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We shall discuss three theoretical explanations of Listing's law for conjugate eye movements with the 
head fixed: the original argument by Heimholtz, which is "sensorimotor" in its attempt to optimize 
vision by using internal feedback from the oculomotor system, and two comparatively simple recent 
explanations based on either visual or ocnlomotor performance. These geometrical demonstrations 
shed some light on recent generalizations of Listing's law to vergent eye movements. 

Eye movements Listing's law Binocular vision Oculomotor system 

INTRODUCTION 

In order to optimize and simplify the difficult task of 
multidimensional motor control the brain constrains as 
far as possible redundant degrees of freedom and estab- 
lishes in its internal representations unique relations 
between target and motor space (Bernstein, 1967). An 
important application of this principle to the oculomotor 
system is Donders' law, which is well established for 
conjugate eye fixations with the head stationary, and 
recently also for vergence movements (Mok, Ro, 
Cadera, Crawford & Vilis, 1992; van Rijn & van den 
Berg, 1993; Minken & van Gisbergen, 1994). In this case 
Donders' law states that for each target position in 
3-dimensional space the rotation of the two eyes about 
their direction of sight, which is redundant for fixating 
a point target, is uniquely determined by neural control, 
independently of the eye trajectory in the past. 

From Donders' law and a principle of "easiest orien- 
tation" of the eye, H. yon Helmholtz tried to derive 
Listing's law for conjugate fixation, namely that the 
rotation axes of the eye are restricted to a head-fixed 
plane, in the famous Chapter 27 of his "Handbuch dee 
Physiologischen Optik". One might ask, whether it is of 
any physiological relevance to relate by mathematical 
arguments a strikingly simple parametization of 
measured "data clouds" to other theoretical concepts, 
which in biology are only valid up to unavoidable 
"noise" or "idiosyncrasies of implementation". How- 
ever, in the case of Listing's law, where in the alert 
monkey the standard deviation of Listing's plane is often 
1/2 deg relative to a torsional oculomotor range of about 
30 deg (see e.g. Hepp, van Opstal, Straumann, Hess & 
Henri, 1993), such an effort is worthwhile in order to 
understand better the visuo-motor integration in the 
brain. For this we take Helmholtz as an authority: the 
13 pages of highly nontrivial and for a 20th century 
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medical doctor almost incomprehensible mathematical 
derivations show how much importance he has at- 
tributed to the understanding of Listing's law. 

In modern language Helmholtz' principle of easiest 
orientation is a solution of the sensorimotor task of 
optimal perifoveal vision using an extraretinal signal 
about eye rotation. In this sense it is well in the main- 
stream of research on "active perception". It supports the 
neurophysiological finding of the inseparability of vision 
and motor control at all but the most peripheral levels 
and avoids meaningless disputes about the "sensory" or 
"motor" nature of Listing's law. However, the multidi- 
mensional mathematics of a twofold optimizion of visual 
performance and motor reafference is difficult, and 
Helmholtz' explanation of Listing's law is still incomplete. 
In this paper we shall discuss two recent and more 
elementary derivations of Listing's law, one based on 
purely visual performance and the other on motor con- 
trol. Both together are rather amazing in a philosophical 
sense: Nature can optimize vision by dealing efficiently 
with noncommutative eye rotations, and the best solution 
for the saccadic system also optimizes vision! 

Recently there have been several attempts to generalize 
Listing's law to near vision (Mok et al., 1992; van Rijn 
& van den Berg, 1993; Minken, Gielen & van Gisbergen, 
1995), based on partially conflicting data sets. As an 
application of our methods we shall discuss whether 
general theoretical principles can resolve this conflict. 

