta)}(\operatorname{ch} 2 t),
$$

where

$$
R_{\mu}^{(\alpha, \beta)}(z)={ }_{2} F_{1}\left(-\mu, \mu+\rho ; \alpha+1, \frac{1}{2}(1-z)\right),
$$

${ }_{2} F_{1}$ is the Gauss hypergeometric function.
For $n \in \mathbb{Z}_{+}, R_{n}^{(\alpha, \beta)}(x)$ is the J acobi polynomial of degree n, normalized by $R_{n}^{(\alpha, \beta)}(1)=1$ (see [13]). It satisfies the following three-term recurrence formula (see [15, p. 71])

$$
\begin{aligned}
2(n+\rho) & (2 n+\rho-1)(n+\alpha+1) R_{n+1}^{(\alpha, \beta)}(x) \\
= & (2 n+\rho)\left[(2 n+\rho)^{2}-1\right] x R_{n}^{(\alpha, \beta)}(x) \\
& +\left(\alpha^{2}-\beta^{2}\right)(2 n+\rho) R_{n}^{(\alpha, \beta)}(x) \\
& -2 n(n+\beta)(2 n+\rho+1) R_{n-1}^{(\alpha, \beta)}(x) .
\end{aligned}
$$

U sing the Carlson Lemma (see [16, p. 186]), we obtain the relation (4.1) by analytic continuation in n.

Definition 4.1. For an even and continuous function f on \mathbb{C}, we define the second order difference operators $P_{\alpha, \beta}$ and Q by

$$
\begin{aligned}
& P_{\alpha, \beta}(f)(\lambda) \\
& =\left\{\begin{array}{l}
U_{\alpha, \beta}(\lambda) f(\lambda-2 i)+V_{\alpha, \beta}(\lambda) f(\lambda)+U_{\alpha, \beta}(-\lambda) f(\lambda+2 i), \\
\quad \text { if } \lambda \neq 0, \lambda \neq \pm i \\
\left(\alpha^{2}-\beta^{2}-1\right) f(2 i)-\left(\alpha^{2}-\beta^{2}\right) f(0), \\
\text { if } \lambda=0, \\
\frac{1}{4}\left(\alpha^{2}-\beta^{2}+4 \alpha\right) f(i)-\frac{1}{4}\left(\alpha^{2}-\beta^{2}+4 \alpha+4\right) f(3 i), \\
\text { if } \lambda= \pm i, \\
Q(f)(\lambda)=-\frac{1}{2}[f(\lambda+2 i)+f(\lambda-2 i)],
\end{array}\right.
\end{aligned}
$$

where

$$
\begin{aligned}
& U_{\alpha, \beta}(\lambda)=\frac{(i \lambda+\rho)(i \lambda+\alpha-\beta+1)}{2 \lambda(\lambda-i)} \text { and } \\
& \qquad V_{\alpha, \beta}(\lambda)=-\frac{\alpha^{2}-\beta^{2}}{\lambda^{2}+1} .
\end{aligned}
$$

Theorem 4.1. The function $\lambda \rightarrow \varphi_{\lambda}^{(\alpha, \beta)}(t)$ is an eigenfunction of the operator $P_{\alpha, \beta}$ corresponding to the eigenvalue $-\mathrm{ch} 2 t$, that is,

$$
\begin{equation*}
\forall \lambda \in \mathbb{C}, t \geq 0, \quad P_{\alpha, \beta}\left(\varphi_{\lambda}^{(\alpha, \beta)}(t)\right)=-(\operatorname{ch} 2 t) \varphi_{\lambda}^{(\alpha, \beta)}(t) \tag{4.2}
\end{equation*}
$$

Proof. It is a consequence of Proposition 4.1 and the definition of the operator $P_{\alpha, \beta}$.

Remark. For all g in $D_{*}(\mathbb{R})$, we have

$$
\begin{align*}
Q F_{0}(g) & =-F_{0}((\operatorname{ch} 2 t) g) \tag{4.3}\\
P_{\alpha, \beta}\left(F_{\alpha, \beta}(g)\right) & =-F_{\alpha, \beta}((\operatorname{ch} 2 t) g) . \tag{4.4}
\end{align*}
$$

