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1. Introduction

System identification has been widely used in many areas, e.g., chemical processes, aerospace engineering, mechanical
systems and biological systems. There exist many system identification methods, such as the iterative methods [1-6],
the least squares methods [7-11], the stochastic gradient (SG) methods [12-15]. The systems to be identified can be
divided into the continuous-time systems and the discrete-time systems, where the latter includes single-rate systems and
multirate systems. The multirate sampled data systems whose input and output signals have different sampled rates are
abundant in industrial processes [ 16,17]. Recently, a lot of attention has been paid to the identification of dual-rate/multirate
systems [ 18-24].

The Hammerstein system with the block structure oriented nonlinearity consists of a static nonlinear block followed by
a linear dynamic block. Much work has been performed on the parametric model identification of Hammerstein systems.
Some work assumed that the nonlinearity is the polynomial nonlinearity [ 11,25] and the other assumed that the nonlinearity
is the hard nonlinearity [26-31]. The feature of the hard nonlinearity is that the parameters of the nonlinear part are coupled
with the linear part, thus identification of the Hammerstein system with hard nonlinearity is difficult. Recently, Chen et al.
have proposed a modified SG algorithm and a forgetting factor SG algorithm for a dual-rate Hammerstein system with
preload nonlinearity [15]. Bai used a deterministic correlation analysis method to estimate the parameters of systems with
hard nonlinearity [28]. Vords studied an appropriate switching function to model and identify a Hammerstein system with
multi-segment piecewise-linear characteristics [29] and with backlash [30].

On the basis of the work in [15], this letter uses two switching functions and the polynomial transformation technique
to transform the model of the dual-rate nonlinear system with preload nonlinearity into an identification model which can
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Fig. 1. The input nonlinear system with the preload nonlinearity.

use the dual-rate data, and then propose a multi-innovation SG algorithm to estimate the unknown parameters of a class of
input nonlinear systems.

Briefly, the letter is organized as follows. Section 2 describes the problem formulation of the dual-rate systems with
preload nonlinearity and derives a suitable model. Section 3 discusses an SG algorithm and a multi-innovation stochastic
gradient algorithm for the obtained dual-rate model. Section 4 provides an illustrative example. Finally, concluding remarks
are given in Section 5.

2. Problem description

Consider the following dual-rate nonlinear system, shown in Fig. 1:

A@2)y(t) = B@)f (u(t)), (n
AQ) =1+az ' +mz 2+ +a,z7",
Bz) :=biz ' + bz 2+ bz 3+ bz,

where y(t) is the system output, u(t) is the system input, and z~! is a unit backward shift operator: z~'y(t) = y(t — 1), the
function f (u(t)) is a preload nonlinearity and can be expressed as

—u() +my, u(t) >0,

FUw®)=1_u0) —m,. u() <o.

The numbers m; and —m, are two preload points.

The dual-rate sampled-data system under consideration in this letter assumes that all input data {u(t), t =0, 1,2, ...}
are available and so are only the scarce output data y(qt),q > 2, t = 0,1, 2, .... The intersample outputs or missing
outputs y(qt 4+ j), j = 1,2,...,q — 1 are unavailable. The following uses the polynomial transformation technique to
generate a new dual-rate model which works on the dual-rate sampled-data [19]. Let

AD)=(1—ziz N =227 ) (1 —zz7 ),

where z;, i =1, 2, ..., n, are the roots of A(z) [15]. Define the polynomials,

n
r(z) = l_[(l +zz ' 42z
i=1

= 14rnz ' 42?4+ 4rmz™ m=n@-1),
a@) =r@A@) =14+ a1z 9+ oz 4+ -+ az ™, @)
B2) =r1@)B@) =1z + oz 4 - 4 Pz ™. 3)

Multiplying both sides of (1) by r(z) yields «(2)y(t) = B(z)f (u(t)). Consider a disturbance in a physical system, introducing
a noise term v(t) gives

a(2)y(t) = B@)f (u(t)) + v(t). (4)
For simplification, we introduce two switching functions:

1, ifu(t) >0, 0, ifu(t) >0,
hl[“(t)]:{o, ifu(t) < 0. hZ[“(t)]:{—L ifu(t) < 0.