THEORETICAL EXPLANATIONS OF LISTING'S LAW 
FOR CONJUGATE EYE MOVEMENTS 

We shall always assume that the eye is a center-fixed 
sphere, so that its position is uniquely characterized by 
the rotation R of an eye-centered relative to a head-fixed 
coordinate system. For far vision we shall assume the 
rotations of the left and the right eye, Rr and R~, to be 
identical in these arbitrary and conveniently fixed coor- 
dinate systems. 
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"Visual" explanations of Listing's law 
Here we shall adopt Helmholtz' notations and refer as 

far as possible to his Chapter 27 (von Helmholtz, 1910) 
for a number of lengthy calculations, to which the 
interested reader is referred. As a head-fixed right- 
handed orthogonal coordinate system for the (cy- 
clopean) eye we take the x-axis ex in the midsagittal 
plane close to the center of the oculomotor range, the 
y-axis % through the interocular line and ez = e~Xey 
(x: vector product). The eye-fixed system is characterized 
by e~' along the direction of  sight s and two orthogonal 
directions, which are specified by Euler angles (0, ~, co), 
where 0 is the meridian and ~ the excenticity of  the 
direction of  sight: (ex, ey, e~) is first rotated by an 
angle - 0  about ex into (e~,, e~, e~), then by an angle 
about e~ into (e",  e~f, e;'), and finally by an angle - co  
about the line of sight e" = s into the eye fixed system 
(ex ......, ey, e"). Donders' law states that co is uniquely 
(and differentiably) determined by s, and Listing's law 
(with ( G ,  ey, e~) as primary frame) states that (e~', e'~7, 
e ' )  by a rotation in the y-z-plane.  This is equivalent 
to co(0, a ) =  - 0 ,  because the identity R(e~,0)  
R(e'~,~)R(e~,-O) =R(e~,c  0 shows that every fixation 
position can be obtained by a rotation about an axis e~ 
in the plane orthogonal to the primary direction ex: 

Donders'  law: co = o)(0, c~) = co(s) (1) 

Listing's law: o)(0, ~) = - 0 .  (2) 

By Donder 's  law all infinitesimal rotations which carry 
the eye from the Donders position co(s) to o)(s + ds), 
where ds is a infinitesimal change of the direction of  sight 
orthogonal to s, have their axes in a plane E(s). The axis 
e and angle of  this rotation are uniquely characterized by 
ds and the change in co is do) = cot 2'ds, if 2'  is the angle 
between e and s and ds = I ds[ (see Fig. 11 in Helmholtz, 
1910) Let e0 be the unit vector in E(s) such that the plane 
(s,e0> containing s and e0 is orthogonal to E(s), 2 the 
angle between e0 and s and E the angle between the planes 
(s ,e)  and (s,e0). The do) = cos E cot 2 ds. 

In this framework we can formulate the principle of  
minimal torsional change by which we would like to 
determine the Donders surface (1) so that vision is 
optimized in the following sense: if one looks in the 
direction s, a distant line element in a perifoveal direc- 
tion through s + ds has a certain orientation which 
changes by do), if one foveates it by a rotation with axis 
e in E(s). Such a torsional change could interfere with 
our invariant perception of  objects at rest between small 
eye movements, unless it is compensated by the brain. A 
torsional change is in general unavoidable due to the 
noncommutativity of  eye rotations, which does not 
allow e to be always orthogonal to s. For  instance, if 
Listing's law (2) is satisfied, E(s) would be the plane 
normal to s', the bisectrix between the line of sight s and 
the primary direction ex (von Helmholtz, 1910). In the 
sense of a best quadratic approximation up to order ds 2 
we require that the square of  the torsional change, 
averaged over all directions of sight s in the oculomotor 

range and all directions ds orthogonal to s, is minimal 
for the optimal choice of the Donders surface (1): 

Principle of minimal torsional change: 

Ev = fffD(do)vis~.O2 sin ~ dc~ dO dE minimal, (3) 

where do)visual = do), and where the integral is over the 
domain D, the product of the oculomotor range 
0 ~< 0 < 21r, 0 ~< a < a0(0) (with the volume element 
sina d~d0) and 0 ~< E ~< 2rr. We shall see that equation 
(3) has Listing's law (2) as the unique solution, if the 
oculomotor range is close to circular, i.e. if % is 
0-independent. 

