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Solute carrier (SLC) membrane transport proteins control essential physiological functions,
including nutrient uptake, ion transport, and waste removal. SLCs interact with several important
drugs, and a quarter of the more than 400 SLC genes are associated with human diseases. Yet,
compared to other gene families of similar stature, SLCs are relatively understudied. The time is
right for a systematic attack on SLC structure, specificity, and function, taking into account kinship
and expression, as well as the dependencies that arise from the common metabolic space.
Individual cells, be they prokaryotic or eukaryotic, must control

chemical exchange with their environments, and they use lipid

membranes and proteinaceous channels and transporters to

this end. The lipid environment of the membrane prevents intru-

sion or leakage into the sancta sanctorum of the inner milieu and

buffers the cell against changing and noxious environmental

conditions, as well as against attack by phages, viruses, or bac-

teria (Köberlin et al., 2015; Mulkidjanian et al., 2009). In many re-

spects, the integrity of the membranes represents as critical an

element to cellular individuality as does the preservation and

transmission of genetic information (Schrum et al., 2010). The

protein components of cell membranes import and export

most of the chemical matter essential for life, including water,

ions, gases, nutrients, vitamins, cofactors, and many drugs

(Kell et al., 2011; Kell andOliver, 2014; Lin et al., 2015). Therefore,

regulation of small-molecule transport across membranes is key

to a cell’s internal physiology and is the gatekeeper to its inter-

face with the environment (Nigam, 2015). Yet, despite their cen-

tral role in mediating the discussion between chemistry and

biology and despite the fact that �10% of the human genome

encodes for transport-related functions (Hediger et al., 2013),

transporters, as a class of proteins, do not appear to garner quite

the attention that they deserve.

Transporters comprise solute carriers, ion channels, water

channels, and ATP-driven pumps, including ABC transporters.

Of these, the largest group is formed by the solute carrier pro-

teins (SLCs), which according to the current counting comprises

456 members, distributed in 52 subfamilies that can be further

phylogenetically grouped (Hediger et al., 2013, 2004; Schles-

singer et al., 2010, 2013b). SLCs are membrane integral proteins

localized on the cell surface and in organellar membranes and

comprise facilitative transporters, which are equilibrative, and

secondary active transporters (symporters and antiporters),
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which may be concentrative (Hediger et al., 2013). After G-pro-

tein-coupled receptors (GPCRs), SLCs are the second-largest

family of membrane proteins in the human genome (Hoglund

et al., 2011). For detailed information about the individual SLC

family members, please refer to www.bioparadigms.org.

Links to Therapeutics and Human Disease
Much research on SLCs has been spurred by their relevance to

pharmacology and drug discovery, either as drug targets them-

selves or as mediators of drug disposition. Drug targets include

SLC6A4 (SERT), the target of the hugely important serotonin up-

take inhibitor drug class. Mediators of drug transport include

SLCO1B1, which transports statins and allows for preferential

drug distribution into the liver compared to other tissues, such

as muscle. This tissue distribution of statins is important in

driving their therapeutic index by increasing the lipid lowering

over the myopathy-causing activity (Giacomini et al., 2010).

SLC-mediated transport of statins and other drug classes can

also render their pharmacokinetics susceptible to drug-drug in-

teractions. For example, naringin from citrus fruits inhibits the

enterohepatic transporter SLCO1A2 and thus can reduce the

bioavailability of drugs that rely on this transporter, such as fexo-

fenadine (Bailey, 2010). Transport canalsobeaffectedby thenat-

ural pharmacogenomic variability in SLCs (Giacomini et al.,

2013). Other SLCs have been studied for their roles in physiology,

like SLC25A7 (UCP1), the mitochondrial uncoupling protein

involved in the thermogenesis process of brown adipose tissue.

Newer research has implicated SLCs in the action of chemo-

therapeutics; YM155, a cancer drug in clinical evaluation, was

found to be completely dependent on SLC35F2 for entry into

human tumor cells (Winter et al., 2014). Increasingly, SLCs are

attracting attention because they mediate drug-drug and

nutrient-drug interactions. For instance, the investigational
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Figure 1. SLCs Are the Most Neglected

Group of Genes in the Human Genome

(A) Publication asymmetry is plotted against the

average number of publications per group of

genes. Publication counts per gene were retrieved

from the gene2pubmed file provided and curated

by NCBI. Gene groups comprise all HGNC gene

families and super-families as well as the GO an-

notations for kinase activity (‘‘kinases’’) and ion

channel activity (‘‘ion channels’’). Asymmetry is

measured for each group of genes by calculating

the skewness (as implemented in R’s ‘‘moments’’

package) of the distribution of the number of

publications for all genes within the group. A very

positive skew thus indicates an uneven distribu-

tion where a few genes in the family concentrate a

much higher number of publications than the rest.