Theorem 4.2. Let f be in $\mathbb{H}_{*}(\mathbb{C})$. We have the following permutation relations

$$
\begin{align*}
& P_{\alpha, \beta} \chi_{\alpha, \beta}(f)=\chi_{\alpha, \beta} Q(f), \tag{4.5}\\
& { }^{t} \chi_{\alpha, \beta} P_{\alpha, \beta}(f)=Q^{t} \chi_{\alpha, \beta}(f) . \tag{4.6}
\end{align*}
$$

Proof. Let f be in $\mathbb{H}_{*}(\mathbb{C})$. By the Paley-Wiener theorem for the Fourier-cosine transform F_{0} there exists $g \in \mathrm{D}_{*}(\mathbb{R})$ such that $f=\mathrm{F}_{0}(g)$. Then, from the relation (4.3) and Definition 3.1, we have for all $\lambda_{0} \in \mathbb{R}$

$$
\begin{aligned}
\chi_{\alpha, \beta} Q(f)\left(\lambda_{0}\right) & =\chi_{\alpha, \beta} Q\left(\mathrm{~F}_{0}(g)\right)\left(\lambda_{0}\right) \\
& =-\chi_{\alpha, \beta} \mathrm{F}_{0}((\operatorname{ch} 2 t) g)\left(\lambda_{0}\right) \\
& =-\frac{2}{\pi} \int_{0}^{\infty} b_{\alpha, \beta}\left(\lambda_{0}, \lambda\right) \mathrm{F}_{0}((\operatorname{ch} 2 t) g)(\lambda) d \lambda .
\end{aligned}
$$

By using Fubini's theorem, we obtain

$$
\chi_{\alpha, \beta} Q(f)\left(\lambda_{0}\right)=-\int_{0}^{\infty} \varphi_{\lambda_{0}}^{(\alpha, \beta)}(t) g(t) \operatorname{ch} 2 t d t .
$$

On the other hand, we have for all $\lambda_{0} \in \mathbb{R}$

$$
P_{\alpha, \beta} \chi_{\alpha, \beta}(f)\left(\lambda_{0}\right)=P_{\alpha, \beta} \chi_{\alpha, \beta}\left(\mathrm{F}_{0}(g)\right)\left(\lambda_{0}\right) .
$$

By using Fubini's theorem, we have for all $\lambda_{0} \in \mathbb{R}$

$$
\begin{aligned}
\chi_{\alpha, \beta} \mathrm{F}_{0}(g)\left(\lambda_{0}\right) & =\frac{2}{\pi} \int_{0}^{\infty} b_{\alpha, \beta}\left(\lambda_{0}, \lambda\right) \mathrm{F}_{0}(g)(\lambda) d \lambda \\
& =\int_{0}^{\infty} \varphi_{\lambda_{0}}^{(\alpha, \beta)}(t) g(t) d t .
\end{aligned}
$$

Hence using Theorem 4.1 we deduce that

$$
P_{\alpha, \beta} \chi_{\alpha, \beta}(f)\left(\lambda_{0}\right)=-\int_{0}^{\infty} \varphi_{\lambda_{0}}^{(\alpha, \beta)}(t) g(t) \operatorname{ch} 2 t d t
$$

Thus we obtain the relation (4.5).
For the relation (4.6), let f be in $\mathbb{H}_{*}(\mathbb{C})$. By Theorem 1.1(i) there exists $g \in D_{*}(\mathbb{R})$ such that $f=\mathrm{F}_{\alpha, \beta}(g)$. So that from the relations (4.4) and (3.5), we have for all $\lambda_{0} \in \mathbb{R}$

$$
\begin{aligned}
{ }^{t} \chi_{\alpha, \beta} P_{\alpha, \beta}(f)\left(\lambda_{0}\right) & ={ }^{t} \chi_{\alpha, \beta} P_{\alpha, \beta}\left(\mathrm{F}_{\alpha, \beta}(g)\right)\left(\lambda_{0}\right) \\
& ={ }^{t} \chi_{\alpha, \beta}\left(\mathrm{F}_{\alpha, \beta}((\operatorname{ch} 2 t) g)\right)\left(\lambda_{0}\right) \\
& =-\mathrm{F}_{0}((\operatorname{ch} 2 t) g)\left(\lambda_{0}\right) .
\end{aligned}
$$

On the other hand, we have for all $\lambda_{0} \in \mathbb{R}$

$$
\begin{aligned}
Q^{t} X_{\alpha, \beta}(f)\left(\lambda_{0}\right) & =Q_{\chi_{\alpha, \beta}} \mathrm{F}_{\alpha, \beta}(g)\left(\lambda_{0}\right) \\
& =Q \mathrm{~F}_{0}(g)\left(\lambda_{0}\right) \\
& =-\mathrm{F}_{0}((\operatorname{ch} 2 t) g)\left(\lambda_{0}\right) .
\end{aligned}
$$