Helmholtz tried to derive Listing's law from a far 
more complicated requirement, where the error is not 
(do)visual) 2 but the square of a relative torsional change 
dO)v isua l -  dO)moto r. Helmholtz searched for an eye-fixed 
plane F such that, if the motor  system rotates the 
direction of  sight from s to s + ds, the torsional change 
dO)moto r of  a corresponding infinitesimal rotation with 
axis f in F, when "fed forward" to the visual system, 
compensates optimally the apparent eye rotation-in- 
duced torsional movement of a perifoveal line segment 
at rest. Such a compensation can be learnt, because F is 
eye-fixed, i.e. s-independent, and the brain can use 
reafferent signals from the oculomotor system, in a 
similar manner as for keeping the visual world stationary 
between saccades. 

The compensatory torsional change dO)moto r c a n  be 
computed similarly t o  dO)visual: given ds there is a virtual 
rotation axis f and angle which would generate 
s ~ s + ds. Then dO)moto r = cos p 'ds --- cos 6 cot pds, 
where f0 is such that the plane (s,f0) is orthogonal to F, 
# the angle between f0 and s, and 6 is the angle between 
(s ,f)  and (s,f0). The angle x = c - 6  is independent of  
ds, and hence do)moto r = cos(E - x)cot pds. This leads to 
Helmholtz' requirement for the optimal choice of  co(s) 
and F: 

Principle of easiest orientation: 

E~M = I I I (do)visu, i - do)motor) 2 sin c~ d~ dO dE 

= minimal, (4) 

where the integration is over the same domain D as in 
equation (3). The use of  a relative torsional change in 
equation (4) introduces two more parameters,/~ and x. 
The e-integration in equations (3) and (4) can be carried 
out: 

Io 2~ (do)visual) 2 dE ds 2 cot 2 2 7~ (5) 

fO 2~ 2 - -  ( d o ) v i ~ a l -  do)motor) dE = g ds2[cot 2 2 + c o t  2 # 

- 2 cos ~c cot 2 cot #]. (6) 



THEORETICAL EXPLANATIONS OF LISTING'S LAW 3239 

Helmholtz succeeded to express 2 and x in equations (5) 
and (6) by clever use of  infinitesimal rotations 
parametrized by Euler angles: 

cot 2 )~ = (~cot~)2 + [Oco/O0 + cos e]2tsin 2 e (7) 

cos ~ cot 2 = sin co Oco/de 

- c o s  co[Oco/O0 + cos a cos col/sin e. (8) 

One sees from equations (6) and (8) that equation (4) as 
a functional of  co(s) is independent of x. Helmholtz 
succeeded to prove that # = ~/2 is an extremum of  
equation (4) as a function of  # and as a functional of  
co(s). [Remark that an extremum is not necessarily a 
minimum, as the example o f f ( x )  = x 3 - x in the interval 
[ -2 ,2 ]  shows: the absolute minimum of f i n  [ -2 ,2 ]  is for 
x = - 2 ,  while extrema with vanishing derivative df /dx  
are at x = - 3  1/2 (local maximum), x = 0 (point of 
inflection), and at x = 3-i/2 (local minimum).] Hence, if 
one requires the extremality of the average relative 
torsional change, then F has to be chosen orthogonal 
to the direction of  sight. This would be the best 
choice, if co(s) satisfies equation (4), but this does not 
prove Listing's law. For  a circular oculomotor range 
Helmholtz showed, that # = 1t/2 is the only extremum 
and that at the extremum Listing's law is satisfied. There 
is, however, still a gap in Helmholtz's proof, since an 
extremum is not necessarily the absolute minimum and 
not even a relative minimum of the error functional. 

