
Theoretical Computer Science 284 (2002) 373–396
www.elsevier.com/locate/tcs

Real functions computable by %nite automata using
a'ne representations

Michal Kone*cn+y1

School of Computer Science, The University of Birmingham, Edgbaston, B15 2TT, UK

Abstract

This paper tries to classify the functions of type I n → I (for some interval I ⊆ R) that can be
exactly realized by a %nite transducer. Such a class of functions strongly depends on the choice of
real number representation. This paper considers only the so-called a'ne representations where
numbers are represented by in%nite compositions of a'ne contracting functions on I . A'ne
representations include the radix (e.g. decimal, signed binary) representations. The %rst result is
that all piecewise a'ne functions of n variables with rational coe'cients are computable by a
%nite transducer which uses the signed binary representation. The second and main result is that
any function computable by a %nite transducer using an a'ne representation is a'ne on any
open connected subset of I n on which it is continuously di3erentiable. This limitation theorem
shows that the set of %nitely computable functions is very restricted. c© 2002 Elsevier Science
B.V. All rights reserved.

Keywords: Real number computation; Finite automaton; A'ne representation;
Sub-self-similarity; Piecewise a'ne function

1. Introduction

In many computer applications, there is the need to represent and compute with
real numbers. Nevertheless, real numbers, being in%nite objects in substance, cannot
generally be stored in computer memory nor supplied to a digital computer process as
an argument in %nite time. The traditional solution to this problem is to approximate
real numbers by a fairly large %nite set of rational numbers called the =oating point
numbers. In many cases, this approximation signi%cantly deviates from what it should
represent due to accumulated round-o3 errors (cf. [15] for a thorough investigation).

1 Partly supported by The Overseas Research Students Awards Scheme (ORS) award of the Committee
of Vice-Chancellors and Principals of the Universities of the United Kingdom (CVCP).

E-mail address: m.konecny@cs.bam.ac.uk (M. Kone*cn+y).

0304-3975/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(01)00095 -0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81111991?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

374 M. Kone%cn&y / Theoretical Computer Science 284 (2002) 373–396

One solution to this problem (as used by numerical analysts) is to develop algorithms
that are stable—despite round-o3 errors, they calculate a result with a guaranteed degree
of accuracy. Another solution is to abandon the =oating point and compute without
round-o3 errors by means of some representation of real numbers that allows arbitrary
accuracy—the so-called exact real number computation. We restrict ourselves to this
kind of computation in this paper.

There has been extensive research on which real functions are computable exactly
using various real number representations and computational models (see for example
[20, 3, 4] among the more recent studies). There has also been research on complexity
theory of real number computation by Ko and others [7, 6]. Their research has been
mainly focused on higher complexity classes like P, NP and EXP.

We study one of the lowest complexity classes, the class of functions computable
with constant memory usage. This is a proper subclass of the linear time complexity
class. Such a study is motivated mainly by a desire to get algorithms for very fast
and cheap computation of some functions and to show that others cannot be computed
so cheaply, no matter what representation or technique is used. As a byproduct, this
study might contribute to our understanding of exact real number representation and
computation in general.

1.1. Computational models

Computation with exact real numbers can be organized as an incremental stream
computation or by a query-and-answer dialogue. In the incremental stream-based ap-
proach (e.g. used in [4, 16]), a machine reads in%nite streams that represent the argu-
ments and produces another in%nite stream that represents the result. Each %nite pre%x
of an in%nite representing stream is an approximation to the represented value. In the
query-and-answer computational model, a query usually states the precision and the
answer is an approximation to the value of the given precision. Examples of the non-
incremental approach are exact real number algorithms by M+enissier-Morain [15] and
the oracle Turing machines studied by Ko [6].

The latter approach has the advantage that no e3ort is wasted in producing inter-
mediate results and in storing information which would be used only for processing a
precision higher than the one actually needed. The former one can also have an advan-
tage: its incrementality allows the computation to proceed without either (a) having to
calculate the desired precision for each argument before knowing anything about them
or (b) risking redundant work caused by multiple overlapping queries about the same
argument or (c) by querying for an unnecessarily high precision about an argument.

1.2. Finite computability

Since we are studying computability with a limited memory, we can consider only
input of a limited amount of data at a time. Therefore we choose the stream processing
incremental model, embodied by %nite transducers.

M. Kone%cn&y / Theoretical Computer Science 284 (2002) 373–396 375

The di'culty in studying a low level complexity class is that it very much de-
pends on the representation. 2 For example, nullary functions, i.e. constants, that can
be computed with a %xed amount of memory are exactly those whose representation is
periodic. The set of numbers that have a periodic representation is di3erent in di3erent
representations.

If we are successful in exploring how the set of %rst order %nitely computable func-
tions depends on the representation, we might get a tool for comparing the e'ciency
of representations. If a representation allows more of the important basic functions to
be computable by %nite transducers, it can be considered more e'cient in a certain
sense.

There has been some work in the area of real number computability by %nite ma-
chines. There are exact real algorithms (e.g. for calculating the binary arithmetical
mean) that can be implemented as %nite machines using the signed binary represen-
tation. Heckmann [5] has shown which unary and binary MLobius transformations are
computable in a representation by Potts and Edalat [17]. 3 This paper extends this re-
sult for a wider class of functions and a wider class of representations. We consider
total and single-valued n-ary functions for n∈N as well as unary functions. The only
restriction which we put on a function before we can say something strong about its
%nite computability is that it is continuously di3erentiable within some region.

Similar results to ours, but restricted to a particular variant of the binary repre-
sentation, have been published very recently by Lisovik, Shkaravskaya and others
[11–13, 19]. In [12], it is stated and, in [13], fully proved that whenever a push-
down unary transducer computes a function f di3erentiable on an interval (a; b), then
f is a'ne on (a; b). In the latter paper, the same technique was used to prove an
even stronger theorem stating that a function computed by a %nite transducer cannot
be properly convex on any interval (a; b).

We will prove a result similar to the former one but holding for transducers that use
any a3ne representations and for functions of multiple arity. On the other hand, our
technique requires a stronger assumption of continuous di3erentiability.

Shkaravskaya [19] showed that any a'ne function f : I1 × · · ·× In → I1 × · · ·× In
with rational coe'cients de%ned on a compact 4 hyper-rectangle with rational coordi-
nates is computable by a %nite transducer. In [11], it is shown that any unary piecewise
a'ne function with rational coe'cients is computable by a %nite transducer.

We will extend also these results by showing that any piecewise a'ne multiple
argument function with rational coe'cients is computable by a %nite transducer using
the signed binary representation.

2 First order computability is independent of the choice of representation as long as a set of basic functions
is computable [1]. The class of polynomial time computable real functions is the same for the most common
representations [6].

3 This representation is a translation of the signed binary representation to another interval.
4 The original assumption is a bit weaker but not substantially for our context.

376 M. Kone%cn&y / Theoretical Computer Science 284 (2002) 373–396

1.3. Structure of the article

In Section 2, the class of a'ne representations is de%ned as well as its most common
computationally feasible example, the signed binary representation.

Formal de%nition of a %nite transducer with n input and one output channels follows
in Section 3. The de%nition is tailored to our exact real arithmetic purposes so that all
input and output symbols are digits of some a'ne representations. A general transducer
computes a stream function on the level of symbols. This function can be factored by
the (to some extent redundant) representations to become a partial multi-valued function
on the real numbers.

In Section 4, we make a crucial observation that in transducers which use a'ne
representations, we can associate a function with each reachable state. This function is
(a) the function which would be computed if this state would be initial, (b) derived
from the function of the initial state. This observation leads to two propositions. One
is useful for proving the main limitation theorem in Section 8 and the other one for
constructing %nite transducers and for proving them correct.

The latter proposition is fully utilized in Section 5 to show that all piecewise a'ne
n-ary functions with rational coe'cients are %nitely computable using the signed binary
representation.