Thus we complete the proof of the relation (4.6).
Proposition 4.2. Let f be an even analytic uniformly almost periodic function on \mathbb{C}. Then we have

$$
\forall \lambda \in \mathbb{R}, \quad P_{\alpha, \beta} \chi_{\alpha, \beta}(f)(\lambda)=\chi_{\alpha, \beta} Q(f)(\lambda)
$$

Proof. From the Polynomial Approximation Theorem, see [4, p. 148], the function f is an uniform limit of a sequence of even exponential polynomials functions, that is,

$$
f=\lim _{n \rightarrow \infty} f_{n},
$$

where $f_{n}(\lambda), \lambda \in \mathbb{C}$, is given by

$$
f_{n}(\lambda)=\sum_{k=1}^{n} a_{k} \cos t_{k} \lambda, \quad a_{k} \in \mathbb{C} \text { and } t_{k} \geq 0 .
$$

But from the relations (3.2) and (4.2), we have

$$
\forall \lambda \in \mathbb{R}, \quad P_{\alpha, \beta} \chi_{\alpha, \beta}\left(f_{n}\right)(\lambda)=\chi_{\alpha, \beta} Q\left(f_{n}\right)(\lambda) .
$$

Thus we obtain the result by taking $n \rightarrow+\infty$.

5. INVERSION FORMULAS FOR THE OPERATORS $\chi_{\alpha, \beta}$ AND ${ }^{t} \chi_{\alpha, \beta}$

In this section we shall define some functions spaces on which we can invert the operators $\chi_{\alpha, \beta}$ and ${ }^{t} \chi_{\alpha, \beta}$.

Notations. We denote by

- $S_{*, 0}(\mathbb{R})$ the subspace of $S_{*}(\mathbb{R})$ consisting of functions f satisfying

$$
\forall n \in \mathbb{N}, \quad \frac{d^{2 n}}{d \lambda^{2 n}} f(0)=0 .
$$

- $S_{*, 0}^{\perp}(\mathbb{R})$ the subspace of $S_{*}(\mathbb{R})$ consisting of functions f satisfying

$$
\forall n \in \mathbb{N}, \quad \int_{0}^{\infty} f(\lambda) \lambda^{2 n} d \lambda=0
$$

- $H_{*, 0}^{r}$ the subspace of H_{*}^{r} consisting of functions h satisfying

$$
\forall n \in \mathbb{N}, \quad \int_{0}^{\infty} h(\lambda) \lambda^{2 n} d \lambda=0
$$

- $H_{*, \perp}^{r}$ the subspace of H_{*}^{r} consisting of functions h satisfying

$$
\forall n \in \mathbb{N}, \quad \int_{0}^{\infty} h(\lambda) c_{n}(\lambda) d \nu_{\alpha, \beta}(\lambda)=0,
$$

where

$$
c_{n}(\lambda)=\int_{0}^{\infty} b_{\alpha, \beta}(\lambda, s) s^{2 n} d s .
$$

Lemma 5.1. The Fourier-cosine transform F_{0} is a topological isomorphism from
(i) $S_{*, 0}^{\perp}(\mathbb{R})$ onto $S_{*, 0}(\mathbb{R})$.
(ii) (ch $t)^{-2 \rho / r} S_{*, 0}(\mathbb{R})$ onto $H_{*, 0}^{2 r /(r+2)}, 0<r \leq 2$.

Proof. (i) We know that F_{0} is a topological isomorphism from $S_{*}(\mathbb{R})$ onto itself. Furthermore for any $f \in S_{*}(\mathbb{R})$ and $n \in \mathbb{N}$, we have

$$
\frac{d^{2 n}}{d \lambda^{2 n}} \mathrm{~F}_{0}(f)(0)=(-1)^{n} \int_{0}^{\infty} f(\lambda) \lambda^{2 n} d \lambda .
$$

We deduce that $f \in S_{*, 0}^{\perp}(\mathbb{R})$ if and only if $\mathrm{F}_{0}(f) \in S_{*, 0}(\mathbb{R})$.
(ii) From Lemma 3.1, we know that F_{0} is a topological isomorphism from $S_{*}^{r}(\mathbb{R})$ onto $H_{*}^{2 r /(r+2)}$. We obtain the result by observing that $f \in(\text { ch } t)^{-2 \rho / r} S_{*, 0}(\mathbb{R})$ if and only if $\mathrm{F}_{0}(f) \in H_{*: 0}^{2 r /(r+2)}$.