On the other hand, the visual error Ev of the principle 
of minimal torsional change (equation 3) is much easier 
to handle. First one has to deal with a kinematical 
problem. The Euler angle parametrization co(0, c¢) of  
co(s) should be of  the form 

co(0, e) = r/(0, e) - 0, rl(2r~, e) = r/(0, e), 

0r//O0 --+ 0 for e ~ 0, q (0,0) = 0, (9) 

since for e ~ 0 s(0, e) --~ ex independently of 0, and since 
co(s) is assumed to be a smooth function of the direction 
of sight. Under this condition 

fo ~ 1%(°) 
Ev = g ds 2 d0 de[sin e (c'~q/c'%¢) 2 

do 
+(&~//O0 - 1 + cos e)2/sin e] (10) 

is well defined, since [ 1 -  cos el/sine---~0 for e---~0. 
Ev = Evl + Ev2 with 

f0 :~ t % (o1 Evl = ~z ds 2 d0 de{sin e(Oq/Oe) 2 
dO 

+ [(0r//&0) 2 + (1 - cos e)2]/sin e} (11) 

Ev: = 27t ds 2 de(cos e - 1)(0r//00)/sin e. 
dO do 

(12) 

If the oculomotor range is circular, then the 0- and ~- 
integration can be interchanged and 

Ev2 = 2r~ ds 2 de (cos e - 1)/sin e d0 ~q/c~0 = 0, 
do 

(13) 

since by equation (9) the second integral equals 
q(2n, ~) - q(0, a) = 0. Since all terms in the integrand of  
(11) are positive, one sees explicitly that for a circular 
oculomotor range Ev = Ew attains its absolute minimum 
for Listing's law as given by equation (2): 

O~tl~0 = O~/c~e = 0 =~ ,7(0, e)  = co(0, e)  

- 0 = ~ ( 0 , 0 )  = 0.  ( 1 4 )  

If  the oculomotor range is not circular, then one can only 
show that Listing's law is an extremum of Ev as a 
functional of t/. A necessary and sufficient condition for 
extremality, bey = 0 for an arbitrary variation 6t/ of t/ 
which is periodic in 0, is that t/ is a solution of the 
Euler-Lagrange equations 

~(sin e Ot//0e)/Oa + (02tl/~02)/sin e -= 0. (15) 

and that at the limit of the oculomotor range the 
boundary values satisfy 

f0 ~"d0 sineo(0)(&q/0e)(a0(0))6q(e0(0)) O. (16) 

Both equations are satisfied for Listing's law ~/--0. 

"Motor"  explanation o f  List&g's law 

Here we shall use the quaternion-based rotation vec- 
tor formalism (Haustein, 1989). Rotations R = R(a, p) 
are intrinsically specified by their axis a and nonnegative 
rotation angle p />  0 (using the right hand rule) or by 
their rotation vector r = tan(p/2)a. Then the rotation 
vector r~ *r2 for the (noncommutative) product R~ *R2 of 
two rotations (first action of R2, then of RI) is 

rl*r2 = (rl + r 2 + r l  x r2)/(l - rl.r2) , (17) 

with r l . r  2 the scalar product, and the inverse R -~ 
corresponds to - r .  Listing's law states that the rotation 
vectors for all eye positions during fixation 'with the head 
upright and stationary are contained in a plane. Then is 
always possible to choose a head-fixed coordinate sys- 
tem, in which the primary direction, orthogonal to 
Listing's plane, is the x-axis and coincides with the 
direction of sight, when the eye is in primary position 
p = 0. In these coordinates r x, r y, r: are called the 
torsional, vertical and horizontal components of eye 
position. For Listing positions " t rue" torsion vanishes, 
i.e. rX= 0, but this should not be confused with the 
torsional change do) in the "visual" explanations. 

To a good approximation, normometric saccades 
from rl to r2 are fixed-axis rotations (Tweed & Vilis, 
1988; Tweed, Misslisch & Fetter, 1994), but with small 
"blips" which are possibly due to the idiosyncrasies of 
the eye plane (see, however, Schnabolk & Raphan, 
1994). By definition, a fixed-axis rotation from R~ to R2 
has the trajectory Rzj (t) = R(azl , p(t))*R~ with p(fi ) = 0 
and p( t2)= P2t at initial and final times t~ and t2. Here 
R~ and R2 are the rotation matrices corresponding to r~ 
and r2, R21 = Rz*R{  1 (*: matrix product) is the rotation 
which carries R1 into R2, and a2~ and P2~ are the rotation 
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axis and angle of R2~. It is a mathematical fact that 
fixed-axis rotations are lines of  shortest length 
(geodesics) on the Lie group SO(3) of  rotations (see e.g. 
Sternberg, 1964). It can be checked by direct calculation 
(Hepp, 1990) that the rotation vector trajectory r2~ (t) of  
R21 (t) is always a straight lines between r~ and r 2. 