Then the preload nonlinearity f (u(t)) can be written as
F() = —u(t) + myhy(u(t)) + mahy (u(t)), (5)
and Eq. (4) can be written as

a(2)y(t) = @) (—u(t) + mihy (u(t)) + mahy(u(t))) + v(t). (6)
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3. The multi-innovation estimation algorithm

Define the parameter vector € and the information vector ¢(t) as

0 = [B1, B2, B3, - -y Bugs Bimy, Bamy, Bamy, ..., Bugmy,

Bimy, Bamy, B3Ma, ..., BagMa, A1, 0, &3, ..., )" € R,
@) = [—u(t—1), —u(t —2), —u(t —3), ..., —u(t —nq), hy(u(t — 1)), hy(u(t — 2)),
hy(u(t — 3)), ..., hi(u(t — ng)), ho(ut — 1)), hy(u(t — 2)), ha(u(t —3)), ...,
hy(u(t — ng)), —y(t — q), —y(t — 2q), ..., —y(t — ng)]" € R*"*",

From (6), we have the identification model,

y(©) = "8 +v(t) or y(gt) = @' (@) + v(gt). (7)
The vector ¢(qt) contains only the available measurement outputs and inputs.
Let #(qt) be the estimate of § at time gt. The following SG algorithm can estimate the parameter vector # in (7) [15,19]:

bat) = gt — ) + 2 %eqqr), (8)
r(qt)

O(qt +i) =0(qt), i=0,1,2,...,q—1, (9)

e(qt) = y(gt) — @ (qH)8(qt — q), (10)

rg) =r@t —q + le@)|?,  r©) =1, (11)

where 1/r(qt) is the step-size and the norm of matrix X is defined by || X || := tr[XXT].

In order to enhance the convergence rate of the SG algorithm, we extend the SG algorithm such that the parameter
estimation accuracy can be improved. Such an algorithm is derived from the multi-innovation identification theory [32]. At
time qt, the SG algorithm only uses the current data y(qt) and ¢(qt) thus has slow convergence rate. Referring to [32], we
derive a new algorithm by expanding the single innovation e(qt) to an innovation vector:

E(p. qt) = [e(qt), e(qt — q), e(qt — 2q), ..., e(qt — (p — D)]"
~ [y(qt) — 0 (at — De(at). yiat —q) — 0 (gt — Qelgt —q). ...

y@at— (- 1)) — 8 (gt — pogt — (p — DT € RP,

which uses the past data {y(qt — iq), ¢(qt —iq):i= 1,2, ..., p — 1}, where p represents the innovation length.
Define the information matrix @(p, qt) and the stacked output vector Y (p, gt) as

o(p. qt) == [@(qt), @(qt — q), @(qt —29), ..., (gt — (p — D] € RPXCMH,
Y(p, qt) = [y(gt), y(gt — q), y(qt — 2q), ..., y(qt — (p — D" € RP.

The innovation vector E (p, qt) can be expressed as
E(p,qt) = Y (p, qt) — ®(p, ¢)B(qt — q).

Referring to the multi-innovation stochastic gradient method for linear regression models [32-41], we can obtain the
following multi-innovation stochastic gradient (MISG) algorithm for the input nonlinear system:

n A " (p,
bt =gt — )+ TP g qn), (12)
r(qt)

Ot +i) =0(qt), i=012,....q—1, (13)
E(p, qt) = Y(p, qt) — ®(p, qt)8(qt — q), (14)
Y(p, qt) = [y(t), y(qt — @), y(qt — 2q), ..., y(qt — (p — D]", (15)
@(p, qt) = [p(qt), ¢(qt — q), p(qt —29), ..., ¢(qt — (p — D", (16)
o(qt) = [—u(gt — 1), —u(qt — 2), —u(qt — 3), ..., —u(qt — nq), hy(u(qt — 1)), hy(u(gt — 2)),

hi(u(gt — 3)), ..., hi(u(gt — ng)), hy(u(gt — 1)), ha(u(gt — 2)), ha(u(qt — 3)), ...,

hy(u(qt — ng)), —y(qt — q), —y(qt — 2q), ..., —y(qt — ng)|", (17)
r(gt) = r(gt — q) + lle(gt) |1, r(0) =1. (18)

