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A complex character of a finite group G is called orthogonal if it is the character of a real 

representation. If all characters of G are orthogonal, then G is called totally orthogonal. Totally 

orthogonal groups are generated by involutions. Necessary and sufficient conditions for total 

orthogonality are obtained for 2-groups, for split extensions of elementary abelian 2.groups, for 

Frobenius groups, and for groups whose irreducible character degrees are bounded by 2. Sylow 

2.subgroups of alternating groups and finite reflection groups are observed to be totally 

orthogonal. 

1. Introduction 

A complex character of a finite group G is called orthogonal if it is the character 

of a real representation. The determination of the number of complex irreducible 

characters of G that are orthogonal was cited by Brauer in 1963 as an old question. 

We introduce here the notion of total orthogonality, the extreme case in which all 

characters of G are orthogonal. 

The only substantial progress to date toward a solution of Brauer’s problem 

seems to be in the two papers [6,7] of Gow, in which answers are obtained for groups 

with a cyclic Sylow 2-subgroup and for 2-nilpotent groups with an abelian Sylow 

2-subgroup. 

We develop below some basic facts about totally orthogonal groups, perhaps the 

most useful being that such a group is generated by involutions. Necessary and suffi- 

cient conditions for total orthogonality are obtained for split extensions of elemen- 

tary abelian 2-groups and for groups whose character degrees are bounded by 2. It 

is established that Sylow 2-subgroups of alternating groups and of finite reflection 

groups are totally orthogonal. Also, Brauer’s question for Frobenius groups is 

reduced to the corresponding questions for Frobenius kernels and complements. 

0022-4049/88/$3.50 ic> 1988, Elsevier Science Publishers B.V. (North-Holland) 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81112402?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


300 

2. Background 

All groups considered will be finite. The real and complex fields will be denoted 

by [R and C. The set of all characters of irreducible C-representations of a group 

G will be denoted by Irr(G), and the set of all characters of ff?-irreducible K?- 

representations by lrr,; (G). We will write Y(G) and X(G) for the subsets of linear 

(degree 1) and nonlinear characters in Irr(G), respectively. 

Suppose x E Irr(G). If x is the character of a real representation, it is said to be 

of type 1. If x is real-valued but not of type 1, it is of type 2; if it is not real-valued, 

it is of type 3. The Frobenius-Schur indicafolof x is v(x) = / Cl ’ 1 {X(X’): SE G}. 

The Frobenius-Schur Theorem asserts that v(x) is 1 if x is of type 1, - 1 if x is of 

type 2, and 0 if x is of type 3. Motivated by Brauer’s question and the Frobenius- 

Schur Theorem we define vi(G), Y(G), and v”(G) to be the number of characters 

of types 1, 2, and 3, respectively, in Irr(G). Thus v’(G) + v (G) + V”(G) = ilrr(G)’ = 

c(G), the class number of G. 

An element x of G is called reul if it is conjugate to x ‘, and a conjugacy class 

is reu/ if it consists of real elements. The following result is well known; it is an easy 

consequence of Brauer’s Lemma [5, p. 1421 on orbits in character tables. 

Theorem 2.1. Tile number v ‘(G) + v (G) of real-valued churucters in lrr(G) is 

equal to the number of real conjugucy classes in G. E 

A group G is called urnbivulent if every class of G is real. Write .d for the class 

of ambivalent groups. Observe that, as an immediate consequence of Theorem 2.1, 

GE.~ if and only if all characters of G are real-valued, i.e. v”(G) = 0. 

If HsG, define subsets of Irr(G) and Irr(H) as follows: 

(1) Ext,,(G)= {~~lrr(G): x /IIE Irr(H)), 
(2) Ind,,(G) = {x E Irr(G): x = (D” for some p E lrr-(H)}, 

(3) Ext”(H)= {(DEIx(H): (p=x I,, for some ~~Irr(G)}, and 

(4) IndC’(H) = {q E Irr(H): P(‘E Irr(G)}. 

3. Total orthogonality 

A finite group G will be called totally orthogonal if every character of G is or- 

thogonal, or equivalently if v ‘(G) = c(G). We will write .Yfi for the class of totally 

orthogonal groups. Clearly .qo c cd, i.e. totally orthogonal groups are ambivalent. 

