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ABSTRACT 

In this work the group inverse of a matrix is used to define the #-order on square 
matrices of index 1. The #-order is similar to the * -order of Drazin [2] and the minus 
order of Hartwig [6, lo] and Nambooripad [17]. The #-order and the *-order are 
compared and contrasted. Many conditions are given which assure the equivalence of 
the various partial orders studied. 

1. INTRODUCTION AND PRELIMINARIES 

Matrices are denoted by capital letters, column vectors by lowercase 
letters. For a matrix A, the symbols A(A), M(A), and A’ denote the 
column span, null space, and transpose of A. 9-n represents the vector 
space of n-tuples (column vectors), and / rmXn the vector space of matrices 
of order m X n, defined on a field 9. For a complex matrix A, A* denotes 
its complex conjugate transpose. Two subspaces of a vector space are said to 
be virtually disjoint if they have only the null vector in common. B = A@(B 
-A)meansRankB=RankA+Rank(B-A)andisreadas“Aand B-A 
are disjoint.” A ~ denotes a generalized inverse (g-inverse) of A, that is, a 
solution G of the matrix equation AGA = A. The reflexive g-inverse A; of A 
is a solution G of the pair of equations AGA = A, GAG = G. A g-inverse of 
A which commutes with A is denoted by A&,. For a complex matrix A, a 
minimum norm g-inverse A,,, is a matrix G that satisfies the pair of equations 
AGA = A, (GA)* = GA. A least square g-inverse A, is similarly defined 
through the equations AGA = A, (AC)* = AG. The Moore-Penrose inverse 
A + is the unique solution G of the simultaneous matrix equations 

AGA=A, GAG=G, (AG)* = AG, (GA)* = GA. 
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{ A } represents the class of all g-inverses of A; { A, }, { A, }, etc. are 
similarly interpreted. 

A ; r, A ;, A In, are defined as follows: 

{A,,) = {A,)+% >a 
{A,}={A,)n7(4), 

{Ain) = {A, b’7(A,b 

When a square matrix is of index 1, that is 

Rank A = Rank( A’), (1) 

it was shown by Englefield [4] that there exists an unique reflexive g-inverse 
of A which commutes with A. This was denoted by A,. The same result was 
independently obtained by Erdelyi [S], who named this unique g-inverse the 
group inverse because the conditions imposed in the definition of his unique 
inverse are precisely those that ensure that the matrix A belongs to a 
multiplicative group. The group inverse of A is denoted by A#. Arghiriade [l] 
and Pearl [18] gave necessary and sufficient conditions for a matrix A to 
commute with its Moore-Penrose inverse A’. When it does, A + will thus 
coincide with A*. 

The author [ 141, who was interested in obtaining g-inverses G of A with 
specified row and column spans, discovered the same g-inverse. In [14] it is 
shown that A# satisfies the conditions 

A(G) c A(A) (2) 

A(G’) c JY(A’). (3) 

This g-inverse is denoted Aic, R and C signifying row and column 
restrictions. One can adopt the equations 

AGA=A, GAG=G, AG=GA (4) 

as the definition of the group inverse, as is done by Englefield [4] and Erdelyi 
[5], and deduce (2) and (3). Alternatively, one can use AGA = A together 
with (2) and (3) as the definition and deduce (4) as is done in [14]. It was 
shown in [14] that a g-inverse satisfying any one of the two restrictions (2) 
and (3) exists if and only if the matrix A is of index 1. These inverses 
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(denoted by A, and Ai respectively), though not unique, share several 
properties with AiC and are computationally somewhat simpler. In [14], 
further, explicit algebraic expressions for Ai, A, are given; in particular it is 
shown that 

A&=A(A3)-A. (5) 

Robert [21] proposes the following equivalent definition for the group 
inverse. Let X be a linear space, and A a linear transformation of X into 
itself. Let .%‘(A) and JV( A) denote respectively the range and nullspace of 
A. When X = .@(A)$Jlr(A), A* is the linear transformation mapping X 
onto 9(A) such that AA* is the projector on a( A) along JV( A). Thus some 
of the results in [14] and [21] have been developed in parallel. 