Dot size relates to the number of members in each

gene group, and color indicates gene groups

where at least 80% of their members are anno-

tated as membrane proteins by GO annotation

(see legend). Labels for selected classes are

shown.

(B) Number of publications per SLC gene is dis-

played in descending order. The four SLCs with

the most publications are annotated. The red line

indicates the border at which genes have fewer

than 15 publications.
JAK2 inhibitor fedratinib, which was recently terminated from

development due to incidence of Wernicke’s encephalopathy

during trials, has been shown to inhibit thiamine uptakemediated

by SLC19A2 (hTHTR2), possibly contributing to the offside ef-

fects (Zhang et al., 2014). It would not be surprising if further un-

planned SLC-drug interactions were uncovered in the future.

There is also growing interest in SLCs because of their clear

genetic link to human diseases; about 190 different SLCs have

been found mutated in human disease and through genome-

wide association studies (Williams et al., 2012, 2014).

Are SLCs Getting the Attention They Deserve?
Our sense was that the SLC protein family, despite its clear rele-

vance to health and disease, was comparatively less well studied

than other gene families. In an attempt to quantify ‘‘SLC knowl-

edge’’ versus other gene families, we surveyed the literature

and analyzed the distribution of publications as reported by

NCBI for each gene family annotated by HGNC in an automated,

unbiased fashion (Bruford et al., 2008). We then visualized the

publication asymmetry, defined by the coefficient of skewness,

versus the average number of publications for each family (Fig-

ure 1A). SLCs show by far the greatest publication asymmetry

of all gene families, i.e., the most uneven distribution of papers

over the group members. This does not seem to be simply due

to a bias against membrane proteins in general, as ABC proteins,

ion channels, and GPCRs appear not so unevenly distributed.

Further, SLCs have an average number of publications permem-

ber of around 35, which is half of what is observed on average

over all families (66 publications). At the other end of the spec-

trum, one finds, among others, that the small TNF superfamily

of ligands are all equally and very well studied.
We then analyzed the asymmetry within the SLC knowledge

domain. We performed an automated search for publications

per each of the 456 SLC genes (including 65 pseudogenes),

which indeed displayed a highly skewed SLC knowledge distri-

bution curve (Figure 1B). A manually annotated search revealed

the same general pattern (Figure S1B). Both analyses reveal that

some gene members are extremely well studied, whereas most

have very few publications. In a phenomenon that appears to be

general to all human protein families, themost well-studied SLCs

in the last 2 years are almost identical to those that were themost

well studied a decade ago (Edwards et al., 2011). Prior to 2003,

20 of the �400 SLC family members accrued 29% of the publi-

cations for the entire family, and those exact same family mem-

bers garnered 32% of all SLC publications over the period 2012–

2014 (Figure S1A).

Rankings of the SLC family members do not seem to be indic-

ative of biological relevance. Some of the most well-studied

SLCs appear to have become objects of investigation simply

due to their abundance and tissue-specific expression in easily

isolated cell types, which greatly facilitated their study in the

era before molecular biology. Examples of this type include the

so-called ‘‘band 3 of erythrocytes’’ protein (SLC4A1) and

the erythrocyte glucose transporter GLUT1 (SLC2A1).

An important factor that contributes to the elevated publica-

tion rate of particular transporters has been expression cloning.

In the case of the intestinal Na+-glucose transporter SGLT1

(SLC5A1), due to its hydrophobic nature and difficulty in purify-

ing, functional expression in Xenopus laevis oocytes finally

opened the door to successful cloning and molecular character-

ization (Hediger et al., 1987). This progress led to a substantial

increase in SLC study, ultimately leading to structural
Cell 162, July 30, 2015 ª2015 Elsevier Inc. 479



Table 1. SLCs Specifically Targeted by FDA-Approved Drugs or

Drugs in Active Development

Drug Status SLC

Common

Protein

Name Examples

Approved SLC5A2 SGLT2 canagliflozin;

dapagliflozin

SLC6A1 GAT1 tiagabine

SLC6A2 NET atomoxetine

SLC6A3 DAT methylphenidate

SLC6A4 SERT fluoxetine; sertraline;

citalopram (SSRIs)