For any group G and x+zG we will write J,;(x)={y~G:y’=x}, and 

SQRT,;(x)= ,J,,(x);. Note that G is totally orthogonal if and only if SQRT,,(l)- 

C {x(l): x E Irr(G)}, by the Frobenius-Schur count of involutions. Note also that 

if G is ambivalent, then both Z(G) and Y(G)gGC/G’ are elementary abelian 

2-groups. 
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Proposition 3.1. If SQRT,(l)>+IGl, then GE z@. 

Proof. For every x E Irr(G) we have 

v(x)=lGl~i]~ (x(x*): x~Jo(l)) + c {X(X’): x~G\J,(l)ll 

~/GI~‘[x(~)SQRTG(~)-X(~)(IGI-SQRTG(~))I 

= ICI ‘x(1)[2SQRT,(I)- IGIl >O, 

sov&)=l. u 

Proposition 3.2. Let A be an abelian group, and suppose o E Am(A) has order 2, 

with Oa = a ’ for all a E A \ JA (1). Then the semidirect product G = A x (0) is total- 

ly orthogonal. 

Proof. Observe that (a, a)’ = (1,1) for all a E A \ JA (1). Thus 

JG(l)>((a,o): aEA\JA(l))U{(b,l): bEJA(l)}U((l,o)), 

hence 

SQRT,(l)z jA\J,(l)l+ lJ~(l)l+ 1 >+IGI, 

so G E g67 by Proposition 3.1. 0 

Theorem 3.3. If GE g@, then G is generated by involutions. 

Proof. Set N=(J,(l)) u G. Let pi = l,, . . ..pk be representatives of the G-orbits in 

Irr(N). For each (D; choose X;E Irr(G) with 1 i (xi, cp,“) = 01, liL., 9;) E Z. We may 
take x, = 1,. Then, by Clifford’s Theorem, 

xi lN=Oli IN,~;) c ]e: oEOrbo(y7;)), 

and so 

SQRT,(l)= c {x(l):xEIrr(G)}r i 
!=I 

x,(l) 

= ;“, Ori IN1 vi) c {e(l): ~~Orbdv;)) 

L c {v(0)0(1): BeIrr(N)} =SQRT,(l)=SQRT,(l). 

Thus all are equal, and it follows that xi = qc for all i. In particular, 1 =x1(l) = 

#(l)=[G:N], so N=G. 0 

Corollary 3.4. If G E g0 and Nc G, with [G : N] = 2, then G = NM (0) for some o 

of order 2 in G. 0 

The next corollary of Theorem 3.3 is well known. 
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Corollary 3.5. If G is metacyclic, then GE 9V if and only if G is a dihedral group 

D2,,? (of order 2m) for some m. 

Proof. ‘=‘. Apply Proposition 3.2. 

‘ = ‘. Take Na G with N= (a) and G/Ncyclic. Then [G : IV] = 2 and we may write 

G=Nxl(a). Since GE.J~ we must have aa=a-‘, so G is dihedral. 0 

Proposition 3.6. Suppose GE 98 and [G : N] = 2. Then v-(N) = 0, i.e. N has no 

characters of type 2. 

Proof. Take paEIrr(N). If (o~Ext’(N), then tp=x IN for some x~Irr(G), so cp is of 

type 1 since x is orthogonal. Suppose then that rp E Ind’(N), say qG =x E b-r(C). 

Again x is orthogonal, so x l,V is orthogonal. This time x 1 N = q~ + vu, for 0 E G \ N, 

and (o#qa. But also x IN is a sum of characters from Irr,(N), so we may conclude 

(see [ 1.5, p. 1081) that either v, and vu are both of type 1, or else vu= @#q, and (D 

is of type 3. 0 

Corollary 3.7. If G E $0 and [G : N] = 2, then v+(N) is equal to the number of real 

conjugacy classes in N. 0 

Corollary 3.8. If G E g@ and [G : N] = 2, then NE $67 if and only if NE d. 0 

Proposition 3.9. Suppose [G: N] =2 and NE R9. Then v-(G) =O, i.e. G has no 

characters of type 2. 