These facts imply that, if saccade between two Listing 
positions r~, r2 is a fixed axis rotation, then the entire 
saccade trajectory r2, (t) lies in Listing's plane. This leads 
to a simple "moto r"  explanation of  Listing's law: a set 
of  eye positions connected by saccades, which are fixed- 
axis rotations without violating Donders'  law en route, 
is a plane. If one assumes bilateral symmetry, then the 
primary direction of  this Listing plane lies in the mid- 
sagittal plane and it is natural to require that the primary 
direction is close to the center of  the oculomotor range, 
as in the "visual" explanations of Listing's law. 

IMPLICATIONS FOR BINOCULAR EYE MOVEMENTS 

There are recent attempts to generalize Listing's law 
to convergent eye movements. Mok et al. (1992) studied 
isovergence saccades and found a Listing plane for each 
eye. Relative to the primary direction of far vision the 
primary directions of  both planes were rotated tem- 
porally, theoretically by the vergence angle and exper- 
imentally by a smaller amount. Van Rijn and van den 
Berg (1993) studied binocular fixation. They could fit 
their data by a model, where the rotation vectors r and 
1 of  the right and left eye were represented in terms of 
a contribution s from the version system, which satisfies 
Listing's law s X =  O, and a contribution g from the 
vergence system with the planar constraint gY = 0: 

r = s - g , l = s + g  with s x = O  and g Y = O .  (18) 

Both Mok et  al. and van Rijn and van den Berg find a 
linear increase of  intorsion for upwards and extorsion 
for downwards cyclopean eye position, but the slope in 
the second investigation is about twice of that found in 
the first study. 

Another generalization of Listing's law was proposed 
by Minken et  al. (1995) by parametizing r and I in terms 
of a cyclopean and a vergence contribution, c and v, 
using the multiplicative law (equation 17) of rotation 
vectors 

r = v * e , i = ( - v ) * e ,  with c x = v  y = 0 .  (19) 

In both (18) and (19), the two planar constraints on s 
and g or on e and v completely fix the two redundant 
degrees of  freedom of  the two eyes, as required by 
Bernstein's principle (1967). With d = r * ( - l )  = 
tan(v/2)n, n =d/Idl ,  v = tan(v/4)n and c =v*l  one can 
solve equation (19) for c and v. The multiplicative 
generalization (equation 19) of  Listing's law also pre- 
dicts a linear dependence of torsion with vertical eye 
position, but with a slope half as large as that in equation 
(18). A recent experimental study by Minken and van 
Gisbergen (1994) found torsional vergence components 
at various levels of  elevation, which are intermediate 
between those predicted by equations (18) and (19). The 

question arises whether the mathematically rigorous 
approach to Listing's law for conjugate eye movements 
can be generalized to vergence movements and give some 
preference to one or the other of  the two conflicting 
models (equations 18 and 19). A necessary point of  
departure for the discussion will be the assumption of  
Donders'  law for r and 1 during binocular fixation. 

The "motor"  explanation relies on the fact that 
saccades are to a good approximation fixed-axis 
rotations. Due to the different dynamics of  the saccadic 
and vergence system this can only be assumed for 
isovergence saccades, where it is consistent with the data 
by Mok et  al. (1992). If  one assumes that isovergence 
saccades have trajectories which pass through Donders 
positions, then the rotation vectors of  both eyes have to 
lie on Listing planes, as in the conjugate case. This, 
however, is not exactly compatible with equations (18) 
and (19), which lead to exact isovergence planes only 
when neglecting higher than second order powers in the 
rotation vectors. A more serious difficulty of the 
"motor"  explanation is to show that the isovergence 
Listing planes are both temporally rotated by an amount 
equal to the vergence angle. 