Lemma 5.2. Let $\varepsilon \in\left[2,+\infty\left[\right.\right.$. Then the operator $\mathbb{A}_{\alpha, \beta}$ defined by

$$
\mathbb{A}_{\alpha, \beta}(f)(t)=(2 \pi)^{-1 / 2} A_{\alpha, \beta}(t) f(t)
$$

is a topological isomorphism from (ch $t)^{-\varepsilon \rho} S_{*, 0}(\mathbb{R})$ onto (ch $\left.t\right)^{-(\varepsilon-2) \rho}$ $\times S_{*, 0}(\mathbb{R})$.

Proof. It suffices to remark that for all $\gamma \in \mathbb{R}$ and $f \in S_{*, 0}(\mathbb{R})$ the function $t \rightarrow(\tanh t)^{\gamma} f(t)$ belongs to $S_{*, 0}(\mathbb{R})$.

Proposition 5.1. The operator M_{0} defined by

$$
\begin{equation*}
\mathrm{M}_{0}(f)=(2 \pi)^{-1 / 2} \mathrm{~F}_{0}\left[A_{\alpha, \beta} \mathrm{F}_{0}^{-1}(f)\right] \tag{5.1}
\end{equation*}
$$

is a topological isomorphism from $H_{*, 0}^{2 r /(r+2)}$ onto $H_{*, 0}^{2 r /(2-r)}$, for $0<r \leq 1$.
Proof. Since $M_{0}=F_{0} \circ \mathbb{A}_{\alpha, \beta} \circ \mathrm{F}_{0}{ }^{-1}$, then the result is deduced from Lemmas 5.1 and 5.2.

Lemma 5.3. The Fourier-Jacobi transform $\mathrm{F}_{\alpha, \beta}$ is a topological isomorphism from (ch $t)^{-2 \rho / r} S_{*, 0}(\mathbb{R})$ onto $H_{*, ~}^{r}, 0<r \leq 2$.

Proof. From Theorem 1.1(ii), $\mathrm{F}_{\alpha, \beta}$ is a topological isomorphism from (ch $t)^{-2 \rho / r} S_{*}(\mathbb{R})$ onto H_{*}^{r}. Let f be in (ch $\left.t\right)^{-2 \rho / r} S_{*, 0}(\mathbb{R})$. By using the
inversion formula for $F_{\alpha, \beta}$ we have

$$
f(t)=\int_{0}^{\infty} F_{\alpha, \beta}(f)(\lambda) \varphi_{\lambda}^{(\alpha, \beta)}(t) d \nu_{\alpha, \beta}(\lambda) .
$$

Then

$$
\forall n \in \mathbb{N}, \quad \frac{d^{2 n}}{d t^{2 n}} f(0)=\left.\int_{0}^{\infty} \mathrm{F}_{\alpha, \beta}(f)(\lambda) \frac{d^{2 n}}{d t^{2 n}} \varphi_{\lambda}^{(\alpha, \beta)}(t)\right|_{t=0} d \nu_{\alpha, \beta}(\lambda)
$$

But from the relation (2.13) we have

$$
\forall n \in \mathbb{N},\left.\quad \frac{d^{2 n}}{d t^{2 n}} \varphi_{\lambda}^{(\alpha, \beta)}(t)\right|_{t=0}=(-1)^{n} \frac{2}{\pi} \int_{0}^{\infty} b_{\alpha, \beta}(\lambda, s) s^{2 n} d s
$$

Hence we obtain

$$
\forall n \in \mathbb{N}, \quad \int_{0}^{\infty} \mathrm{F}_{\alpha, \beta}(f)(\lambda) c_{n}(\lambda) d \nu_{\alpha, \beta}(\lambda)=0 .
$$

Thus we conclude that $f \in(\mathrm{ch} t)^{-2 \rho / r} S_{*, 0}(\mathbb{R})$ if and only if $\mathrm{F}_{\alpha, \beta}(f) \in$ $H_{*, 1}^{r}$.