Proof. If x E Ind,(G), then v&) = I, so suppose x E Ext,V(G), say with x I,v= 

I,UE Irr(N). Thus if N= ker(8), BEG, then Bx#jt and w’=x+ 0~. Of course 

vG is orthogonal since NE Y@. If x is of type 2, then 2x E b-r,,(G) [15, p. 1081. But 

then 2x=x + 6x, since (2x,x + Bx) > 0 and the degrees are equal, and we may con- 

clude that x = 0x, a contradiction. 0 

Corollary 3.10. If [G : N] = 2 and NE <q@, then v+(G) is equal to the number of 

real conjugacy c/asses in G. K! 

Theorem 3.11. Suppose G is a 2-group. Then GE .qfi if and only if 

(1) G is generated by involutions, 

(2) G is ambivalent, and 

(3) v-(N) = 0 whenever [G : N] = 2. 

Proof. Only the sufficiency of the conditions remains to be proved, and we use in- 

duction on ICI. The result is clear if ICI 5 8, so assume IG I> 8 and take x E Irr(G). 

If x is not faithful, choose z# 1 in Z(G)fl kerk). Then G/(z) satisfies (l)-(3), so 

x is of type 1 by induction. Assume then that x is faithful. If x is of type 2, then 
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231 E Irr&G), with centralizer algebra IH, the quaternion algebra [15, p. 1081. If 2x 

is IH-imprimitive, it is induced from a character (u E Irr,(N) of a subgroup N, and 

we may assume that N is maximal, so [G: N] =2. It follows from Clifford’s 

Theorem and [ 15, Section 131 that I,U = 20 for some 0 of type 2 in Irr(N), contradict- 

ing (3). 

Suppose then that 2x is IH-primitive. It is faithful since x is faithful, so G is 

dihedral by [14, p. 524, Lemma], since G is generated by involutions. But then x 

being of type 2 contradicts Corollary 3.5, a final contradiction. Cl 

Theorem 3.12. Suppose G= E >a H, with E an elementary abelian 2-group. Then 
GE SC? if and only if Stab,(@)E g&r for all @e Irr(E). 

Proof. The sufficiency is an immediate consequence of Mackey’s ‘little group’ 

method, as discussed, e.g., in [15, p. 621; we apply the same method to prove the 

necessity. If CD E Irr(E) and 0 E Irr(Stab,(@)), define x@,~ on E >a Stab,(@) by set- 

ting x,+,,o(u, h) = @(u)&h), so xge E Irr(G). Since GE ge we have X&E Irr,(G) for 

all @, 0. Also (‘~$0 IE, @) # 0 as irreducible R-characters of G and E. By Clifford’s 

Theorem there is a unique [EIrrp(E>aStab,(@)) such that [‘==x&, so [E 

Irr(E>aStab,(@)) as well. Thus <=X~.~, so X~,S is of type 1, and ~(&=v(x~,~,)= 1, 

as required. n 

Corollary 3.13. If E, and E, are borh elementary abeiian 2-groups and G = E, >a E,, 
then GE 9’@. 0 

We close this section with a small example to show that a split extension of 

one totally orthogonal group by another need not be totally orthogonal. Let 

E be an elementary abelian 2-group with basis {e,,e2,e3} and let D= D, = 
(a, 6: a4= b2=(ba)*= 1). Define an action of D on E by means of 

(1) ‘er =e, +e3, ‘e2=e2i-e,, “e3 = e3 ; 

(2) ‘e, =e2, h 
e2=el, “e 3 39 

=e . 

and let G = E >Q D. Then there exists ~0 in Irr(E) with Stab,(q) = (a>, so G $ $6 by 

Theorem 3.12. 

4. Total orthogonality of k-uniform groups 

A group G will be called k-uniform (15 k E Z) if { 1, k} is the set of degrees of 

characters in Irr(G). Thus, for example, G is l-uniform if and only if it is abelian, 

an extra-special 2-group of width n is 2n-uniform, and a nonabelian group having 

an abelian normal subgroup of prime index p is p-uniform by Ito’s theorem. Note 

that if GE .%9 and G is k-uniform, then SQRTo(l)= Ig(G)l+ klJV(G)I by the 

Frobenius-Schur count of involutions. 
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Theorem 4.1. If G E d and G is k-uniform, then either G is a 2-group or k = 1 or 

2. In particular k is a power of 2. 

Proof. Use induction on /GI, the result clearly holding for G of sufficiently low 

order. We may assume that G is not a 2-group and hence, by [l 1, Theorem 12.51, 

that there is an abelian normal subgroup A of index k in G. Clearly G/A is abelian 

(or it would have an irreducible character of degree k = lG/A I), and it is ambivalent. 