In a star semigroup with a proper involution (denoted by *), Drazin [Z] 
introduced the concept of a star order which in the context of complex 

matrices of order m X n could be stated as follows: we define A : B to mean 

BA* = AA*, A*B = A*A. (6) 

It was shown that (6) is equivalent to the following definition: 

A:B if BA+=AA+, A+ B = A’A. (7) 

Hartwig [6] and independently Nambooripad [17] introduced another 
partial order by weakening the requirement given in (6) or (7). This partial 
order, first called the plus order in [6] and later renamed the minus order in 
[lo], is defined as follows: We write A 7 B whenever 

&- =,&L-. A-B=A-A (8) 

for some generalized inverse A - of A. Clearly 

A:B =) A?B. (9) 

Hartwig and Styan [lo] state ten conditions, each one of which, together 
with A 7 B, implies A -? B. Additional conditions will be presented in this 
paper. Another goal of this paper is to introduce the sharp order through the 
unique group inverse. 
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We write A : B if A and B are square matrices of index 1 and 

BA#= AA*, A#B = A*A. (10) 

It is shown in Hartwig and Luh [9, p. 121 that in a strongly regular ring (10) 
and (8) are equivalent. We note that the minus order and the sharp order 
could be defined for matrices on any field, unlike the star order, which as 
given in (6) or (7) requires the field to be real or complex. This distinction 
must be kept in mind when stating and proving results about the partial 
orders. Normally the choice of field is clear from the context. 

DEFINITION [19]. A pair of matrices A and B of the same order is said 
to be parallel summable (p.s.) if A(A + B)- B is invariant under the choice of 
the g-inverse (A + B). When A and B are p.s., A(A + B)- B is called the 
parallel sum of A and B and denoted by the symbol P( A, B). 

2. PROPERTIES OF THE STAR AND SHARP ORDERS 

The equivalence of (a) and (b) in Lemma 2.1 below is due to Hartwig [6]. 
The remaining equivalences are trivial; see the proof of Lemma 1.2 in Mitra 
and OdeIl [16] in this regard. 

LEMMA 2.1. The following statements are equivalent: 

A7 B, (lla) 

B=A@(B-A), (lib) 

P(A,B-A)=O. (114 

LEMMA 2.2. When the matrix A is of index 1, the condition (10) is 
equivalent to the following condition: 

BA=A’=AB. (12) 

Proof. Since AsA = AA*A = A2A#= A, clearly (10) j (12). That (12) * 
(10) is a simple consequence of (5). # 

Thus the condition (12) could replace (10) in the definition of the sharp 
order. It is shown by Drazin [3] that in a finite semigroup a necessary and 
sufficient condition for a2 = ab = ba to define a partial order is that the 
semigroup is quasiseparative. 
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LEMMA 2.3. 

(a) A7Bi~anclonZyi~(B-A)~B. 

(b) A : B ij= and only if (B - A) : B. 

(c) A$B~~ando7~Zy~~(B-A)i#B. 

Proof (a), (b), and (c) follow respectively from Lemma 2.1, (6), and 

(12). 

Note that (12) j B 2=A2+(B-A)2 and AT B * A 3 B. Hence, in 

view of (ll), if A and B are of index 1, so is B - A. n 

THEOREM 2.1. 

(a) A 7 B ifund only if 

{B-)c{A-}. (13) 

(b) A:BifandonZyif 

{B,}c{A,), {B,)c{A;). 04 

(c) A z B if and only if 

Proof. (a) and (b) are proved in [15]. 