The next three sections (i.e. Sections 6–8) gradually proceed to the main limitation
theorem for a'ne representations. Section 6 proves it for strongly connected unary
transducers, Section 7 for arbitrary unary transducers and %nally Section 8 generalizes
it to transducers with multiple input channels.

Many of the simple lemmas in this paper are left without a proof. Their proofs can
be found in [9].

2. A�ne representations

Let us denote by I the set of all non-singleton compact real intervals and for each
I ∈I, let I(I) be the set of all compact subintervals of I . An a3ne contraction on I
is any a'ne function f : I → I di3erent from the identity. The only %xpoint b=(a− 1)
of an a'ne contraction f= x �→ ax + b is denoted by Fixf and its slope a is denoted
by Strgf and called the strength of f. Let for every I ∈I; cA6I be the set of all
a'ne contractions on I .

De�nition 1. An a3ne representation of a real number interval is a tuple S

= (IS; DS;
S) = (I; D;
) where
(1) I ∈I is the base interval
(2) D is a %nite set of symbols called digits
(3)
 :D→ cA6I is an interpretation of the digits
such that

⋃
d∈D
(d)(I) = I . The interpretation function
 extends to %nite sequences

of digits and a semantics of %nite and in%nite sequences of digits is de%ned as

M. Kone%cn&y / Theoretical Computer Science 284 (2002) 373–396 377

Fig. 1. Representing −1=10 in the signed binary representation.

follows:

(�) = IdI ;
(d1 · · · dk) =
(d1) ◦ · · · ◦
(dk);

<d1 · · · dk = =
(d1 · · · dk)(I); <d1d2d3 · · · = =
⋂
k∈N

<d1 · · · dk =:

All radix representations restricted to the interval [0; 1] are a'ne representations. In
the decimal representation, for example, the digits d= 0; : : : ; 9 correspond to the a'ne
contractions (x + d)=10. Also the signed radix representations restricted to [−1; 1] are
a'ne. For example, the signed binary representation can be de%ned as the a'ne rep-
resentation Ssigbin = ([−1; 1]; { P1; 0; 1};
sigbin) where

sigbin(P1)(x) =
x − 1

2
;
sigbin(0)(x) =

x
2
;
sigbin(1)(x) =

x + 1
2

:

Fig. 1 shows how several initial digits produce interval approximations to the repre-
sented number by means of composition of their contractions.

More general representations than a'ne representations can be obtained by using
more general contractions instead of a'ne contractions. For example, Potts and Edalat
[17] use MLobius transformations as contractions. In [10], representations with almost
arbitrary contractions are investigated.

The following is an obvious property. We point it out because it is useful in the
proofs to come.

Lemma 2. Let (I; D;
) be an a3ne representation and J ⊆ I an open interval. There
exists a sequence u ∈ D∗ such that <u=⊂ J .

It is a standard observation that it makes a signi%cant di3erence whether the ranges
of the digit contractions of an a'ne representation overlap by their interiors or not
[14, 2]. This is closely related to the redundancy of the representation—how many
di3erent representing sequences for various numbers there exist. The more the ranges
overlap the more frequent it is that there is a choice of which digit might be the next
one to represent a certain number.

378 M. Kone%cn&y / Theoretical Computer Science 284 (2002) 373–396

De�nition 3 (Open representation). An a'ne representation (I; D;
) is called open if
for each r ∈ I o (i.e. in the interior of I), there exists a digit d∈D such that
r ∈ <d=o.

Lemma 4 (Open approximation). In an open a3ne representation (I; D;
) for every
number r ∈ I o; there is a sequence �∈D! such that every ;nite pre;x �[1; n] gives
an open approximation to r: (∀n∈N)(r ∈ <�[1; n]=o).

Remark 5. The signed binary representation is open.

3. Finite transducers for a�ne representations

We consider only deterministic machines because we will restrict ourselves to the
computation of single-valued functions. We also do not consider machines that can
observe whether there is input available on a channel or not. Therefore, whenever a
machine wants to read an input, it waits until it gets it.

De�nition 6 (Finite transducer for a3ne representations). Let S0;S1; : : : ;Sn be a3-
ine representations. A ;nite transducer T of type

(S1; : : : ;Sn) → S0

is a tuple (Q; �; �; qi; QF) where
(1) Q is a %nite set of states including the initial state qi and some (possibly zero)

number of looping states QF ⊆Q,
(2) � :Q→˝({1; : : : ; n}) assigns a set of input channels to each state and satis%es

q∈QF ⇒ �(q) = ∅ and q∈Q\({qi}∪QF)⇒ �(q) �= ∅, i.e. looping states are without
input and, apart from the initial state, no other states can be without input.

(3) � : (
⋃

q∈Q ({q}× ∏i∈�(q) DSi))→Q×D∗
S0

is the transition and output function of
T which to each state and a set of digits read from the adequate channels assigns
another state and a string of output digits. The two projections of � are denoted
by �st and �out, respectively. The transition function has to satisfy
(a) q∈QF ⇒ �st(q; ()) = q, i.e. the looping states loop,
(b) �(qi) = ∅⇒ �st(;) �= qi; i.e. the next state is always a state with input or a

looping state.

De�nition 7 (Underlying graph). A %nite transducer T corresponds to the (oriented,
pointed, edge and node labelled) graph GT whose nodes are the states Q, its root is
the initial state, the nodes are labelled by the values of � and there is an edge for
each q and for each set of symbols (xi)i∈�(q) leading from q to �st(q; (xi)i∈�(q)) and is
labelled by the “:”-separated pair (xi)i∈�(q): �out(q; (xi)i∈�(q)). This graph is called the
underlying graph of T.

M. Kone%cn&y / Theoretical Computer Science 284 (2002) 373–396 379

Fig. 2. Examples of simple unary %nite transducers with signed binary.

The underlying graph can be used to illustrate %nite transducers of smaller sizes. For
some examples in this paper, see Fig. 2.

De�nition 8 (Reachable states). A state of a %nite transducer T is called reachable
if there is a path to it from the initial state qi in GT.

The low level semantics of a transducer operates on streams of digits.

De�nition 9 (Stream semantics). A %nite transducer T= (Q; �; �; qi; QF) of type
(S1; : : : ;Sn)→S0 computes the stream function

�out
T : D∞

S1
× · · · × D∞

Sn
→ D∞

S0

which is de%ned (together with a partial state function �st
T :D∗

S1
× · · ·×D∗

Sn
→Q) in

the standard way. (For a formal de%nition, see [9].)

Now we will start viewing %nite transducers via the meaning of the streams that
they process.

De�nition 10 (Semantics modulo representation). A %nite transducer T= (Q; �; �; qi;
QF) of type (S1; : : : ;Sn)→S0 computes the partial multi-valued function fT : IS1 ×
· · ·× ISn � IS0 which is de%ned by

fT(x1; : : : ; xn) = <D!
S0

∩ �out
T (<{x1}=−1; : : : ; <{xn}=−1)= (1)

where �out
T and < · = are extended to handle sets of values and < · =−1 denotes the inverse

of the set-valued < · =.
The transducer T is:

• extensionally partial if for each set of values xi
either �out

T (<{x1}=−1; : : : ; <{xn}=−1)⊆D!
S0

(fT(x1; : : : ; xn) is de%ned)
or �out

T (<{x1}=−1; : : : ; <{xn}=−1)∩D!
S0

= ∅ (it is unde%ned).
• (extensionally) total if it is extensionally partial and the function fT is total.
• extensional if it is extensionally partial and the function fT is single-valued.

380 M. Kone%cn&y / Theoretical Computer Science 284 (2002) 373–396

The results of this article concern only with total and extensional transducers. That
means those transducers which for every input that represents a certain given vector
of values, return a representation of one and the same value.

Finitely computable real numbers (shortly %nite numbers) are very easy to charac-
terize. It has already been mentioned in the introduction that they are the numbers
that have a periodic representation. We de%ne them formally because we need some
of their properties in Section 8.