Thus G/A is an elementary abelian 2-group and k is a power of 2. If p is an odd 

prime divisor of ICI, there is ap-Sylow subgroup Pof G with PIA. If P#A, there 

is also a nontrivial q-Sylow subgroup QsA for some prime qfp. Then Q is 

characteristic in A since A is abelian, so Q a G. Then G/Q E .A and p 1 [G : Q], so 

G/Q is not abelian, hence G/Q is k-uniform. By induction k = 2 in that case, so we 

may assume that P= A. If T is 2-Sylow in G, then G = PT= P >a T, so T is elemen- 

tary abelian of order k. Observe that G’= P since G/P is abelian and G/G’ is a 

2-group. Take ~0 E It-r(P). Since G is k = [G : PI-uniform, Stab,(v) must be 1 or T. 

But if Stab(q)= T, then v extends to G, so (a= 1, (otherwise 9 is not real-valued). 

It follows from Brauer’s Lemma that C,(a) = 1, or C,(a) 5 P if 1 #a E P, so G is 

a Frobenius group with kernel P and complement T. But then SQRT,(1)=2, so 

k=lTl=2. 0 

Proposition 4.2. Suppose G is ambivalent and k-uniform. Then G = E x H, where 

E is an elementary abelian 2-group, His ambivalent and k-uniform, Z(H) 2 H’= G’, 

and Z(G) = E x Z(H). 

Proof. Use induction on iGI; the result obviously holds if IGI 58. If Z(G)sG’ the 

statement is true by default, with H = G, so suppose Z(G) % G’. Choose z E Z(G) \ G’, 

so IzI =2. Choose Beg(G) with 0(z)# I, and set N= ker(8). Then [G: N] =2 and 

z$ N, so G=(z) x N. Clearly N is ambivalent and k-uniform, and N’= G’. By in- 

duction N=Fx H, where F is an elementary abelian 2-group, H is k-uniform, 

Z(H) 5 H’= N’= G’, and Z(N) = FX Z(H). Set E = (z) x F. L7 

Theorem 4.3. A nonabelian group G is 2-uniform and totally orthogonal if and only 

if G=A>a(a), with A abelian, loI =2, and Ua=a~~’ for all aeA\J,(l). 

Proof. ‘t’. Proposition 3.2 and Ito’s Theorem. 

‘* ‘. Observe first that it is sufficient to show that G has an abelian subgroup A 

of index 2, for then G = A >Q (a), with 101 = 2, by Corollary 3.4, and furthermore 
(7a=am’ for all aeA\JA(l) since GE,~. 

If G is not a 2-group, then G has an abelian subgroup of index 2 by [ 11, Theorem 

12.51, again using the fact that GE&. We assume then that G is a 2-group, and use 

induction on /Gl. Clearly the conclusion holds if lG/ = 8. We may assume that 

Z(G)< G’ by Proposition 4.2 and the induction hypothesis. By [ 11, Theorem 12.1 l] 

we may assume that [G : Z(G)] = 8. If xE G has order 4 modulo Z(G), then (x, Z(G)) 



Realizabiliry of representations of finite groups 305 

is an abelian group of index 2, a contradiction. Thus G/Z(G) is elementary abelian 

and G’=Z(G). By the Burnside Basis Theorem and Theorem 3.3 we have 

G=(a,,a~,03), the cr; being distinct involutions. It is easy to see that G’= 

([(T,,D& [G,,D~], [02,crJ3]), so G’ is elementary abelian of order at most 8. If 

x, y E G \ G’, XC’+ yG’, and xy = yx, then (x, y, Z(G)) is abelian of index 2 in G, a 

contradiction. Hence [D(, Dj] = 1 for i#j, [o,, aj][a;, ok] = [oi, ~,a~] = 1 for {i, j, k} = 

{ 1,2,3}, and [a,,azl[al,~31[~Z,(531 = [o,02,~I~3]= 1, and it follows that [cr,,oJ, 

[a,, as], [a,, 03] are linearly independent and (G’/ = 8. Thus lG/ =64, IJV(G)I = 14, 

and SQRTc(l) = 36. But Jo(l) is a union of cosets of Z(G), and 8 f 36, so we have 

a contradiction and the proof is complete. Cl 

We remark that if G is as in Theorem 4.3, then Z(G) = {a E J,(l): fla = a} and 

G%A’.Z(G). If G=L,(G)>L,(G)r... is the descending central series of G, then 

easy calculations show that L,(G) consists of the 2”- ‘-powers of the elements of 

A for each k>2. The next result follows easily. 