For the “only if” part of (c), clearly A ? B =$ A i B =$ { B } c { A } 
* B = ACB (B - A). Let B&, be an arbitrary commuting g-inverse of B; 
then BBC;, = BB* is the unique projector projecting onto _/Z(B) along 
JV( B). Since AA* is the projector onto J(A) along &‘(A) and (B - A) 
(B - A)* is the projector onto A( B - A) along ,Ir( B - A), (12) implies that 
AA*+ (B - A)( B - A)* is the projector onto _M( B) along M(A) n A”( B - 
A) = N(B). Hence BB&,, = AB&, + (B - A)B,;, = AA*+ (B - A)( B - 
A)#= A#A +(B - A)#(B - A) = B&,A + B&,(B - A). Since .&Z(A) and 
.4Z( B - A) are virtually disjoint, and so are -//(A’) and J[(B - A)‘], this 
implies 

ABC;,,, = AA# = A*A = B,;, A. 
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Thus B,,, which belongs to { BP } and hence to { A _ }, is indeed a 
commuting g-inverse of A, and hence { B,,, } c { A&,,, }. 

For the “if” part, assume now that (15) holds. Then B#E (A,,,}. We 
now show that (15) * (13). To avoid triviality assume that B is singular. 
Observe that {B& } = { B#+ (I - B%)U(Z - BBS?, U arbitrary}. Then 

{ B,JXllI c { A ~ > * A(Z - Z3*B)U( Z - BB*)A = 0, which in turn implies 
that A(Z - B*B) or (I - BB*)A is a null matrix. Without loss of generality 
let (I - BB#)A be null and A(Z - B#B) be nonnull. Choose and fix U such 
that 

A( Z - B#B)U( Z - BB*) # 0. 

For this choice of U, B*+ (I - B*B)U(Z - BBS) E {B,, } c { A _ } but 
G? {A,,,}, since [B#+(Z - B#B)U(Z - BB#)]A = B#A = AB## A[B#+ 

{B-}= {B*+(Z-B*B)U+V(Z-BB*),U,Varbitra~y} c {A- 

therefore 

P(A, B - A) = 0. 

(I i B#B)U(Z - BB*)], which contradicts our assumption that 

KJ = {A,“,). 

Hence A(Z - B-B) is also null, which implies 

Here we have used Theorem 2.1(a) and Lemma 2.1 respectively. Then 

P(A,B-A)=AB-(B-A)=AB,-,,(B-A) 

=B,o,A(B-A)=0 

* AB,,,A(B-A)=A(B-A)=O. 

Similarly 

P(B-A,A)=P(A,B-A)=0 

=+. (B-A)B&A=(B-A)AB,,,=O 

a (B-A)AB,;,A=(B-A)A=O j A<#B 

This completes the proof. 
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In our next theorem we give conditions which specify when the minus 
and the star order coincide. 

THEOREM 2.2. The following statements are equivalent: 

(a) A 2 B; 

(b) ATI?, andforsomeG,E{A,} 

G,+(B-A)+E {II-}; (16) 

(c) ATB, andforsomeG,~{A~} 

G,+(B-A)+E {B-}. (17) 

Proof. We shall first establish the equivalence of (a) and (b). That 
(a) * (b) follows straightforwardly from (9), (6) (11) and the explicit expres- 
sion for the Moore-Penrose inverse 

A+=A*(A*AA*)-A* 

given in [13, p. 1111. Note that if (a) holds, 

B[A++(B-A)+] =AA++(B-A)@-A)+, 

[A++@-A)+]B=A+A+(B-A)+(%A) 

are both hermitian, and further 

B[A++(B-A)+]B=AA+A+(B-A)(&A)+(B-A)=B. 

Then 

RankB<Rank[A++(B-A)+] <RankA++Rank(B-A)+ 

=RankA+Rank(B-A)=RankB, 

which in turn implies 

A++(&A)+=B+. 
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Another proof of the proposition that A : B implies A+ + (B - A)+ = B+ 
appears in Hartwig and Styan [lo]. 

(b) * (a): A 2 B if and only if {BP } c { A } [Theorem 2.1(a)]. Hence 

G,+(B-A)+E {B-} c {A-}. 

Since G, E { A _ }, this implies 

A(&A)+A=O. 

InLemma2.1wehavenotedthat A7B = P(B-A,A)=P(A,B-A)= 
0. But then 

P(B-A,A)=(B-A)EA=(B-A)[G,+(B-A)+]A=O 

e [(B-A)+]*[G,+(B-A)+]A=o 

= [(B-A)+]*A*G;+[(B-A)+]*(B-A)+A=o. 