De�nition 11 (Finite numbers). Let S= (I; D;
) be an a'ne representation. The set
of all constants c∈ I for which there is a %nite transducer T of type ()→S with
fT = c, is denoted FinS.

Notice that for any a'ne representation S, the set FinS is dense in IS.
The following lemma is a special case of the following observation: For any two

%nite transducers, there is a %nite transducer that computes the composition of the
functions computed by the %rst two (see [10]).

Lemma 12 (Instantiating an argument). For any extensional and total ;nite trans-
ducer T of type (S1; : : : ;Sn)→S0 any index 1 6 k 6 n and a ;nitely computable
number x∈FinSk ; there is a ;nite transducer T′ of type (S1; : : : ;Sk−1;Sk+1; : : : ;Sn)
→S0; computing the function

fT′(x1; : : : ; xn−1) = fT(x1; : : : ; xk−1; x; xk ; : : : ; xn−1):

4. States are functions

The main idea of this section is the following. During a computation of a function,
a transducer moves from state to state while accepting input and producing output. In
each state, one can abstract from the input and output made so far and imagine that
the machine is starting afresh from this state. From this point of view, the transducer
computes another function which is derived from the original function and the input
and output made so far.

De�nition 13 (Changing the initial state). Let T= (Q; �; �; qi; QF) be a %nite trans-
ducer of type (S1; : : : ;Sn)→S0. For every state q∈Q, de%ne

Tq = (Qq; �|Qq ; �|Qq ; q; QF ∩ Qq)

where Qq is the set of states reachable from q. The tuple Tq is a %nite transducer
and the functions fTq ; �out

Tq and �st
Tq are said to be computed by T from state q. Let

us put fq
T =fTq for typographical reasons.

Notice that if T is total or extensional, so is Tq for any reachable state q∈QT.

M. Kone%cn&y / Theoretical Computer Science 284 (2002) 373–396 381

Proposition 14 (States represent functions). Let T be an extensional and total ;-
nite transducer of type (S1; : : : ;Sn)→S0. For every tuple of inputs u= (u1; : : : ; un)∈
Dom(�st

T) and the associated state q= �st
T(u) such that the output v= �out

T (u) is a
;nite sequence; it holds:

fq
T =
S0 (v)

−1 ◦ fT ◦ (
S1 (u1); : : : ;
Sn(un)): (2)

(Although the inverse
S0 (v)
−1 is partial; the composition is total.)

Proof. Suppose fq
T(x1; : : : ; xn) =y and take some representations <�i== {xi} for i= 1;

: : : ; n. It holds <ui�i==
Si(ui)(<�i=) =
Si(ui)(xi). Using the representations ui�i, we get
that the value of fT(
S1 (u1)(x1); : : : ;
Sn(un)(xn)) is
S0 (v)(y), i.e. (
S0 (v)

−1 ◦ fT ◦
(
S1 (u1); : : : ;
Sn(un)))(x1; : : : ; xn) =y:

On the other hand, we will show that a transducer in which we can associate a func-
tion with each of its states, really computes those functions. The only extra condition
for this to be true is that the transducer cannot loop in a cycle without producing any
output.

Proposition 15 (Constructing a transducer from functions). Let T= (Q; �; �; qi; QF) be
a ;nite transducer of type (S1; : : : ;Sn)→S0 such that for each q∈Q and each
(u1; : : : ; un)∈D∗

S1
× · · ·×D∗

Sn

(�st
Tq(u1; : : : ; un) = q; (u1; : : : ; un) �= (�; : : : ; �)) ⇒ �out

Tq(u1; : : : ; un) �= � (3)

and h :Q→ (IS1 × · · ·× ISn → IS0) an assignment of (single-valued total) functions to
states such that for each q∈Q and di ∈DSi ; for i∈ �(q); it holds

h(�st(q; (di)i∈�(q))) =
(�out(q; (di)i∈�(q)))−1 ◦ h(q) ◦ (g1; : : : ; gn); (4)

where gi =
{

(di) for i ∈ �(q);
IdISi otherwise:

Then Tq is extensionally partial and fq
T = h(q) for every q∈Q.

Proof. Fix a state q∈Q. It is su'cient to prove that for every tuple (�1; : : : ; �n)∈D!
S1

× · · ·×D!
Sn

, the output != �out
Tq (�1; : : : ; �n) is in%nite and it holds

h(q)(<�1=; : : : ; <�n=) = <!=: (5)

For natural numbers k1; : : : ; kn¿0, put �k1 ;:::; kn ≡ (�1[1; k1]; : : : ; �n[1; kn]).
For any k1; : : : ; kn¿0 such that �k1 ;:::; kn ∈Dom(�st

Tq), by successive application of (4),
we obtain

h(�st
Tq(�k1 ;:::;kn)) =
(�out

Tq (�k1 ;:::;kn))
−1 ◦ h(q) ◦ (
(�1[1; k1]); : : : ;
(�n[1; kn])): (6)

For the sake of contradiction, suppose that ! is %nite. If there would exist k1; : : : ; kn¿0
with �st

Tq(�k1 ;:::; kn)∈QF, then �out
Tq (�k1 ;:::; kn) would be in%nite because of the condition

382 M. Kone%cn&y / Theoretical Computer Science 284 (2002) 373–396

that output is not empty in any cycle. This would mean that also �out
Tq (�1; : : : ; �n) = !

would be in%nite, a contradiction.
Suppose then that such k1; : : : ; kn do not exist, i.e. with the input (�1; : : : ; �n), trans-

ducer T avoids all looping states. Now we get that, because T is %nite, there have
to exist two sets of indices k1; : : : ; kn¿0 and k ′1 ¿ k1; : : : ; k ′n ¿ kn with k ′i¿ki for at
least one i, such that

�st
Tq(�k1 ;:::;kn) = �st

Tq(�k′1 ;:::;k′n) and �out
Tq(�k1 ;:::;kn) = �out

Tq(�k′1 ;:::;k′n):

Again, this means that there is a cycle without output, this time from the state q′ =
�st
Tq(�k1 ;:::; kn):

�st
Tq′ (�1[k1 + 1; k ′1]; : : : ; �n[kn + 1; k ′n]) = q′

and

�out
Tq′ (�1[k1 + 1; k ′1]; : : : ; �n[kn + 1; k ′n]) = �;

which is a contradiction.
There is still Eq. (5) left to be proved. Eq. (6) implies that the range of the function

h(q), when restricted to the domain (<�1[1; k1]=; : : : ; <�n[1; kn]=), is within <�out
Tq (�k1 ;:::; kn)=.

When T computes with the input (�1; : : : ; �n), the output ! is in%nite and thus
<�out
Tq (�k1 ;:::; kn)= tends to the singleton set <!=. Thus, in the limit case, Eq. (6) results

in Eq. (5).

This proposition can be applied for constructing and checking %nite transducers that
compute certain real number functions. For example, in Fig. 2, there are three simple
unary %nite transducers using signed binary for both input and output. They are drawn
via their underlying graphs. The initial state is marked by a bold arrow. Each state
is associated with a function in such a way that the conditions of Proposition 15 are
satis%ed. This fact and Proposition 15 prove that the transducers really compute the
functions that they are assigned with, i.e. the %rst one computes negation, the second
one x=2 and the third one the absolute value.

5. Piecewise a�ne functions

These are continuous functions whose graph is composed of a %nite number of
n-dimensional polygons (see Fig. 3). The aim of this section is to prove that whenever
such a function f is of type [−1; 1]n → [−1; 1] and the vertices of the polygons have
rational coordinates (equivalently: the coe'cients of the a'ne functions are rational),
then there is a %nite transducer computing f.