Corollary 4.4. If G is a totally orthogonal 2-uniform 2-group, and if 2”’ is the 
maximal order of elements of G, then G is of nil class m. 0 

5. Orthogonality and Frobenius groups 

A Frobenius group is a finite permutation group G acting transitively on a set so 

that the stabilizer of a point is not trivial but only the identity fixes 2 or more points. 

Then G is a semidirect product N>a H, where H (the complement) is the stabilizer 

of a point and N\ 1 (N is the kernel) is the set of elements with no fixed points. 

Proposition 5.1. Suppose G = NXI H is a Frobenius group with kernel N and com- 
plement H, and let o be an involution in H. Then Ox=x-’ for all XE N. 

Proof. Since lHl is even, N is abelian [13, p. 601. If XE N, then CJ centralizes (xo)‘, 

and (~a)~ EN, so (~a)~ = 1, or equivalently “x=x- ‘. 0 

The irreducible characters of a Frobenius group G are of two types: if x E Irr(G), 

then either x = pG for some (D # 1 in Irr(N), or else x jHe Irr(H) and x(xh) =x(h) 
for all XE N, h E H. For each CP # 1 in Irr(N) we have Stab,(p) = 1 and pG E Irr(G), 

and if (D, 8# 1 in b-r(N), then y?‘=B’ if and only if B~Orb~~((o). We remark that 

G is k-uniform if and only if N and H are both abelian, and then k = IHl. 

Proposition 5.2. Suppose G = NX H is a Frobenius group, and 1 # CJI E Irr(N). 

(1) If IHI is even, then v(p”)= 1. 

(2) If IHI is odd, then vC(qG)= v,,,(q). 
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Proof. (1) Let o be an involution in H and set L =Nx (a), so [L : N] =2. Then 

cp L IN = p + (pa and, since INI is odd, V,,,,(P) = vhi(q4) = 0. Thus 

v,(q’ ) = IL] ’ c {cj7(xZ) + p”(x’) + fp((xa)*) + @((xc+): XE N} 

=+[V,~(~)+V,Y((D~)+l+l]=l, 

since (~a)~= 1 for all XE N by Proposition 5.1. Thus p L is orthogonal, and hence 

q o = (9 L)G is orthogonal. 

(2) Since 1Hl is odd and G=NU[U {H”: XEG}], all elements of G\N have 
odd order, so if x@N, then x2$N. Furthermore ~7’ liV= 2: {P’~: ~EH} and 

(po ((;\,,,=O. Thus 

v(Q”)=IG~~’ c {C&X*): ~EH, XENJ 

= IHI ’ c C+,(cp”): hcH) = v,v(f~), 

since v((D~)=v(~) for all ~EH. 0 

Proposition 5.3. Suppose G = N M H is Frobenius and x E Irr(G), with x IH E Irr(H). 

Then v,;(x) = v&x I,,). 

Proof. We have 

~(x)=lG(~’ c (x((xh)2): XEN, hEHj 

=/Cl ’ c (/y(x.hx.h2): XEN, hEH) 

=jGlm’ c {x(h’): XEN, hEH)=v,,(&,). 0 

We may use the propositions above to reduce Brauer’s problem for a Frobenius 

group G = N XI H to the corresponding problem for N and H. 

Theorem 5.4. Suppose G is a Frobenius group with kernel N and complement H. 

(I) If IHl is even, than v’(G)= v+(H)+(lNI - l)/IHl, v (G)=v(H), and 

u”(G) = v”(H). 

(2) If 1H1 is odd, then v+(G)=(v’(N)- l)/IHl+ 1, v-(G)=v-(N)/IHI, and 

v’(G) = v”(N) + v”(H). 