=+. A*[(&A)+]*(&A)+A=O 

CJ (B-A)+A=O 

ts (&A)*A=(&A)*(&A)(B-A)+A=O 

j (B-A)G,A=o 

= (B-A)A*=(B-A)G,AA*=O, 

whence (B - A)*A = 0, (B - A)A* = 0 * (a). 
(a) * (c): We have noted earlier in this proof that (a) implies A 7 B and 

A++(&A)+=B+, 

which in turn implies (c) 
(c) 3 (a): {(B-)*} = {(B*)- }, [(B - A)+]* = [(B - A)*]+, and 

{(A,)*} = {(A*),}; see [19,Theorem3.2.4]. Further, A7B a A* 7 B*. 
Hence, in view of the equivalence of (a) and (b), 

(c) - A*: B* * (a). 
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REMARK 1. Theorem 2.2 is not true if the Moore-Penrose inverse (B - 

A)+ in conditions (b) and (c) is replaced either by (B - A),, or by 
(B - A), or even by (B - A),. Consider for example 

Clearly A 7 B. Observe that 

( 1 ; ; E {A,,), (-Y 3 E {(B-Ahi} 

and 

(:, :j+( -; y)=( -: yj=B-+ 

However (B - A)*A # 0. Hence A ; B. 

Similarly consider 

B=(:, ;j, A=(: ;j, %A=( _; ;j. 

Clearly A i B, 

and 

(:, s)+(; y)=(:, !g=P. 

Further, (B - A)A* f 0 * A ; B. Finally, 

and the two matrices sum to 

( 1 1 0 +-1 
01 . 



26 SUJIT KUMAR MITRA 

REMARK 2. Theorem 2.2 exhibits the equivalence of (v), (vi), and (vii) 
with (i) in Theorem 2 of Hartwig and Styan [lo]. Along with Remark 1, it 
shows perfectly the extent to which the equivalence depends on the Moore- 
Penrose inverses, an open problem raised in [lo]. The proof of Theorem 2.2 is 
an algebraic proof of the equivalence of (vi) and (i), thus answering another 
question which is raised in [lo]. 

REMARK 3. A result similar to Theorem 2.2 is not available for the sharp 
order. To see this, let S and T’ be nonnull matrices of the same order with at 
least two rows and columns, such that 

ST=O, TS=O. 

The matrices 

,-A=(; !Z) (18) 

add up to 

which is an involution. A and A - B are idempotent; hence A#= A, 
(B - A)#= (B - A), and A#+ (B - A)*= B*. Clearly A 7 B. However, 

A(B-A)=(: is)+0 and AZB. 

THEOREM 2.3. 

(a) Zf A -? B then A7 B and BA’B= A. Conversely, A7 B and 
M(BA+B)cM(A), M[(BA+B)‘]c&A’) imply 

A : B. 

(b) lf A ? B, then A 7 B and BA#B = A. Conversely, A 7 B, B of index 
1, and _4!( BA#B) c A( A), _M[( BA*B)‘] = A( A’), imply 

A: B. 
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Proof. Part (a) was proved in Hartwig and Styan [lo, Theorem 21. For 

part (b), first, A : B 3 A 7 B follows from the definitions of the minus and 
the sharp orders. Next, BA#Z3 = A is a consequence of (10). Now assume 
A 7 B and J( BA*B) c A( A) hold. By Theorem l(a), since A 7 B, we have 
{B-} c {Ap},soV(Z-BB-)A=O, A(Z-B-B)U=Oforarbitrary Uand 
V and arbitrary choice of BP, whence A = BB-A = AK B. Then 

A7B _ AB*A=A, A=BB*A=AB*B 
(19) 

and 

~a?( BA*B) c .hf( A) =a AA#BA#B = BA*B 

=a AB*( AA#BA#B) = AB#( BA#B) 

Similarly, 

=a AA*BA#B = AA#B = BA*B 

=a AA#B( B*A) = BA*B( B#A) 

==a A=AA#A=BA#A =s. AA#=BA*. 