De�nition 16 (Piecewise a3ne function). A continuous function f : I1 × · · ·× In → I0
is called piecewise a3ne if there exists a %nite set K of n-dimensional polygons

M. Kone%cn&y / Theoretical Computer Science 284 (2002) 373–396 383

Fig. 3. The graphs of two piecewise a'ne functions.

such that

(∀A; B ∈ K)(Ao ∩ Bo = ∅) and
⋃
A∈K

A = I1 × · · · × In

and f is a'ne on each A∈K .
Any piecewise a'ne function f with rational coe3cients can be also denoted more

speci%cally as follows:

f=A6 (K; &; (a(j)
i) j6m

i6n ; (b(j)) j6m; c); (7)

where m¿0; & :K →{1; : : : ; m}, a(j)
i ; b(j) ∈Z for 1 6 i 6 n, 1 6 j 6 m, and

c∈N; c¿0, such that for every C ∈K it holds

f(x1; · · · ; xn) =
a(&(C))

1 x1 + · · · + a(&(C))
n xn + b(&(C))

c
(8)

for all (x1; : : : ; xn)∈C.

Sometimes by specifying the a'ne functions within a piecewise-a'ne function f, the
function f is not fully determined. Nevertheless, there are only %nitely many functions
satisfying such a description.

Lemma 17. Let I1; : : : ; In ∈I. For every set of numbers
• m∈N; m¿0;
• a(j)

i ; b(j) ∈Z for each 1 6 i 6 n; 1 6 j 6 m; and
• c∈N; c¿0;
there are ;nitely many functions of form (7) for some K and &.

Proof. There are altogether m possible a'ne functions that can be assigned to the
polygons in K , let us denote them as follows for j = 1; : : : ; m:

Aj(x1; : : : ; xn) =
a(j)

1 x1 + · · · + a(j)
n xn + b(j)

c
:

Let us assume, without loss of generality, that these m functions are pairwise di3erent.
Let Hj1 ; j2 be the set of solutions of the equation Aj1 =Aj2 . It is either a hyperplane in
Rn or empty.

384 M. Kone%cn&y / Theoretical Computer Science 284 (2002) 373–396

Any hyperplane H in Rn which forms the border of two adjacent polygons in
C1; C2 ∈K has the property that the a'ne functions f|C1 and f|C2 agree on H . There-
fore H has to be identical to H&(C1);&(C2).

It follows that the boundary of each C ∈K is formed solely by the hyperplanes
among Hj1 ; j2 and by the boundary hyperplanes of the interval I = I1 × · · ·× In. There-
fore C is a union of some of the sections of Rn cut out by all of the hyperplanes Hj1 ; j2

within the interval I . Since there are not more than 2m of these sections by Lemma 18
below and there are m a'ne functions to choose from in each section, there are not
more than m(2m) piecewise a'ne functions composed of pieces of the a'ne functions
A1; : : : ; Am.

Lemma 18. In Rn; any m hyperplanes divide the space to at most 2m sections.

Another technical lemma gives a limit on the b coe'cients and on the total di3erence
of the function, provided that there is a limit on the a coe'cients.

Lemma 19. For any piecewise a3ne function

f = A6 (K; &; (a(j)
i) j6m

i6n ; (b(j)) j6m; c) : [−1; 1]n → [−1; 1]

with |a(j)
i |6 c=4n for all i; j; it holds

(1) for every C ∈K; |b(&(C))|6 c · 5
4

(2) for any d1; : : : ; dn ∈{ P1; 0; 1} and x; y∈ (<d1=; : : : ; <dn=)
|f(x) − f(y)|6 1

2 .

Proof. Take any point (x1; : : : ; xn)∈C ∈K and put j = &(C). It holds

|a(j)
1 x1 + · · · + a(j)

n xn + b(j)|6 c

because f(x1; : : : ; xn)∈ [−1; 1]. Applying |a(j)
i | 6 c=4n, |xi| 6 1 and the triangular

inequality, we get

c¿ |a(j)
1 x1 + · · · + a(j)

n xn + b(j)|
¿ |b(j)| − | − a(j)

1 | − · · · − | − a(j)
n |¿ |b(j)| − c=4;

which yields |b(j)|6 c + c=4 = c · 5
4 .

In order to prove the second statement, consider the points

z(i) = (x1; : : : ; xi; yi+1; : : : ; yn)

for all i= 0; : : : ; n. It holds x= z(0) and y= z(n). We will show that |f(z(i−1)) −
f(z(i))| 6 1=2n for all i= 1; : : : ; n, from which the desired inequality will follow by
the triangular inequality:

|f(x) − f(y)| =

∣∣∣∣∣
∑

16i6n

f(z(i−1)) − f(z(i))

∣∣∣∣∣6
∑

16i6n

|f(z(i−1)) − f(z(i))|6 1
2
:

M. Kone%cn&y / Theoretical Computer Science 284 (2002) 373–396 385

Consider the line connecting z(i−1) and z(i):

{(x1; : : : ; xi−1; t; yi+1; : : : ; yn)} | xi 6 t 6 yi}

where, without loss of generality, we assume xi 6 yi. Denote all of the points where
this line leaves (going from xi to yi) some polygon in K by p1; : : : ; ps−1 and let
p0 = z(i−1), ps = z(i). Also let ! : {0; : : : ; s}→{1; : : : ; m} be the function assigning to
each segment of this line an a'ne function with which f coincides in this segment.
Denote by t‘ the ith component of each p‘ for all ‘= 0; : : : ; n. Now we can get what
we need by triangular inequality and |t‘−1 − t‘|6 2:

|f(z(i−1)) − f(z(i))|6
∑

16‘6s

|f(p‘−1) − f(p‘)|

=
∑

16‘6s

(
|a(!(‘))

i |
c

· |t‘−1 − t‘|
)

6
1
4n

·
∑

16‘6s

|t‘−1 − t‘|6 1
2n

:

Theorem 20 (Signed binary computes piecewise a'ne functions). For every piece-
wise a3ne function f̂ with rational coe3cients; it holds f̂=fT for some ;nite trans-
ducer T : (Ssigbin ; : : : ;Ssigbin)→Ssigbin.

Proof. Let A6 (K̂ ; &̂; (â(j)
i) j6m

i6n ; (b̂
(j)

) j6m; ĉ) be a more speci%c name for f̂. De%ne and
choose k ∈N, k¿0 such that 2−k · |â(j)

i =ĉ|¡1=4n for every i; j.
Now we can de%ne T= (Q; �; �; qi; QF) as follows:

• Q=Q1 ∪Q2 where

Q1 = {f̂ ◦ (
(u1); : : : ;
(un)) | u1; : : : ; un ∈ Dk′
sigbin ; 0 6 k ′ ¡ k};

Q2 = {A6 (K; &; (â(j)
i) j6m

i6n ; (b(j))j6m; 2k · ĉ) | |b(j)|6 5
4 · 2k · ĉ};

• qi = f̂,
• QF = ∅,
• �(q) = {1; : : : ; n} for all q∈Q,

• �out(f; (d1; : : : ; dn)) =
{
� if f =∈ Q2;
d with <d= ⊇ f(<d1=; : : : ; <dn=) if f∈Q2;

• �st(f; (d1; : : : ; dn)) =
(�out(f; (d1; : : : ; dn)))−1 ◦ f ◦ (
(d1); : : : ;
(dn)).
We need to prove that the above tuple is a %nite transducer and that it ful%lls the
premises of Proposition 15 to conclude that it computes f̂.

First of all, Q2 is %nite by Lemma 17 applied on each set of b(j)’s. The initial state
is de%ned correctly because f̂∈Q1 with k ′ = 0¡k. Also �out is de%ned correctly even
for f =∈Q1 because by Lemma 19 for any x; y∈ (<d1=; : : : ; <dn=), it holds |f(x)−f(y)|6
1
2 . From this we can deduce that |f(<d1=; : : : ; <dn=)| 6 1

2 and therefore there is a digit
d∈{ P1; 0; 1} which covers the whole range f(<d1=; : : : ; <dn=).