Proof. (1) The characters in It-r(H) extend to characters of the same type in Irr(G) 

by Proposition 5.3. The INI - 1 nonprincipal characters in Irr(N)= g(N) lie in 

H-orbits of size IHI, and each induces to an orthogonal character in Irr(G) by Pro- 

position 5.2. 

(2) Only the principal character in Irr(H) extends to an orthogonal character in 

Irr(G), all others are of type 3. The characters in lrr(N)\ { l,V}, lying in orbits of 

size IHI, induce to characters of the same types in Irr(G) by Proposition 5.2. 0 

J. Thompson has proved that a Frobenius kernel N is nilpotent (see e.g. [13, p. 
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1841). Thus N=Kx T, with IKI odd and T a 2-group, and hence v+(N)= v+(T). 

The structure of a Frobenius complement has been described by H. Zassenhaus 

(again, see [13]). If His solvable, then it has a normal split metacyclic subgroup L 

so that H/L is isomorphic with a subgroup of Sym(4). Thus v+(L) can be determin- 

ed (see [S]), and v+(H/L) is no problem, but there is no systematic way to use that 

information to determine vf for the extension H. If Z(H) is a 2-group, then even 

more precise information is available regarding the structure of H (see [13, p. 2001). 

If H is not solvable, then H has a subgroup K of index either 1 or 2 with 

K= SL(2,5) xM, A4 being of odd order (in fact of order prime to 30). Thus 

v+(K) = v+(SL(2,5)) = 5. 

Theorem 5.5. Zf G = Nx H is a Frobenius group, then GE gtl7 if and only if \HI = 2. 

Proof. ‘ t ‘. If H= (o), of order 2, then N is abelian of odd order, and 4x=~- ’ for 

all x E N by Proposition 5.1. Thus G E .Y@ by Proposition 3.2. 

‘-j ‘. It is clear from Theorem 5.4 that GE g’ if and only if IHl is even and 

HE 59’. But then H has a unique involution, so lHl= 2 by Theorem 3.3. q 

Corollary 5.6. Zf G is a Frobenius group, then G is totally orthogonal if and only 

if G is 2-uniform. 0 

6. Examples 

It is well known that finite (real) reflection groups are totally orthogonal. Berggren 

showed in [2] that the alternating group Alt(n) is ambivalent if and only if n E 

{ 1,2,5,6,10,14}, and it follows from Corollary 3.8 above that Alt(n) E 99 in 

precisely those cases. If G is a finite reflection group and His its rotation subgroup, 

observe that v+(H) is equal to the number of real conjugacy classes in H by Cor- 

ollary 3.7. We establish in this section the total orthogonality of 2-Sylow subgroups 

of all reflection groups and all Alt(n). 

Proposition 6.1. Zf GE g@ and IHI = 2, then the wreath product GwrHE 3-e. 

Proof. This follows from the general representation theory of wreath products. See 

[12, Theorem 4.3.341. q 

Theorem 6.2. The 2-Sylow subgroups of Sym(n) are totally orthogonal for all n. 

Proof. This follows inductively from Proposition 6.1 since a 2-Sylow subgroup T 

of Sym(n) is a direct product of wreath products of 2-Sylow subgroups of smaller 

symmetric groups by groups of order 2. 0 



Corollary 6.3. Every finite 2-group is a subgroup of a totally orthogonal 2-group. 

i7 

Corollary 6.4. If T is a 2-Sylow subgroup in a reflection group of type A,,, then 

TE .Ff7. 

Proof. The reflection group is isomorphic with Sym(n+ I). U 

The following explicit descriptions of 2-Sylow subgroups in Sym(n) and Alt(n), 

which follow easily from considerations of order, will be used in the proof of the 

next theorem. 

(*l) Suppose k,mEZ, with lsk and 15n7<2’, and set n=2”+ni. Let G,= 

Sym(2L)< Sym(n) and G2 = Sym({2X + 1 , . . . ,2” + m}) 5 Sym(n), so G,= Sym(m). 

Let H,, Hz be the alternating subgroups of G,, G?, let S,, Sz be 2-Sylow subgroups 

of H,, H,, and let T,, T, be 2-Sylow subgroups of G,, Gz, with T, rS, and T,rSZ. 