Theorem 5.1. (i) For $0<r \leq 1$, the dual Mehler transform $\chi_{\alpha, \beta}$ is a topological isomorphism from $H_{*, 0}^{2 r /(2-r)}$ onto $H_{*, \perp}^{r}$.
(ii) For $0<r \leq 2$, the transform ${ }^{t} \chi_{\alpha, \beta}$ is a topological isomorphism from $H_{*, \perp}^{r}$ onto $H_{*, 0}^{2 r /(r+2)}$.

Proof. (i) It is deduced from the relation $\chi_{\alpha, \beta} \circ \mathrm{F}_{0} \circ \mathrm{~A}_{\alpha, \beta}=\mathrm{F}_{\alpha, \beta}$.
(ii) It is obtained by using Lemmas 5.1 and 5.3.

Proposition 5.2. The operator M defined by

$$
\begin{equation*}
\mathrm{M}(f)=(2 \pi)^{-1 / 2} \mathrm{~F}_{\alpha, \beta}\left[A_{\alpha, \beta} \mathrm{F}_{\alpha, \beta}^{-1}(f)\right] \tag{5.2}
\end{equation*}
$$

is a topological isomorphism from $H_{*, \perp}^{r}$ onto $H_{*, \perp}^{r /(1-r)}, 0<r<1$.
Proof. The operator M can also be written in the form

$$
\mathbf{M}=\mathrm{F}_{\alpha, \beta} \circ \mathbb{A}_{\alpha, \beta} \circ \mathrm{F}_{\alpha, \beta}^{-1} .
$$

Then the result is a consequence of Lemmas 5.2 and 5.3.
Corollary 5.1. We have

$$
\begin{equation*}
M=\left({ }^{t} \chi_{\alpha, \beta}\right)^{-1} \circ M_{0} \circ^{t} \chi_{\alpha, \beta} . \tag{5.3}
\end{equation*}
$$

Proof. It is obtained by remarking that

$$
{ }^{t} \chi_{\alpha, \beta}=\mathrm{F}_{0} \circ \mathrm{~F}_{\alpha, \beta}^{-1}
$$

and using Proposition 5.1.
Proposition 5.3. We have the following inversion formula for the operator $\chi_{\alpha, \beta}$:

$$
\begin{align*}
& \text { (i) } \forall f \in H_{*, 1}^{r}, 0<r \leq 1, f=\chi_{\alpha, \beta} \circ \mathrm{M}_{0} \circ^{t} \chi_{\alpha, \beta}(f), \tag{5.4}\\
& \text { (ii) } \forall f \in H_{*, 1}^{r}, 0<r<1, f=\chi_{\alpha, \beta} \circ^{t} \chi_{\alpha, \beta} \circ \mathrm{M}(f) . \tag{5.5}
\end{align*}
$$

Proof. From the inversion formula for the transform $\mathrm{F}_{\alpha, \beta}^{-1}$ we have

$$
\begin{aligned}
\forall \lambda_{0} & \in \mathbb{R}, \quad f\left(\lambda_{0}\right)=\int_{0}^{\infty} F_{\alpha, \beta}^{-1}(f)(t) \varphi_{\lambda_{0}}^{(\alpha, \beta)}(t) d \mu_{\alpha, \beta}(t) \\
& =(2 \pi)^{-1 / 2} \int_{0}^{\infty} F_{\alpha, \beta}^{-1}(f)(t) \varphi_{\lambda_{0}}^{(\alpha, \beta)}(t) A_{\alpha, \beta}(t) d t .
\end{aligned}
$$

Using Corollary 3.1 and the relation (2.13) we obtain

$$
\begin{aligned}
\forall \lambda_{0} \in & \mathbb{R}, \quad f\left(\lambda_{0}\right)=2^{1 / 2} \pi^{-3 / 2} \int_{0}^{\infty} \mathrm{F}_{0}{ }^{-1} \circ^{t} \chi_{\alpha, \beta}(f)(t) \\
& \times\left(\int_{0}^{\infty} b_{\alpha, \beta}\left(\lambda_{0}, \lambda\right) \cos \lambda t d \lambda\right) A_{\alpha, \beta}(t) d t \\
= & (2 \pi)^{-1 / 2} \chi_{\alpha, \beta}\left[\mathrm{F}_{0}\left(A_{\alpha, \beta} \mathrm{F}_{0}^{-1}\left(^{t} \chi_{\alpha, \beta}(f)\right)\right)\right]\left(\lambda_{0}\right) \\
= & \chi_{\alpha, \beta} \circ \mathrm{M}_{0} \circ^{t} \chi_{\alpha, \beta}(f)\left(\lambda_{0}\right) .
\end{aligned}
$$