&i’[(BA*B)‘] cJl(A’), A? B 

==a M[B’(A’)“B’] c.M(A’), A’7 B’ 

j A’(A’)*= B’(A’)% A’(A#)‘= B’(A*) 

==a A#A=A#B. 

THEOREM 2.4. 

(a) Zf A -? B, then A i B and B+AB+ = A+. Conversely, if A 7 B and 
&(B+AB+) c .k(A+)), A[(B+AB+)‘] c &[(A’)], then 

A : B. 
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(b) Zf A -? B, then A 7 B and B%B#= A#. Conversely, if A 7 B and 
.M( B*AB”) c JZ?( A#), &I[( B#‘AB#)‘] C A[( A#)‘], then 

A:B. 

Proof. The first part of (a) was proved in [lo]. We next prove both parts 
of (b), and this wiLl suggest a proof of the converse part of (a). 

From (2), (3), and (12) it is seen that 

A:B * (B-A)A#=A(B-A)*=A#(B-A)=(B-A)#A=O 

3 B[A#+(B-A)‘] =AA#+(B-A)(B-A)# 

=+ A*+(B-A)% {B-}. (20) 

Further, &[A*+ (B - A)#] c -M(B), d[{ A*+ (B - A)#}‘] C .M(B’). 
Hence 

A*+(B- A)#= B* 

and A <” B is seen to imply 

(21) 

A# <” B”. (22) 

Thus B%B# = A%A# = A#. We have already seen 

Conversely, 

JZ( B#AB#) c A( A#) =+ A*AB*AB*= B#AB# 

=) A*AB*AB*A = B*AB*A 

which together with A i B implies 

A% = B*A, using (13). 



GROUP INVERSES AND THE SHARP ORDER 

Similarly, 

_M[(B*AB#)‘] c JZ[(A#)‘] - (N)*A~ = (Bf)#At 

Therefore A* -? B*, which implies A z B, as required. 

29 

THEOREM 2.5 

(a) The following conditions are equivalent: 

(i) A : B; 
(ii) A 7 B, and AB * and B *A are hermitian; 

(iii) A 7 B, and AB+ and B+A are hermitian; 
(iv) A 7 B, and A+ B and BA+ are hermitian. 

(b) The following conditions are equivalent: 

(i) A z B; 
(ii) A 7 B, A commutes with B, and B is of index 1; 

(iii) A 7 B, and A commutes with B*; 
(iv) A 7 B, A* commutes with B, and B is of index 1. 

Proof. Part (a) was proved in [lo, Theorem 21. Since A* and B# are 
polynomials in A and B respectively [ 14, Theorem 5.31, conditions (ii), (iii), 
and (iv) of (b) are seen to be equivalent. It suffices to establish the 

equivalence of (i) and (iii). Clearly A <” B * A?B and A(B-A)=(B- 
A)A = 0 3 AB = BA d AB#= B#A. Conversely A 7 B, AB*= B#A j 

P(A,B-A)=AB-(B-A)=AB*(B-A)=A(B-A)B#=O, 

since BB#= B*B, which in turn implies 

A(B-A)=A(B-A)B*(B-A)=O. 

Similarly P(B-A,A)=O 3 (B-A)A=O. Hence A:B. We note that 
(12) - B 2 = A2 +(B - A)2. Hence when B is of index 1, so is A. n 
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THEOREM 2.6. The following conditions are equivalent: 

(i) A : B, 

(ii) A7B, AA* :BB*, 

(iii) A 7 B, A*A : B*B, 

(iv) A 7 B, (AA*)” -? (BB*)“, 

(v) A 7 B, (A*A)” : (B *IS)“, 

(vi) A 7 B, (AA*)“A : (BB*)“A, 

(vii) A 7 B, (A*A)“A* 2 (B *B)nB*, 

where n is a positive integer. 