Because E(p, qt) € RP is an innovation vector, namely, the multi-innovation, the algorithm in (12)-(18) is called the multi-
innovation identification algorithm. As p = 1, the MISG algorithm reduces to the SG algorithm in (8)-(11).
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The SG estimates and errors.
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t 100 200 300 500 1000 1500 2000 2500 3000 True values
aq 0.26952 0.28334 0.29128 0.30112 0.31416 0.32162 0.32683 0.33082 0.33406  0.95000
oy —0.00894 —0.00198 0.00176 0.00619 0.01180 0.01490 0.01703 0.01864 0.01994 0.36000
Bi 0.45187 0.44961 0.44820 0.44635 0.44378 0.44225 0.44117 0.44033 0.43964  0.40000
B 0.04488 0.04499 0.04512 0.04535 0.04574 0.04599 0.04619 0.04635 0.04648  0.10000
B3 —0.12242 —0.11634  —0.11287 —0.10859  —0.10297 —0.09978 —0.09756  —0.09587 —0.09450  0.09000
Ba 0.17240 0.17265 0.17272 0.17274 0.17268 0.17262 0.17257 0.17253 0.17250  0.18000
Bimy 0.10862 0.11389 0.11696 0.12079 0.12590 0.12884 0.13090 0.13248 0.13376  0.08000
Bamy 0.08160 0.08274 0.08340 0.08421 0.08527 0.08586 0.08627 0.08657 0.08681 0.02000
Bsm;  —0.05231 —0.05641 —0.05855 —0.06101 —0.06398 —0.06555 —0.06659  —0.06736  —0.06797  0.01800
Bamy 0.03158 0.03275 0.03346 0.03436 0.03557 0.03625 0.03673 0.03709 0.03738  0.03600
Bimy 0.10997 0.11638 0.11990 0.12413 0.12956 0.13259 0.13468 0.13627 0.13755  0.04000
Bamy 0.08296 0.08523 0.08634 0.08755 0.08893 0.08961 0.09005 0.09036 0.09060 0.01000
Bsmy;  —0.05095 —0.05392 —0.05561 —0.05767 —0.06033 —0.06181 —0.06281 —0.06358 —0.06418  0.00900
Bamy 0.03293 0.03524 0.03640 0.03770 0.03922 0.04000 0.04051 0.04088 0.04117  0.01800
8 (%) 73.32206 72.01943 71.28427 70.38527 69.21194 68.54941 68.08961 67.73869 67.45562

Table 2

The MISG estimates and errors with p = 10.
t 100 200 300 500 1000 1500 2000 2500 3000 True values
aq 0.92857 0.93510 0.93788 0.94061 0.94330 0.94447 0.94516 0.94564 0.94599 0.95000
a 0.34751 0.35133 0.35296 0.35455 0.35611 0.35680 0.35720 0.35748 0.35768 0.36000
B1 0.40053 0.40038 0.40031 0.40024 0.40017 0.40013 0.40012 0.40010 0.40009 0.40000
B 0.10148 0.10115 0.10098 0.10080 0.10060 0.10051 0.10045 0.10041 0.10038 0.10000
B3 0.07593 0.07963 0.08130 0.08301 0.08477 0.08558 0.08607 0.08641 0.08667 0.09000
Ba 0.17865 0.17903 0.17918 0.17933 0.17948 0.17954 0.17958 0.17961 0.17963 0.18000
Bimy 0.06549 0.06661 0.06713 0.06765 0.06820 0.06844 0.06859 0.06870 0.06877 0.08000
Bamy 0.01912 0.02051 0.02116 0.02184 0.02257 0.02290 0.02311 0.02325 0.02335 0.02000
Bsmy 0.04511 0.04063 0.03840 0.03595 0.03322 0.03189 0.03104 0.03045 0.02999 0.01800
Bamy 0.03443 0.03538 0.03578 0.03616 0.03652 0.03665 0.03673 0.03677 0.03681 0.03600
Bimy 0.04564 0.04679 0.04733 0.04790 0.04850 0.04877 0.04894 0.04906 0.04915 0.04000
Bamy —0.00038 0.00104 0.00172 0.00244 0.00322 0.00358 0.00381 0.00397 0.00408 0.01000
Bsmy 0.02514 0.02070 0.01849 0.01609 0.01340 0.01210 0.01128 0.01070 0.01026 0.00900
Bamy 0.01475 0.01573 0.01616 0.01658 0.01699 0.01716 0.01725 0.01731 0.01736 0.01800
8 (%) 4.16769 3.30340 2.92591 2.55473 2.19616 2.04601 1.96042 1.90417 1.86395