The relation (5.5) is obtained by using (5.3).
Proposition 5.4. We have the following inversion formula for the operator ${ }^{t} \chi_{\alpha, \beta}$:
(i) $\forall f \in H_{*, 0}^{2 r /(r+2)}, 0<r \leq 1, f={ }^{t} \chi_{\alpha, \beta} \circ \chi_{\alpha, \beta} \circ \mathrm{M}_{0}(f)$,
(ii) $\forall f \in H_{*, 0}^{2 r /(2-r)}, 0<r<1, f={ }^{t} \chi_{\alpha, \beta} \circ \mathrm{M} \circ \chi_{\alpha, \beta}(f)$.

Proof. The relation (5.6) is obtained by applying (5.4) to the function $\left({ }^{t} \chi_{\alpha, \beta}\right)^{-1}(f)$. The relation (5.7) is obtained by applying (5.5) to the function $\chi_{\alpha, \beta}(f)$.

ACKNOWLEDGMENT

The authors are thankful to the referee for his valuable comments and suggestions.

REFERENCES

1. R. A skey, Orthogonal polynomials and special functions, in "R egional Conference Series in A pplied M athematics," V ol. 21, SIA M , Philadelphia, 1975.
2. R. Askey and G. Gasper, Jacobi polynomial expansions of Jacobi polynomial with nonnegative coefficients, Math. Proc. Cambridge Philos. Soc. 70 (1971), 243-255.
3. N. Ben Salem, Convolution semigroups and central limit theorem associated with a dual convolution structure, J. Theoret. Probab. 7, No. 2 (1994), 417-436.
4. A. S. Besicovitch, "A Imost Periodic Functions," D over, N ew Y ork, 1954.
5. W. R. Bloom and H. Heyer, Harmonic analysis of probability measures on hypergroups, in "de Gruyter Studies in M athematics" (H. Bauer, J. L. K azdan, and E. Zehnder, Eds.), V ol. 20, de Gruyter, Berlin/N ew Y ork, 1994.
6. M. Flensted-J ensen, Paley-W iener type theorems for a differential operator connected with symmetric spaces, Ark. Mat. 10 (1972), 143-162.
7. M. Flensted-Jensen and T. H. Koornwinder, The convolution structure for Jacobi function expansions, Ark. Mat. 11 (1973), 245-262.
8. M. Flensted-J ensen and T. H. K oornwinder, J acobi functions: The addition formula and the positivity of dual convolution structure, Ark. Mat. 17 (1979), 139-151.
9. G. Gasper, Linearization of the product formula of Jacobi polynomials, I, II, Canad. J. Math. 22 (1970), 171-175; 582-593.
10. R. I. Jewett, Spaces with an abstract convolution of measures, Adv. in Math. 18 (1975), 1-101.
11. T. H. Koornwinder, A new proof of a Paley-Wiener type theorem for the Jacobi transform, Ark. Mat. 13 (1975), 145-159.
12. T. H. Koornwinder, Positivity proofs for linearization and connection coefficients of orthogonal polynomials satisfying an addition formula, J. London Math. Soc. (2) 18 (1978), 101-114.
13. T. H. K oornwinder, J acobi functions and analysis on noncompact semi-simple Lie groups, in "Special Functions: Group Theoretical A spects and A pplications," pp. 1-85, M ath. A ppl., R eidel, D ordrecht/B oston/L ancaster, 1984.
14. E. M. Stein and G. Weiss, "Fourier A nalysis on Euclidean Spaces," Princeton Univ. Press, Princeton, NJ, 1971.
15. G. Szego, "Orthogonal Polynomials," 4th ed., A mer. M ath. Soc. Colloq. Publ., V ol. 23, A mer. M ath. Soc., Providence, RI, 1975.
16. E. C. Titchmarsh, "The Theory of Functions," 2nd ed., Oxford Univ. Press, London, 1939.
17. K. Trimèche, Transformation intégralede W eyl et théorème de Paley-W iener associés à un opérateur différentiel singulier sur $(0,+\infty)$, J. Math. Pures Appl. 60 (1981), 51-98.
18. K. Trimèche, Transmutation operators and mean periodic functions associated with differential operators, Math. Rep. 4, No. 1 (1988), 1-282.
19. K. Trimèche, Inversion of the Lions transmutation operators by using generalized wavelets, Appl. Comput. Harmonic Anal. 4 (1997), 1-16.