The "visual" explanation, based on the principle of 
minimal torsional change for stereovision, encounters 
serious geometrical problems and has not yet been 
carried through in full generality. However, from this 
point of view the generalization (equation 19) of 
Listing's law is very attractive, because the expressions 
for r and 1 in terms of e and v have a clear geometric 
meaning: Let both eyes fixate a point target with their 
direction of sight elevated by 0 (the angle of the first 
rotation of both eyes about ey) and with their azimuths 
~, and cq (the angles of  the second rotation of each eye 
about e~). In terms ofc~ = (~r + Cq)/2 and v = ~r -- ~l these 
eye positions have cyclopean and vergence vectors 
(Minken et  al., 1995) 

e = (0, tan(0/2)[1 - tan2(a/2)], 

tan(e/2)[l  + tan2(0/2])/[1 + tan2(0/2)tan2(a/2)] (20) 

v = tan(v /4) (sin 0, 0, cos 0). (21) 

All other eye positions which fixate the same visual 
target are of the form 

r' = [tan(Or/2)Sr]*V*C, 's = [tan(~Ot/2)st]* ( - v ) * e  (22) 

with further rotations about the lines of sight s, and s t of  
the right and left eye. 

For conjugate eye positions with r = i = c satisfying 
Donders'  law, the principle of minimal torsional change 
and a circular oculomotor range lead to Listing's law for 
e. Assume that for a target with given 0, c~ r, at the 
convergent eye position (equation 20), equation (21) is 
obtained from the initial Listing position r = ! = c with 
ct = (ct r + cq)/2, v = 0 by a rotation of r by v and of ! by 
- v  according to equation (21). This rotation is about an 
axis orthogonal to the directions of  sight of  both eyes. 
Hence it does not introduce any torsional deviation. The 
more general convergent eye movement to equation (22) 
introduces torsional deviations, unless ~ r = q J l = 0 .  
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Hence,  if  we extend the pr incip le  o f  min ima l  to r s iona l  

change by  requi r ing  tha t  all convergent  Donde r s  eye 

pos i t ions  could  be reached f rom the con juga te  Donde r s  
pos i t ions  with the same cyc lopean  e wi thou t  to rs iona l  
devia t ion ,  then equa t ion  (19) has  been p roved  for  a 
c i rcular  o c u l o m o t o r  range.  The  same a rgumen t  is not  
app l icab le  to the addi t ive  genera l iza t ion  (equat ion  18) o f  
Lis t ing 's  law, which therefore  appea r s  to be less op t ima l  
for  vision. However ,  cau t ion  is necessary,  as one sees 
when one appl ies  the pr inciple  o f  min ima l  to rs iona l  
change  to conjuga te  eye-head  f ixat ions (S t r aumann ,  
Has lwan te r ,  H e p p - R e y m o n d  & Hepp ,  1991; G lenn  & 
Vilis, 1992). F r o m  the po in t  o f  view of  vis ion one would  
predic t  a perfect  Lis t ing plane for  gaze fixations.  How-  
ever, gaze movemen t s  might  be more  cons t ra ined  by the 
b iomechan ics  o f  the head than  by vision, so that  the 
ro t a t ion  vectors  o f  the eye in the head  are expected to 
be cons t ra ined  more  closely to a p lane  than  those o f  the 
eye in space, in pa r t i cu la r  since Lis t ing 's  law also 
opt imizes  eye saccades.  

CONCLUSION 

Lis t ing 's  law is a very efficient way o f  implement ing  
D o n d e r s '  law tha t  minimizes  the tors iona l  ro t a t ion  o f  the 
visual field and  is the unique  imp lemen ta t i on  where any 
eye o r ien ta t ion  can be reached f rom any o ther  by  a 
fixed-axis ro t a t ion  wi thou t  v io la t ing  D o n d e r s '  law en 
route.  The  deep  insight,  tha t  the o c u l o m o t o r  system 
allows,  at  least  for  the " d e f a u l t "  case o f  far vision in a 
c i rcular  o c u l o m o t o r  range,  s imul taneous ly  an  op t ima l  
in tegra t ion  o f  the requ i rements  o f  vision and  m o t o r  
cont ro l ,  is or ig inal ly  due to Helmhol tz .  This  a p p r o a c h  
has recent ly lead to new theore t ica l  ideas  a b o u t  sensori-  
m o t o r  in tegra t ion  and  to interes t ing exper iments  (see e.g. 
H e p p  et al., 1993). It defies the c la im tha t  N a t u r e  is jus t  
a " t inke re r " .  