4. Example

Consider the following system,

F@(t)) = —u(t) + 0.2h; (u(t)) + 0.1h, (u(t)),

Az Dy (t) = B Hf (u(t)) + v(t),

Az Y =1+amz "+ wmz2=1405z"406z72,
Bz Y =biz ' +bz 2 =0.4z" 40322,

in simulation, {u(t)} is taken as a persistently excited signal sequence with zero mean and unit variance, and {v(t)} as a
white noise sequence with zero mean and variance o> = 0.10%. Taking g = 2 and r(z) = 1 — 0.5z~ 4 0.6z72, we have

a(z) =r(2)A(Z) =1+ 0.95272 4+ 0.3627%,

B(z) =r(z)B(z) = 0.4z7' +0.1272 + 0.09z27> + 0.18z 7%,
0 = (B, B2, B3, Ba, Bimu, oy, Bsmy, Bamy, fimy, Bamy, B3my, Bama, oy, e ]

= [0.4,0.1,0.09,0.18, 0.08, 0.02, 0.018, 0.036, 0.04, 0.01, 0.009, 0.018, 0.95, 0.36]".

Applying the SG algorithm and the MISG algorithm to estimate the parameters of this system, the parameter estimates and

their errors are shown in Tables 1-2 and the parameter estimation errors § := ||9 — 0]1/110]] versus t are shown in Fig. 2.
From Tables 1-2 and Fig. 2, we can see that the convergence rate of the MISG algorithm is faster than the SG algorithm

and the parameter estimates given by the MISG algorithm converge their true values with the increasing of t.

5. Conclusions

This letter uses the polynomial transformation technique to study identification problems for a class of dual-rate input
nonlinear systems and presents a multi-innovation stochastic gradient algorithm by expanding the scalar innovations to the
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Fig. 2. The parameter estimation errors § versus t.

innovation vector. The convergence of the proposed algorithm can be analyzed in a similar method in [32]. The proposed
method can be extended to other nonlinear systems, e.g., non-uniformly sampled-data nonlinear systems [42-48].