386 M. Kone%cn&y / Theoretical Computer Science 284 (2002) 373–396

Fig. 4. Clipping and enlarging piecewise a'ne functions during a transition.

For the same reason, the composition in the de%nition of �st(f; d̃) is a total function,
the graph of which is an enlarged and clipped version of the graph of f (see Fig. 4
for an illustration).

Next we will show by induction that any reachable f∈Q is of the form:

f = A6 (K; &; (â(j)
i) j6m

i6n ; b(j); 2‘ · ĉ) where 0 6 ‘6 k:

This obviously holds for f̂ with K = K̂ , &= &̂, b(j) = b̂(j) and ‘= 0. If this is true
for f, we will show that it is also true for any successor f′ = �st(f; d̃) (f′ is not the
derivative of f here). That means that for some K ′, &′, (b′)(j) and ‘′

f′ = A6 (K ′; &′; (a(j)
i) j6m

i6n ; (b′(j)) j6m; 2‘
′ · c):

We need to observe that an intersection of an n-dimensional rectangle (in this case
<d1=× · · ·× <dn=) and a polygon is a (possibly empty) set of polygons. Therefore let K ′

be the version of K clipped and enlarged by (
(d1); : : : ;
(dn)).
On each polygon C′ ∈K ′ which is an enlarged section of an old polygon C ∈K , we

can put &′(C′) = &(C) because either

f′(x1; : : : ; xn) =
â(&(C))

1 ((x1 + d1)=2) + · · · + â(&(C))
n ((xn + dn)=2) + b(&(C))

ĉ

if �out(f;̃ d) = �, i.e. f∈Q1, or

f′(x1; : : : ; xn) = 2 · â
(&(C))
1 ((x1 + d1)=2) + · · · + â(&(C))

n ((xn + dn)=2) + b(&(C))

ĉ
− d

if d = �out(f;̃ d)∈{ P1; 0; 1} (the digits from { P1; 0; 1} are interpreted as −1; 0; 1 respec-
tively), i.e. the coe'cients of x1; : : : ; xn do not change. We could also derive the formula
for |b′(&(C′))| and check that it is not bigger than 5

4 ·2k · ĉ in case ‘′ = k. But this follows
from Lemma 19.

We have %nished the proof that T is a %nite transducer. In order to be able to apply
Proposition 15 with h assigning to each state itself as a function, we need to show
that on any cycle in T there is some output. The only transitions that do not produce
output are those leading from states in Q1\Q2. There cannot be a cycle using only
states from Q1 because from a state q∈Q1, independently on what the input is, the
transducer T proceeds to a state in Q2 within at most k steps. The other condition of

M. Kone%cn&y / Theoretical Computer Science 284 (2002) 373–396 387

Fig. 5. A'ne sub-self-similarity of a function & strength mismatch.

Proposition 15 for T follows directly from the de%nition of �st. Thus we can conclude
that T computes f̂.

6. Strongly connected unary a�ne transducers

An important special case of Proposition 14 is that which corresponds to a cycle in
a transducer. Eq. (2) is then of the following recursive form.

De�nition 21 (Sub-self-similarity). Let I0; I1 ∈I; gi ∈ cA6Ii for i= 0; 1 and f : I1 →
I0 such that

g0 ◦f = f ◦ g1: (9)

This equality is called a sub-self-similarity 5 of f.

A sub-self-similarity can be visualized like in Fig. 5 on the left.
Sub-self-similarity has several important consequences. The %rst one is concerned

with the ratio of convergence speeds. The main ideas of the following proof are visu-
alized in Fig. 5 on the right.

Lemma 22 (Strength mismatch in sub-self-similarity). In the situation of the previous
de;nition; it holds f(Fixg1) =Fixg0 and:
(1) If Strgg1

¿Strgg0
(input is weaker than output); then the derivative f′(Fixg1) exists

and is equal to 0.
(2) If Strgg1

¡Strgg0
(input is stronger than output); then the derivative f′(Fixg1)

either does not exist or exists and is equal to 0; +∞ or −∞.

Proof. Denote ri =Fixgi . Applying the value r1 to Eq. (9) of functions, we get f(r1) =
g0(f(r1)) which means f(r1) =Fixg0 = r0.

5 We do not call it self-similarity to avoid confusion with self-similarity of fractals.

388 M. Kone%cn&y / Theoretical Computer Science 284 (2002) 373–396

From Eq. (9), we get gk
0 ◦f= gk−1

0 ◦f ◦ g1 = · · · = g0 ◦f ◦ gk−1
1 =f ◦ gk

1 . Since
g0; g1 are a'ne, it holds |<gk

i =|= |Ii| · wk
i for every k, where wi = Strggi . Similarly,

max{|x − ri| x∈ <gk
i =}= max{|x − ri| x∈ Ii} · wk

i .
(1) Assume w1¿w0: For any number x∈ I1; x �= r1 de%ne kx to be the index for which

x∈ <gkx
1 = and at the same time x =∈ <gkx+1

1 =. Take an arbitrary sequence x1; x2; : : :
of points in I1\{r1} which converges to r1. Notice that limj→∞ kxj =∞. Now it
holds

lim
j→∞

|f(xj)−r0|
|xj−r1| 6 lim

j→∞
|<gkxj0 =|

max{|x−r1| | x∈<gkxj +1
1 =}

= lim
j→∞

|I0| · wkxj
0

max{|x−r1| | x∈I1} · wkxj +1
1

6C · lim
j→∞

(
w0

w1

)kxj
=0;

where C is a constant. This proves that the derivative f′(r1) exists and is equal
to 0.

(2) Assume that w1¡w0 and that derivative f′(r1) exists. Denote the right-hand side
endpoint of I1 by e0 and let ek = gk(e0). Consider the sequence f(ek) of points
from I0. Since g0 and g1 are a'ne and gk

0 ◦f=f ◦ gk
1 , it holds ek − r1 = gk

1 (e0)−
r1 = (e0 − r1) · wk

1 and f(ek) − r0 = gk
0 (f(e0)) − r0 = (f(e0) − r0) · wk

0 . There are
3 cases: f(e0) = r0, f(e0)¿r0 and f(e0)¡r0. In the %rst one, the following limit
tends to 0, in the second one it tends to +∞ and in the third one to −∞:

lim
k→∞

f(ek) − r0

ek − r1
= lim

k→∞
(f(e0) − r0) · wk

0

(e0 − r1) · wk
1

This implies that the derivative f′(r1) (under the assumption of its existence) is
equal to 0; +∞ or −∞.

The following lemma allows us to extend the local property of ‘having a non-zero
derivative’ to a global property of ‘being a'ne’.

Lemma 23 (Sub-self-similarity implies a'nity). In the situation of De;nition 21; the
sub-self-similarity equation (9) implies that
(1) either f is not di6erentiable in Fixg1

(2) or f′(Fixg1)∈{0;+∞;−∞}
(3) or f is a3ne; i.e. there exist constants a; b∈R such that f(x) = ax + b for all

x∈ I1.

Proof. If Strgg1
�= Strgg0

, we can apply Lemma 22 to conclude (1) or (2). Assume that
Strgg1

= Strgg0
for the rest of the proof and also suppose that the derivative f′(Fixg1)

exists.
Denote ri =Fixgi and wi = Strggi for i= 0; 1. Since gi are a'ne, it holds gk

i (x) −
ri = (x − ri) · wk

i for every x∈ Ii and k ∈N.

M. Kone%cn&y / Theoretical Computer Science 284 (2002) 373–396 389

Take an arbitrary point x∈ I1; x �= r1 and de%ne xk = gk
1 (x) for all k ∈N. Now the

value of the derivative can be expressed by

f′(r1) = lim
k→∞

f(xk) − r0

xk − r1
= lim

k→∞
(f(x) − r0) · wk

0

(x − r1) · wk
1

=
f(x) − r0

x − r1

out of which a formula for f can be extracted: f(x) =f′(r1)(x − r1) + r0, which,
together with f(r1) = r0, proves that f is a'ne.