Proof. Trivially condition (i) implies all the rest. We first establish the 
equivalence of (i) and (ii), for which it suffices to show that (ii) - (i). Now 

AA* :BB* 3 (BB* - AA*)AA* = 0 j BB*AA* = AA*BB*, which in 

turn implies that for some unitary U we have U *BB *U = Dt, U *AA* U = 
D,“, where Da and D, are diagonal matrices with nonnegative diagonal 

elements. Also, AA* : BB* - 0,” 2 Di, which implies that for suitable 

permutation of the columns of U, if necessary, 

i 

Dl” 0 0 
\ 

Dl” 0 0 

D,“= 0 0 0 D;= 0 0; 0 ’ (23) 

0 0 0 I 1 1 0 0 0 

where D, is diagonal positive definite of order rl X rl, D, is diagonal positive 
definite of order r, X r,, rl = Rank A, and rl + r2 = Rank B. Let the columns 
of U be partitioned as 

u=(u, i u, i u,) 

corresponding to the partitioning used in (23). Hence 
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where 

u,*u, = LTL, = I,,, 

(u, ; U,)*(U, i U,) = (K, ; K2)*(K1 ; K,) =zT,+rZ. 

31 

Then 

A7B = J@(A*)=~(L,)c.M(B*)=M(K, i K,) 

=a L,=K,(Z-A;)-K& for some matrices A 1 and A2 

==. B-A=@, i U,) 

* Rank(B-A)>r, [unless A r = 0] which contradicts (11) 

* A,=0 * L,=K,-K,A*, 

==a L:L,=K:K,+(L,-K,)*(L,-K,) 

3 (L,-K,)=O (since L:L,=K:K,=Z,,) 

3 L,- K,=O =a A=U,D,K:, B=UID,K: +U,D,K,* 

Thus (i) and (ii) are equivalent. 
We next show that (iv) j (i). The hypothesis (AA* )” 2 (BB * )” implies 

that (AA*)” and (BB * )” commute. Hence for some unitary U we have 
U *(AA*)“U = D,““, U*(BB*)“U= Dt”, where Da and D, are diagonal 

matrices with nonnegative diagonal elements. Further, (AA* )” 2 (BB * )” * 
D2” : D2” 

a 

(“. 

- D,“:D,” * AA* = UDzU* : UDECJ* = BB*. Hence (iv) 
==9 (ii) 3 1). 

Also, (AA*)“A 2 (BB*)“B j (AA*)‘“+l ? (BB*)‘“+l. This shows 
(vi) j (iv) a (i). Next observe that (iii) * A* i B *, A*A 2 B *B * A* 2 
B * [using the equivalence of (i) and (ii)], which in turn implies (i). Similarly 
(v) * (iii) 3 (i) and (vii) * (iii) * (i), and all the equivalences in Theorem 2.6 
are established. n 
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REMARK 4. A result similar to Theorem 2.6 is not available for the sharp 
order. Consider matrices A and B as in Remark 3. Here A2 = A and B2 = I. 
Hence A’( B2 - A’) = (B’ - A2)A:= 0 = A2 ? B2. We have already noted 
in l$emark 3 t$at A 7 B and A R B. Nevertheless it is easy to check that 
A < B 3 A” < B” for any positive integer n. 

REMARK 5. Let A and B be complex matrices of order m x n. Trivially 
A -? B * A*A : B *B, AA* 2 BB *. Conversely A*A % B *B, AA* 2 BB * 
=a AB*(AB*)* = AA*BB*, A*B(A*B) * = A*AB *B. Nevertheless A : B 
does not follow from the given premises, as the following counterexample 
shows. Let r and s be positive integers such that r >, 2, s >, 1, r + s < 
min(m, n), and L be a unitary matrix of order r, different from I,. Also, let P 
and Q be unitary matrices of order m and n respectively. Define A and B as 
follows: 

Observe that AA* : BB *, A*A 2 B *B, but 

A;B, 

since L # I. It is shown by Hartwig and Styan [ll, Theorem 4.21 that when 
A and B are idempotent, 

A:B e A*A:B*B, AA*:BB*. 

The following theorem extends this result. 

THEOREM 2.7. A : B is equivalent to (AA*)“A 2 (BB *)“B for any 

positive integer n. 