References

[1] M. Dehghan, M. Hajarian, Two algorithms for finding the Hermitian reflexive and skew-Hermitian solutions of Sylvester matrix equations, Applied
Mathematics Letters 24 (4) (2011) 444-449.
[2] H.R. Xu, Z. Sun, S.L. Xie, An iterative algorithm for solving a kind of discrete HJB equation with M-functions, Applied Mathematics Letters 24 (3) (2011)
279-282.
[3] F. Ding, P.X. Liu, G. Liu, Gradient based and least-squares based iterative identification methods for OE and OEMA systems, Digital Signal Processing
20(3)(2010) 664-677.
[4] YJ. Liu, D.Q. Wang, et al., Least-squares based iterative algorithms for identifying Box-Jenkins models with finite measurement data, Digital Signal
Processing 20 (5) (2010) 1458-1467.
[5] D.Q.Wang, G.W.Yang, R.F. Ding, Gradient-based iterative parameter estimation for Box-Jenkins systems, Computers & Mathematics with Applications
60 (5)(2010) 1200-1208.
[6] F. Ding, Y.J. Liu, B. Bao, Gradient based and least squares based iterative estimation algorithms for multi-input multi-output systems, Proceedings of
the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 226 (1) (2012) 43-55.
[7] F. Ding, J. Ding, Least squares parameter estimation with irregularly missing data, International Journal of Adaptive Control and Signal Processing 24
(7)(2010) 540-553.
[8] J. Ding, F. Ding, X.P. Liu, G. Liu, Hierarchical least squares identification for linear SISO systems with dual-rate sampled-data, I[EEE Transactions on
Automatic Control 56 (11) (2011) 2677-2683.
[9] J. Ding, F. Ding, Bias compensation based parameter estimation for output error moving average systems, International Journal of Adaptive Control
and Signal Processing 25 (12) (2011) 1100-1111.
[10] F.Ding, Y. Shi, T. Chen, Auxiliary model based least-squares identification methods for Haommerstein output-error systems, Systems & Control Letters
56 (5)(2007) 373-380.
[11] D.Q. Wang, Y.Y. Chu, et al., Auxiliary model-based RELS and MI-ELS algorithms for Hammerstein OEMA systems, Computers & Mathematics with
Applications 59 (9) (2010) 3092-3098.
[12] YJ. Liu, J. Sheng, R.F. Ding, Convergence of stochastic gradient estimation algorithm for multivariable ARX-like systems, Computers & Mathematics
with Applications 59 (8) (2010) 2615-2627.
[13] F. Ding, G. Liu, X.P. Liu, Partially coupled stochastic gradient identification methods for non-uniformly sampled systems, IEEE Transactions on
Automatic Control 55 (8) (2010) 1976-1981.
[14] ].Ding, Y. Shi, et al., A modified stochastic gradient based parameter estimation algorithm for dual-rate sampled-data systems, Digital Signal Processing
20 (4) (2010) 1238-1247.
[15] J. Chen, LX. Lv, RF. Ding, Parameter estimation for dual-rate sampled data systems with preload nonlinearities, Advances in Intelligent and Soft
Computing 125 (2011) 43-50.
[16] F. Ding, T. Chen, Parameter estimation of dual-rate stochastic systems by using an output error method, IEEE Transactions on Automatic Control 50
(9) (2005) 1436-1441.
[17] S.C. kadu, M. Bhushan, R.D. Gudi, Optimal sensor network design for multirate systems, Journal of Process Control 18 (6) (2008) 594-609.
[18] ]. Ding, L.L. Han, X.M. Chen, Time series AR modeling with missing observations based on the polynomial transformation, Mathematical and Computer
Modelling 51 (5-6) (2010) 527-536.
[19] F.Ding, P.X. Liu, H.Z. Yang, Parameter identification and intersample output estimation for dual-rate systems, IEEE Transactions on Systems, Man, and
Cybernetics, Part A: Systems and Humans 38 (4) (2008) 966-975.
[20] F.Ding, P.X. Liu, Y. Shi, Convergence analysis of estimation algorithms of dual-rate stochastic systems, Applied Mathematics and Computation 176 (1)
(2006) 245-261.
[21] F.Ding, T. Chen, Combined parameter and output estimation of dual-rate systems using an auxiliary model, Automatica 40 (10) (2004) 1739-1748.
[22] Y. Shi, F. Ding, T. Chen, 2-norm based recursive design of transmultiplexers with designable filter length, Circuits, Systems, and Signal Processing 25
(4) (2006) 447-462.
[23] B.Yy,Y.Shi, H.N. Huang, I, — I, filtering for multirate systems using lifted models, Circuits, Systems, and Signal Processing 27 (5) (2008) 699-711.
[24] Y. Shi, T. Chen, Optimal design of multi-channel transmultiplexers with stopband energy and passband magnitude constraints, IEEE Transactions on
Circuits and Systems II: Analog and Digital Signal Processing 50 (9) (2003) 659-662.
[25] J. Chen, Y. Zhang, R.F. Ding, Auxiliary model based multi-innovation algorithms for multivariable nonlinear systems, Mathematical and Computer
Modelling 52 (9-10) (2010) 1428-1434.
[26] J. Chen, X.P. Wang, R.F. Ding, Gradient based estimation algorithm for Hammerstein systems with saturation and dead-zone nonlinearities, Applied
Mathematical Modelling 36 (1) (2012) 238-243.
[27] B.Yu, H. Fang, Y. Shi, Identification of Hammerstein output-error systems with two-segment nonlinearities: algorithm and applications, Control and
Intelligent Systems 38 (4) (2010) 194-201.
[28] E.W. Bai, Identification of linear systems with hard input nonlinearities of known structure, Automatica 38 (5) (2002) 853-860.
[29] J. Voros, Modeling and parameter identification of systems with multi-segment piecewise-linear characteristics, IEEE Transactions on Automatic
Control 47 (1) (2002) 184-188.