De�nition 24 (Strongly connected transducer). A %nite transducer T is strongly con-
nected (SC) if its underlying graph GT is strongly connected.

SC transducers have the property that, to whatever state an input may lead to, there
is a continuation of this input which would lead back to the initial state. This means
that we can %nd a cycle resulting in a sub-self-similarity in any open interval and thus
prove the %rst restricted version of the main limitation theorem.

Proposition 25 (SC unary version of the main theorem). Let T be a total and ex-
tensional SC transducer of type (S1)→S0 using a3ne representations S1;S0. Either
the function fT is a3ne or there is a dense set E⊆ IS1 such that for each x∈E; it
holds f′(x)∈{0;+∞;−∞} whenever f′(x) exists.

Proof. Let C = {u∈D∗
S1

| �st
T(u) = qi} be the set of input sequences that will cause the

machine T to return to the initial state. For each u∈C, by applying Eq. (2) from
Proposition 14, we derive the sub-self-similarity

(�out
T (u)) ◦ fT = fT ◦
(u):

By Lemma 23, we get that either fT is a'ne or its derivative f′(Fix
S1 (u)) does not
exist or is equal to 0, +∞ or −∞. Denote

E = {Fix
S1 (u) | u ∈ C}:

All we need to prove in order to show that E has all of the desired properties is that
it is dense in IS1 . Take any open interval J ⊆ IS1 . By Lemma 2, there is a sequence
u1 ∈D∗

S1
such that <u1=⊆ J . Since T is SC, there is another input sequence u2 such

that u1u2 ∈C. Therefore there is a number in E, namely Fix
S1 (u1u2), which is in J .

Remark 26. The previous proposition would not hold without the condition of continu-
ous di3erentiability or a similar smoothness condition. In [10], there is a 10-state unary
transducer over the signed binary representation which has the following properties. It
is SC, total and extensional. The function f that it computes is strictly increasing.
There are two sets E1; E2, each of which is dense in [−1; 1], such that f′(x) ex-
ists for each x∈E1 as well as for each x∈E2 and it holds x∈E1 ⇒f′(x) = 0 and
x∈E2 ⇒f′(x) = +∞.

390 M. Kone%cn&y / Theoretical Computer Science 284 (2002) 373–396

7. Unary a�ne transducers

How to extend Proposition 25 to transducers that are not SC? We will see that each
transducer T has states q such that Tq is SC. Thus in any transducer, there are states
to which Proposition 25 applies. In the following, we will prepare a method for proving
that a property holds for each vertex of an oriented graph (i.e. for every state of a
transducer, in our case) by induction. This will allow us to extend an essential part of
Proposition 25 to arbitrary states of %nite transducers. These ideas are borrowed from
basic graph theory.

De�nition 27 (Strongly connected components). Let G be an oriented graph and VG
the set of its vertices. Let q →G q′, for vertices q; q′ ∈VG, mean that there is an
edge leading from q to q′ in G. Let →+

G be the transitive closure of →G and �∗
G

the equivalence relation generated from →G. The expression q �∗
G q′ is pronounced

“q is strongly connected with q′”. The equivalence classes of �∗
G are called the

strongly connected components of G. The �∗
G class that contains q∈VG is denoted

by [q]�∗
G
.

Whenever there is no confusion about which graph they relate to, the subscript G

can be left out from the symbols VG; →G; →+
G ; �

∗
G as well as from other symbols

relative to G, de%ned later.

When factored by the equivalence of being strongly connected, a graph becomes
acyclic. Therefore it is possible to de%ne the depth of a vertex which can be roughly
thought of as the distance from the associated root, as follows.

De�nition 28 (Depth of a vertex). For a vertex q of a %nite oriented graph G, let
depthG(q) denote the maximal number of �∗ equivalence classes that the vertices on
a path leading from q may belong to:

depthG(q)

= max{card{[qi]�∗}ni=1 | n ¿ 1; q1; : : : ; qn ∈ V; q = q1; q1 → · · · → qn};

where max over the empty set is 0. For each n∈N, de%ne

SCn
G = {q ∈ V | depth(q) 6 n}:

Remark 29 (Basic properties of depth). In any %nite oriented graph
(1) the set SC0 is equal to the set of vertices without any outgoing edge,
(2) it holds: SC0 ⊆ SC1 ⊆ SC2 ⊆ · · ·,
(3) for any pair of vertices q; q′ it holds:

q →+ q′ ⇒ q�∗ q′ or depth(q)¿depth(q′).
(4) For every vertex q of a %nite oriented graph it holds:

depth(q) = n¿1 ⇒ (∃q′)(q →+ q′ and depth(q′)¡n):

M. Kone%cn&y / Theoretical Computer Science 284 (2002) 373–396 391

Lemma 30. Let G be a nonempty ;nite oriented graph in which each vertex has at
least one outgoing edge. Then it holds SC0 = ∅ and SC1 �= ∅.

Now we are ready for proving the unary version of the main limitation theorem by
induction on the depth of vertices in the underlying graph.

Proposition 31 (Unary version of Main Theorem). Let T be a total and extensional
transducer of type (S1)→S0 using a3ne representations S1;S0. Moreover; let S1 be
open. If the function fT is continuously di6erentiable on some open interval J ⊂ IS1 ;
then it is a3ne on J .

Proof. We prove the proposition for every fq
T instead of fT only. We do it by induc-

tion on the depth of q in the underlying graph GT.
For depth(q) = 1, the sub-transducer consisting of states reachable from q is SC.

We can apply Proposition 25 to get that either fq
T is a'ne on the whole of IS1 or

there is a dense set E where the derivative of fq
T either does not exist or is equal to

0; +∞ or −∞. The same is true for its subset J ∩E except that the derivative has to
exist everywhere. Assume that fq

T is not a'ne. Since the 3 values 0, +∞, −∞ are
separated from each other and J ∩E is dense in J and (fq

T)′ is continuous on J , (fq
T)′

has to be constant on all of J . A derivative cannot be constantly in%nite, therefore it
has to be constantly 0 on J . This proves that fq

T is a'ne on J .
Assume as the induction hypothesis that the proposition holds for all fq

T for vertices q
with depth(q)¡k, i.e. that such a fq

T is a'ne on any interval where it is di3erentiable,
and take a q with depth(q) = k.

Let U = {u∈D∗
S1

<u=⊆ J} and F = {Fix
(u) u∈U} be the set of all inputs which
represent an interval within J and the set of their %xpoints. By Lemma 2, F is
dense in J . If for all x∈F it holds (fq

T)′(x)∈{0;+∞;−∞}, then we can conclude
(similarly like above in the case of q∈ SC1) that the derivative (fq

T)′ is constantly
0 and thus fq

T is constant on J . Assume, therefore, that there is u∈U for which
(fq

T)′(Fix
(u)) =∈{0;+∞;−∞}.
It follows from Remark 29, point (4) that for u, as well as for any other input, it

holds either depth(�st
Tq(u))¡k or there is a v such that �st

Tq(uv) = q. In the latter case,
we can apply Lemma 23 to conclude that fq

T is a'ne on the whole of IS1 . In the

former case, we use the induction hypothesis for q′ = �st
Tq(u) whose function fq′

T is
continuously di3erentiable on the whole of IS1 by Proposition 14 and thus a'ne. By
the same proposition we get that fq

T is a'ne on <u=, i.e. on some non-singleton interval
[a; b] = <u=.

This situation permits us to de%ne

z = min{x ∈ PJ |fq
T|[x;b] is a'ne} and Z = max{x ∈ PJ |fq

T|[a;x] is a'ne};
where PJ is the closure of J . This means that [z; Z] is a maximal and non-singleton
interval on which fq

T is a'ne and moreover not constant. We will %nish the proof by
showing that [z; Z] = PJ . This will follow from z; Z =∈ J .