REFERENCES 

Bernstein, N. (1967). The co-ordination and regulation of movements. 
Oxford: Pergamon Press. 

Bietenholz, W. (1988). Nicht-abelsche Augendynamik. Diplomarbeit 
E. T. H., Zfirich. 

Glenn, B. & Vilis, T. (1992). Violations of Listing's law after large eye 
and head gaze shifts. Journal of Neurophysiology, 67, 309 318. 

Haustein, W. (1989). Considerations on Listing's law and the primary 
position by means of a matrix description of eye position control. 
Biology and Cybernetics, 60, 411-420. 

von Helmoltz, H. (1910). Handbuch der Physiologischen Optik, (3rd 
edn). Hamburg and Leipzig: Voss. English translation (1925): 
Helmholtz" treatize on physiological optics. New York: Dover. 

Hepp, K. (1990). On Listing's law. Communications in Mathematical 
Physics, 132, 285-292. 

Hepp, K., van Opstal, A. J., Straumann, D., Hess, B. J. M. & Henn, 
V. (1993). Monkey superior colliculus represents rapid eye move- 
ments in a two-dimensional motor map, Journal of Neurophysiology, 
69, 965-979. 

Minken, A. H. W. & van Gisbergen, J. A. M. (1994). A three-dimen- 
sional analysis of vergence movements at various levels of elevation. 
Experimental Brain Research, 101, 331 345. 

Minken, A. H. W., Gielen, C. C. A. M. & van Gisbergen, J. A. M. 
(1995). An alternative 3D interpretation of Itering's equal- 
innervation law for vergence and version eye movements. Vision 
Research, 35, 93-102. 

Mok, D., Ro, A., Cadera, W., Crawford, J. D. & Vilis, T. (1992). 
Rotation of Listing's plane during vergence. Vision Research, 32, 
2055 2064. 

Schnabolk, C. & Raphan, T. (1994). Modeling three-dimensional 
velocity-to-position transformation in oculomotor control. Journal 
of Neurophysiology, 71, 623~38. 

Sp6rli, D. (1994) Mathematische Herleitung des Listing'schen Gesetzes 
aus einem physiologischen Prinzip und Erweiterung auf das 
Stereosehen. Diplomarbeit E. T. H., Zfirich. 

Sternberg, S. (1964). Lectures on differential geometry. Englewood 
Cliffs, N J: Prentice Hall. 

Straumann, D., Haslwanter, T., Hepp-Reymond, M-C. & Hepp, K. 
(1991). Listing's law for eye, head and ann movements and their 
synergistic control. Experimental Brain Research, 86, 209-215. 

Tweed, D. & Vilis, T. (1988). Rotation axes of saccades. Annals of the 
New York Academy of Science, 545, 128-139. 

Tweed, D., Misslisch, H. & Fetter, M. (1994). Testing models of the 
oculomotor velocity to position transformation. Journal of Neuro- 
physiology, 72, 1425 1429. 

Van Rijn, L. J. & van den Berg, A. V. (1993). Binocular eye orientation 
during fixations: Listing's law extended to include eye vergence. 
Vision Research, 33, 691-708. 

Acknowledgements--I would like to thank my students, W. Bietenholz 
and D. Sp6rli, for their efforts to explain to me the glorious and darker 
points in H. von Helmholtz' famous Chapter 27 on eye movements, 
H. Collewijn for bringing to my attention recent papers on the 
generalization of Listing's law for convergent eye movements, and 
both referees for helpful remarks. Partially supported by ESPRIT 
MUCOM-II (No. 6615) and Swiss National Science Foundation 
(No. 31.31963.91) grants to V. Henn. 