J. Chen et al. / Applied Mathematics Letters 26 (2013) 124-129 129

[30] J. Voros, Modeling and identification of systems with backlash, Automatica 46 (2) (2010) 369-374.

[31] F.Ding, X.P. Liu, G. Liu, Identification methods for Hammerstein nonlinear systems, Digital Signal Processing 21 (2) (2011) 215-238.

[32] F.Ding, T. Chen, Performance analysis of multi-innovation gradient type identification methods, Automatica 43 (1) (2007) 1-14.

[33] F.Ding, P.X. Liu, G. Liu, Auxiliary model based multi-innovation extended stochastic gradient parameter estimation with colored measurement noises,
Signal Processing 89 (10) (2009) 1883-1890.

[34] LL. Han, F. Ding, Multi-innovation stochastic gradient algorithms for multi-input multi-output systems, Digital Signal Processing 19 (4) (2009)
545-554,

[35] YJ.Liu,Y.S.Xiao, X.L. Zhao, Multi-innovation stochastic gradient algorithm for multiple-input single-output systems using the auxiliary model, Applied
Mathematics and Computation 215 (4) (2009) 1477-1483.

[36] J.B. Zhang, F. Ding, Y. Shi, Self-tuning control based on multi-innovation stochastic gradient parameter estimation, Systems & Control Letters 58 (1)
(2009) 69-75.

[37] E.Ding, Several multi-innovation identification methods, Digital Signal Processing 20 (4) (2010) 1027-1039.

[38] YJ. Liy, L. Yu, et al., Multi-innovation extended stochastic gradient algorithm and its performance analysis, Circuits, Systems, and Signal Processing
29 (4) (2010) 649-667.

[39] D.Q. Wang, F. Ding, Performance analysis of the auxiliary models based multi-innovation stochastic gradient estimation algorithm for output error
systems, Digital Signal Processing 20 (3) (2010) 750-762.

[40] F. Ding, P.X. Liu, G. Liu, Multi-innovation least squares identification for linear and pseudo-linear regression models, IEEE Transactions on Systems,
Man, and Cybernetics, Part B: Cybernetics 40 (3) (2010) 767-778.

[41] F.Ding, G. Liu, X.P. Liu, Parameter estimation with scarce measurements, Automatica 47 (8) (2011) 1646-1655.

[42] D.Q. Wang, F. Ding, Extended stochastic gradient identification algorithms for Hammerstein-Wiener ARMAX systems, Computers & Mathematics
with Applications 56 (12) (2008) 3157-3164.

[43] D.Q. Wang, F. Ding, Least squares based and gradient based iterative identification for Wiener nonlinear systems, Signal Processing 91 (5) (2011)
1182-1189.

[44] F.Ding, L. Qiu, T. Chen, Reconstruction of continuous-time systems from their non-uniformly sampled discrete-time systems, Automatica 45 (2) (2009)
324-332.

[45] F. Ding, T. Chen, Identification of Hammerstein nonlinear ARMAX systems, Automatica 41 (9) (2005) 1479-1489.

[46] YJ.Liu, L. Xie, et al., An auxiliary model based recursive least squares parameter estimation algorithm for non-uniformly sampled multirate systems,
Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering 223 (4) (2009) 445-454.

[47] L. Xie, H.Z. Yang, et al., Modeling and identification for non-uniformly periodically sampled-data systems, IET Control Theory and Applications 4 (5)
(2010) 784-794.

[48] H.H.Yin, Z.F.Zhu, et al., Model order determination using the Hankel matrix of impulse responses, Applied Mathematics Letters 24 (5) (2011) 797-802.



	Multi-innovation stochastic gradient algorithms for dual-rate sampled systems with preload nonlinearity
	Introduction
	Problem description
	The multi-innovation estimation algorithm
	Example
	Conclusions
	References