Then 

(a) T= T, T,= T, x Tz is 2-Sylow in Sym(n), and 

(b) S=S,SzU(T,\SI)(Tz\S2) is 2-Sylow in Alt(n). 

(+2) Suppose I <kEZ and set n=2’ ‘I. Let G, = Sym(2’) 5 Sym(n) and let Gz = 

Sym({2” + 1, . . . . 2’+‘})5Sym(n), so G, zG,, and let H,, Hz be their alternating 

subgroups. Let S, be a 2-Sylow subgroup in H,, let T, be a 2-Sylow subgroup in 

G, with T, 2 S, , and let o = (I, 2” + 1)(2, 2h + 2) ... (2”, 2hi ‘) of order 2 in Alt(n). Set 

Tz = “T, and Sz = uS,, 2-Sylow subgroups in Gz and HI. Then 

(a) T= (T, Tz) >a (a) is 2-Sylow in Sym(n), and 

(b) S= [(S,Sz)U(T,\S,)(T?.\Sz)] x(a) is 2-Sylow in Alt(n). 

Theorem 6.5. The 2-Sylow subgroups of Alt(n) are totally orthogonal for all n. 

Proof. It will be sufficient, by Corollary 3.8, to show that a 2-Sylow subgroup S 

of Alt(n) is ambivalent. Use induction on n; we may assume n>2 and assume the 

conclusion holds for Alt(n’) if n’< n. Choose kg Z with 2X<n<2”f’ and consider 

2 cases. 

(I) If n=2”+m, with lstn<2”,, we may take S=S,S,U(T,\S,)(T,\S,) as in- 

dicated in (* 1) above, with S,, Sz E .B by induction and T,, T2 E .d by Theorem 6.2. 

If XES, then x=xIxz, with either x,ES;, i= 1,2, or X,E T,\S,. If x,ES,, we may 

choose y,eSi with yjx,y,T’ =x1 ’ and yix,y,-’ =x, if i+j. Thus y,yz conjugates x 

to x-l and x is real. If x,E~;\S, we may choose ~;ET, with yjx,yj-‘=x,-’ and 

Y$,Y,- ’ =xJ if i#:j, and we may assume that each y, E T,\S, (if not replace it by 

y,x,). Thus again ylyz E S and it conjugates x to x- ‘, so x is real. 

(2) If n=2X”, take S as in (*2), with SlrS2, T,, Tz in <pi as above. Set R = 

S,S,U(T,\S,)(T,\S,), soS=R>a(a).Eachx~Risreal,asincase(l)above.Thus 

it will suffice to conjugate xo to (xa) ’ =CTX-’ in S. Write x=x,x?, with either 

x,ES, or X,E T,\S;. Note that x,.“x~ES,, and begin with ~1~ ES, that conjugates 
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Xl . 0xx2 to (xl . ux2)-’ = “XT ’ . x’- ‘. Then set y’ =x; ‘u, , so that y, conjugates xl . Ox2 

to x;’ . “XT ‘. It follows that XT’ . (“y,)x;’ =“(xly’xl), and we may set y2= 

XT ‘(QJX, ’ = O(xlylxl). Thus “y’ =x2y2x2, so if we set y =y,y, E R we have “y =xyx, 

or equivalently l’(x~) =x- ‘0. Finally then Xy(~a) = CJX~ ‘, and x(s is real. 3 

Theorem 6.6. Suppose G is a finite group generated by (real) reflections, and T is 
a 2-Sylow subgroup of G. Then TE g@. 

Proof. We consider the remaining irreducible reflection groups case by case. Write 

T(G) for a 2-Sylow subgroup of G. If G is a dihedral group (including G2), then 

T(G) is also dihedral, hence in g@ by Corollary 3.5. All other cases follow from 

either Theorem 6.2 or Theorem 6.5 because of the following isomorphisms: 

T(k) = T(Sym(2n)), T(D,,)= T(Alt(Zn)), 

T(F’,)z T(Sym(8)) and T(I,) is a homomorphic image, 

%%) = T(R ), T(&)= T(Q) x z,, and T(Es) E T(D,). n 

As often happens, a general result about reflection groups has been established 

by a case-by-case analysis. As always a unified conceptual proof would be of con- 

siderable interest. 
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