392 M. Kone%cn&y / Theoretical Computer Science 284 (2002) 373–396

In order to pursue a contradiction, suppose that z ∈ J . Take an � with <�== {z} such
that z ∈ <�[1; j]=o for each j by Lemma 4. (At this point we are using the assumption
that S1 is open.) Since J is open, there is an index j0 such that <�[1; j]=⊆ J for all
j ¿ j0. For each such a j ¿ j0, either fq

T is a'ne on <�[1; k]= or there is a point
xj ∈ <�[1; j]= with (fq

T)′(xj)∈{0;+∞;−∞}. In the former case, fq
T would be a'ne on

[z; Z]∪ <�[1; j]= which is larger than [z; Z] and thus contradicts the choice of z. If it
is the latter case for all j¿j0, the sequence xj converges to z and by continuity of
derivative of fq

T on J , its derivative in z would have to be 0; +∞ or −∞, which
contradicts the fact that fq

T is a'ne and non-constant on [z; Z].
The proof that Z =∈ J is symmetrical.

8. Multiple input a�ne transducers

Finally, we are going to extend Proposition 31 to functions with multiple arguments.
In order to enable us to reason about functions of more variables easier, let us de%ne
the following notation for instantiated functions:

De�nition 32. Let f :Rn →R be a function and P⊆{1; : : : ; n} a set of argument in-
dices. For any tuple of numbers X = (xi)i =∈P denote

fP;X : R|P| → R : (xi)i∈P �→ f(x1; : : : ; xn):

If P = {k} is a singleton set, the function can be also denoted by fk;X .

Unfortunately, the multi-dimensional limitation theorem does not follow from Propo-
sition 31 alone because there are functions that are not a'ne but all of its unary in-
stantiations are a'ne. For example, the binary function (x; y) �→ x · y is not a'ne but
for each t ∈R the functions x �→ x · t and y �→ t · y are a'ne. For this reason, we need
to go back to sub-self-similarity and extend it to multiple dimensions.

De�nition 33 (MD sub-self-similarity). Let I0; I1; : : : ; In ∈I; gi ∈ cA6Ii for i= 0; : : : ; n,
and f : I1 × · · ·× In → I0 such that it holds:

g0 ◦ f = f ◦ (g1; : : : ; gn): (10)

This equality is called an n-dimensional sub-self-similarity of f. The %xpoints Fixgi
for i= 0; : : : ; n, in the context of the above sub-self-similarity, will be denoted by ri
and the strengths Strggi by wi. Denote also r̃ = (r1; : : : ; rn) and g̃= (g1; : : : ; gn).

Lemma 34 (MD sub-self-similarity implies a'nity). In the situation of De;nition 33;
if for some P⊆{1; : : : ; n}; the function h=fP;(ri)i =∈P is di6erentiable in (ri)i∈P and for
every j∈P; the partial derivative h′j((ri)i∈P) is not zero; then h is a3ne.

Proof. From Eq. (10) a sub-self-similarity for h can be derived: g0 ◦ h= h ◦ (gi)i∈P .
Therefore it is su'cient to prove the lemma for P = {1; : : : ; n} and h=f since for a

M. Kone%cn&y / Theoretical Computer Science 284 (2002) 373–396 393

smaller P we may completely ignore the arguments which are not in P. Let us then
assume that f is di3erentiable in r̃ and all partial derivatives pk =f′

k (̃r) for k = 1; : : : ; n
are not zero.

First we will prove that w0 =w1 = · · · =wn. Suppose, on the contrary, that w0 �=wk

for some k ∈{1; : : : ; n}. Applying Lemma 22 to fk =fk;(ri)i �=k for which it holds g0 ◦
fk =fk ◦gk , we get that f′

k (Fixgk) is either 0 or in%nite. Since f′
k (rk) is equal to the kth

partial derivative pk , it cannot be 0. It cannot be in%nite neither because the de%nition
of di3erentiability in higher dimensions excludes it—a contradiction.

Pick an arbitrary point x̃= (x1; : : : ; xn)∈ I1 × · · ·× In and de%ne the sequence x̃ (k) =
g̃ k (̃x) which converges to r̃. Using the de%nition of the di3erential df, the fact that
df(̃r)(̃x) = p̃·̃x (denoting p̃= (p1; : : : ; pn)) and that all g0; : : : ; gn are a'ne contractions
with the same strength, we get the equation

df(̃r)(̃x − r̃)
|̃x − r̃| = lim

k→∞
f(̃x(k)) − f(̃r)

|̃x(k) − r̃|

= lim
k→∞

(f(̃x) − f(̃r)) · wk
0

|̃x − r̃| · wk
1

=
f(̃x) − f(̃r)

|̃x − r̃| ;

out of which an a'ne formula for f can be extracted

f(̃x) = df(̃r)(̃x − s̃) + f(̃r) = p̃ · (̃x − r̃) + f(̃r)

= p1(x1 − r1) + · · · + pn(xn − rn) + f(̃r):

Now we will recall a simple and well-known characterization of the functions whose
arbitrary unary instantiations are a'ne. They are exactly the polynomials of the fol-
lowing form (one version of the proof can be found in [9]):

De�nition 35 (Multi-a3ne polynomials). The n-variate polynomials over the variables
x1; : : : ; xn of the form

∑
P⊆{1;:::;n}

aP
∏
i∈P

xi

where all aP are real numbers, are called multi-a3ne.

We state a basic property of polynomials which we need in the following proof.

Lemma 36 (Polynomials are locally determinable). If two n-variate real polynomials
agree on an open interval J1 × · · ·× Jn ⊆Rn; then they are equal.

The main limitation theorem %rst comes in a version where the unary interval J
from Proposition 31 is replaced by a multi-dimensional interval. In its corollary, this
interval is replaced by an arbitrary open connected set.

394 M. Kone%cn&y / Theoretical Computer Science 284 (2002) 373–396

Theorem 37. Let T be a total extensional transducer of type (S1 × · · ·×Sn)→S0

where all Si are open a3ne representations. If the function fT is continuously dif-
ferentiable on some open interval J = J1 × · · ·× Jn ⊂ IS1 × · · ·× ISn ; then it is a3ne
on J .

Proof. For any k ∈{1; : : : ; n} and any set of values xi ∈FinSi ∩ Ji for i �= k, the restric-
tion of f=fT to the unary function fk; (xi)i �=k is also %nitely computable by Lemma 12.
Therefore this unary function is a'ne on Jk . Since this holds for every (xi)i �=k in the
dense set

∏
i �=k FinSi ∩ Ji, it holds for all values in

∏
i �=k Ji. Thus f is a multi-a'ne

polynomial on J .
Let us note which of the arguments of f are not redundant and de%ne a name for

the set of their indices as follows:

P = {j ∈ {1; : : : ; n} |
(∃(x1; : : : ; xn) ∈ J; x′j ∈ Jj)(f(x1; : : : ; xn) �= f(x1; : : : ; x′j; : : : ; xn))}:

Since the value of f within J does not depend on the value of an argument with
an index i =∈ P, the partial derivative f′

i is constantly zero on all of J . However, for
an argument index i∈P; f′

i can be zero only on a very limited part of J since it is
a non-zero polynomial. Actually, the set Zi = {̃x∈ J f′

i (̃x) = 0} is a closed set in J
with empty interior by Lemma 36. Therefore the %nite union

⋃
i∈P Zi is also closed

and with empty interior. Its complement C is an open non-empty subset of J where
f′
i (̃x) is not zero for every i∈P and x̃∈C.
Pick an open n-dimensional box K1 × · · ·×Kn within the open set C. By Lemma 2,

there is a set of inputs (u1; : : : ; un)∈Dom(�st
T) such that

<u1= × · · · × <un= ⊂ K1 × · · · × Kn ⊆ C:

Since T is %nite there are another sets of inputs u′i ; u
′′
i such that there is a cycle and

therefore a sub-self-similarity as follows:

S0 (u
′′
0)−1 ◦ fq

T = fq
T ◦ (
S1 (u

′′
1); : : : ;
Sn(u

′′
n))

where q= �st
T(u1u′1; : : : ; unu

′
n) = �st

T(u1u′1u
′′
1 ; : : : ; unu

′
nu

′′
n) and u′′0 = �out

Tq (u′′1 ; : : : ; u
′′
1). In

this situation we can apply Lemma 34 with the set P, to get that fq
T is a'ne on

all of its domain. This can be translated to a part of the domain of f by the following
equation which follows from Proposition 14:

fq
T =
S0 (v)

−1 ◦ f ◦ (
S1 (u1u′1); : : : ;
Sn(unu
′
n))

where v= �out
T (u1u′1; : : : ; unu

′
n). Since all functions in this equation apart from f are

known to be a'ne, f has to be a'ne on <u1u′1=× · · ·× <unu′n=. By Lemma 36 and the
previously established fact that f is a multi-linear polynomial on J , it follows that f
is a'ne on J .