Proof. The *a part is trivial. On the other hand (AA* )“A 2 (BB * )“B 
=a (AA*)2”+’ < (BB*)2”+1 which in turn implies that ( AA*)2ni ’ and 
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(BB*y”+l commute. Hence for some unitary matrix P, 

(AA*)2”+’ = PD,P*, (BB*)2n+1= PDpP*, 

where Da and Dp are diagonal matrices with nonnegative entries in the 

diagonal positions. Further, ( AA*)2”+ ’ 2 (BB *)2”t ’ - Da : Db. Hence, 

redefining P if necessary, one can write 

where D, and D, are diagonal matrices with strictly positive diagonal 
entries. One can therefore write, with K and L unitary matrices, 

A = PD,K, B = PD,L, 

where 

Now 

(AA*)“A : (BB*)“B 

* (D,L- D,K)K*D,=O =a (B- A)A* =O. 

Similarly (AA*)“A 2 (BB*)“B j (A*A)“A* : (B*]“B* - (B* - A*)A 

= 0. Hence 

A:B. n 
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It was shown by Hartwig and Drazin [8] that complex matrices of order 
m X n constitute a lower semilattice under the * -order. The same cannot be 
said about the Sorder. Let A and B be square matrices of order n x n, both 
of index 1. Let g be defined 

If g has a unique maximal element under the Sordq, this element is called 
the sharp infimum of A and B and denote% by A A B. Given below are a 
pair of matrices A, B in W4x4 for which A A B does not exist. Let 

10 0 0 0 

R=O 1 
0 0 10’ 

\o 0 0 0 i 0 1 

Note that A = B + K, where 

/ 

1’ 

K= ; (1 1 1 -2). 

I/ 

If the matrix C is dominated by the matrix B, then C is an idempotent 
matrix H of order 3 X 3 bordered by a null row and a mrll column as in B. 
Since (B-C)C=C(B-C)=O, it is seen that (A-C)C=C(A-C)=O 
* KC=CK =o * 

-+f) c Jti(L), JqH’) c JqR’) 

where 

that is, H = LZR for some matrix Z. But since H = H2 = LZRLZR, we have 

RankHgRankRL=Rank i i =l 
( 1 
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and 

z = z( RL)Z. 

To obtain a matrix C of maximum possible rank in G: one must therefore 
choose 

Z E { (RW }. 

A general solution to Z is given by 

where a and b are arbitrary complex numbers. This shows that a matrix C in 
g of maximum possible rank, namely 

‘=(8 L!R) 

is not unique, and A i B does not exist. Note that here 

B7A. 

Hence B = A A B = 2P(A, B), where A A B is defined as in A z B with 
minus order replacing the sharp order in the definition of g. The lattice 
properties of the * -order are also studied in Holladay [ 121, and those of the 
minus order in Mitra [15]. 

For a pair of complex matrices A and B of the same order, it was shown 
by Rao et al. [20] that 

A+E{B-}, B+E{A-} j A=B. (24) 

The same result is studied in an abstract algebraic setting in Hartwig [7]. The 
following example shows that a similar result is not true for the group inverse. 
Let S and T’ be nonnull matrices of the same order with at least two 
columns so that ST = 0. Consider 
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Clearly A2 = A = Ait, B2 = B = B#, and 

SUJIT KUMAR, MITRA 

BAB=B - A=A#E {B-}, 

ABA=A - B=B*E {A-}, 

However, A # B. 
The following characterization is however true. 

THEOREM 2.8. Zf Ass {B&,} and B*E {A- }, then 

A = B. 

Proof. Note that A*E { BP } * Rank A#= Rank A > Rank B. Similarly 

B#E {A-} * RankBaRankA. Hence A#E{B&,,}, B#G{A~} 3 

Rank A = Rank B. This implies A# is a reflexive commuting inverse of B. 
Using a result of Englefield [4] and Erdelyi [5] quoted in Section 1 of this 

paper, we have A* = B*, which implies A = B as required. n 

It is a pleasure to thank Dr. George E. Trapp for his careful reading of the 
manuscript and suggestions which led to a substantially improved presenta- 
tion. 
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