M. Kone%cn&y / Theoretical Computer Science 284 (2002) 373–396 395

Corollary 38 (Main theorem for a'ne transducers). Let T be a total extensional
transducer of type (S1 × · · ·×Sn)→S0 where all Si are open a3ne representa-
tions. If the function fT is continuously di6erentiable on some open connected set
J ⊂ IS1 × · · ·× ISn ; then it is a3ne on J .

Proof. By Theorem 37, f|L is a'ne on each open n-dimensional interval L within J .
Such an interval surrounds every point in J since J is open. All we need to prove
is that f coincides with the same a'ne function on every interval within J . Let
x; y∈ J and g : [0; 1]→ J be a continuous injection with g(0) = x and g(1) =y. For
every t ∈ [0; 1], let Lt be an interval within J that contains t and At :Rn →R be the
a'ne function with which f coincides on Lt . Put t̂ = sup{t ∈ [0; 1] At =A0} and
prove t̂ = 1 by contradiction. If t̂¡1, then by continuity of g there is an �¿0 such
that g([t̂; t̂ + �])⊂Lt̂ . It follows that At̂+� =At̂ =A0, a contradiction.

We have shown that in the neighbourhood of any two points in J , the function f
coincides with the same a'ne function. Therefore, f is a'ne on J .

9. Conclusion and future work

In this article, we have established that when representing the exact real numbers
by in%nite composition of a'ne contractions, any %nitely computable function has to
be a'ne on any area on which it is continuously di3erentiable. On the other hand,
the signed binary representation uses a'ne contractions and can compute a dense set
of piecewise a'ne functions. From these two theorems it can be informally concluded
that the signed binary is one of the best among a'ne representations from the point
of view of %nite computability. In other words, one can compute with it by %nite
transducers all ‘nice’ functions which are not ruled out by the limitation theorem and
a simple cardinality comparison.

One might ask whether some representation which uses other than a'ne contractions
could do better than the signed binary representation. The author believes that there is
a means to generalize the limitation theorem for representations with almost arbitrary
contractions. Such a technique appeared in [10]. Out of this generalization, it follows
that, for example, when using representations with MLobius transformations, any %nitely
computable function has to coincide with some MLobius transformation on any area
where it is continuously di3erentiable. 6 This result does not exclude the possibility
that maybe there is a representation with MLobius contractions which would compute
a dense set of MLobius transformations. The result of Raney [18] gives some hope
towards possible existence of such a representation.

In exact real number computation, one cannot avoid considering partial and many-
valued functions (see e.g. [1]). The techniques used in this paper have been extended
to many-valued functions in [10].

6 A direct proof of a unary version of this statement can be found in [8].

396 M. Kone%cn&y / Theoretical Computer Science 284 (2002) 373–396

Acknowledgements

The author would like to thank his supervisor, Prof. Achim Jung, for giving much
invaluable support during this research and also the anonymous referees for pointing
him to the relevant research in the Ukraine and giving other important comments.

References

[1] V. Brattka, Recursive and computable operations over topological structures, Informatik Berichte 255,
FernUniversitLat Hagen, Fachbereich Informatik, Hagen, Dissertation, July 1999.

[2] V. Brattka, P. Hertling, Topological properties of real number representations, Theoret. Comput. Sci.
284 (this Vol.) (2002) 241–257.

[3] A. Edalat, P. SLunderhauf, A domain theoretic approach to computability on the real line, Theoret.
Comput. Sci. 210 (1) (1999) 73–98.

[4] M.H. Escard+o, PCF extended with real numbers: a domain theoretic approach to higher order exact real
number computation, Ph.D. Thesis, Imperial College (1997).

[5] R. Heckmann, The appearance of big integers in exact real arithmetic based on linear fractional
transformations, in: M. Nivat (Ed.), Foundations of Software Science and Computation Structures,
Lecture Notes in Computer Science, vol. 1378, Springer, Verlag, 1998, pp. 172–188.

[6] K.-I. Ko, Complexity Theory of Real Functions, BirkhLauser, Boston, 1991.
[7] K.-I. Ko, H. Friedman, Computational complexity of real functions, Theoret. Comput. Sci. 20 (3) (1982)

323–352 (fundamental study).
[8] M. Kone*cn+y, Real functions incrementally computable by %nite automatons, Technical Report CSR-98-7,

School of Computer Science, University of Birmingham, October 1998.
[9] M. Kone*cn+y, Real functions computable by %nite transducers using a'ne IFS representations, Technical

Report CSR-00-10, School of Computer Science, University of Birmingham, June 2000.
[10] M. Kone*cn+y, Many-valued real functions computable by %nite transducers using IFS-representations,

Ph.D. Thesis, School of Computer Science, The University of Birmingham, October 2000.
[11] L.P. Lisovik, D.A. Koval, S.V. Martinez, R*-transducers and fractal curves, Kibernetika i Sistemnyi

Analiz (formerly Kibernetika) (3) (1999) 95–105 (in Russian).
[12] L.P. Lisovik, O.Y. Shkaravskaya, Functions de%ned by push-down transducers, Dopovidi Natsionalnoji

Akad. Nauk Ukrain. (9) (1995) 57–59 (in Russian).
[13] L.P. Lisovik, O.Y. Shkaravskaya, About real functions de%ned by transducers, Kibernetika i Sistemnyi

Analiz (formerly Kibernetika) (1) (1998) 82–93 (in Russian).
[14] C. Mazenc, On the redundancy of real number representation systems, Research Report 93-16, LIP,

Ecole Normale Sup+erieure de Lyon, 1993.
[15] V. M+enissier-Morain, Arbitrary precision real arithmetic: design and algorithms, J. Symbolic Comput.

(1996), submitted for publication.
[16] P.J. Potts, Computable real arithmetic using linear fractional transformations, Ph.D. Thesis, Imperial

College, Department of Computing, July 1998.
[17] P. Potts, A. Edalat, A new representation of exact real numbers, Electronical Notes in Theoretical

Computer Science 6, Elsevier, 2000.
[18] G.N. Raney, On continued fraction and %nite automata, Math. Ann. 206 (1973) 265–283.
[19] O.Y. Shkaravskaya, On a'ne mapping de%ned by %nite transducers, Kibernetika i Sistemnyi Analiz

(formerly Kibernetika) (5) (1998) 178–181 (in Russian).
[20] K. Weihrauch, A foundation for computable analysis, in: D.S. Bridges, C.S. Calude, J. Gibbons, S.

Reeves, I.H. Witten (Eds.), Combinatorics, Complexity, and Logic, DMTCS’96: Discrete Mathematics
and Theoretical Computer Science, 9–13 December 1996, Auckland, New Zealand, Springer, Singapore,
1997, pp. 66–89.