SLC12A1/2 NKCC1/2 furosemide (loop

diuretics)

SLC12A3 NCC hydrochlorothiazide

(thiazide diuretics)

SLC18A1/2 VMAT1/2 reserpine

SLC18A2 VMAT2 tetrabenazine

SLC22 family OATs probenecid

SLC25A4/5/6 ANT1/2/3 clodronate

SLC29A1 ENT1 dipyridamole

Phase II+

Clinical Trial

SLC5A1

(and SLC5A2)

SGLT1

(and SGLT2)

sotagliflozin

SLC6A9 GlyT1 bitopertin

SLC9A3 NHE3 tenapanor

SLC10A2 IBAT elobixibat

SLC22A12 URAT1 lesinurad

SLC40A1 Ferroportin-1 LY2928057
determination (Faham et al., 2008) and development of an antidi-

abetic drug class (Abdul-Ghani and DeFronzo, 2014) that acts on

its renal homolog SGLT2 (SLC5A2).

Other SLCs became highly studied because they were discov-

ered as targets of existing drugs, with VMAT2 (SLC18A2) repre-

senting a specific example of this. Reserpine is a drug that was

first marketed in the 1950s as a tranquilizer. The actual mode

of action of reserpine was only uncovered 40 years later by

scoring for cDNAs conferring the ability to sequester the neuro-

toxin 1-methyl-4-phenylpyridinium (MPP+) in CHO cells, leading

to the discovery of the vesicular amine transporter family SLC18

(Liu et al., 1992). As an example of how the availability of

research tools has influenced SLC research, there were no pub-

lications at all on SLC30A8 until its first cloning and expression in

2004 (Chimienti et al., 2004). Following this publication and a se-

ries of papers genetically linking mutations in this protein with

diabetes, in recent years SLC30A8 has become one of the

most highly studied SLCs (Rutter and Chimienti, 2015). This

spike of activity is clearly displayed in Figure S1A. Even more

recently, some SLCs that were previously barely studied have

been identified to play key roles in physiology. SLC38A9, an

SLC recently found to contribute to amino-acid sensing of

mTOR, was ranked 288th in the automated ranking of all time

SLC publications (Rebsamen et al., 2015; Wang et al., 2015).

With the importance of this SLC now clear and tools available

to allow its study, one can anticipate an increase in publication
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rate for this transporter. As for the bottom-ranked 15% of SLC

family members, there are more publications in a PubMed

search for ‘‘star wars’’ (72 citations) than on these 70 SLCs

combined.

Exploring SLCs as Drug Targets
Regarding SLCs as drug targets, a recent publication suggests

26 different SLCs being the targets of known drugs, or drugs in

development (Lin et al., 2015; Rask-Andersen et al., 2013). A

closer inspection using more stringent criteria (FDA-approved

drugs whose primary mode of action is considered to be through

action on an SLC) revealed just 12 drug classes. Only 8 of these

drug classes are believed to act through selective action at a sin-

gle SLC, while 4 classes are believed to act non-selectively via

two or more SLCs. Only 6 further SLCs are targeted by drugs

in active development in phase II clinical trials or beyond

(Table 1). Several drugs interact with SLCs in addition to their

purported primary target, e.g., amiloride (SLC9A1, NHE1) or sul-

fasalazine (SLC7A11, xCT), but in such examples, it has not been

clearly established that these effects contribute to their clinical

pharmacology. The GPCR family, in contrast, is a well-estab-

lished drug target class that has been the subject of systematic

drug discovery efforts for half a century. Even when considering

the possibility that GPCRs may be intrinsically more relevant as

drug targets, the difference between a fewSLC targets and�100

GPCR targets is likely to reflect a historical bias. Clearly the SLC

family is underexplored from the standpoint of drug discovery.

Druggability of SLCs appears not to be the main or only barrier

here, as the majority of the well-studied SLCs have reported

small-molecule inhibitors.

Is it reasonable to expect more SLC-targeting drugs? Around

75% of SLCs are predicted to carry small organic molecules. It

has been proposed that proteins that have evolved to bind

such species are, on average, privileged with respect to small-

molecule druggability (Fauman et al., 2011). Experiences thus

far appear to support this prediction, with molecules of high

ligand efficiency (an indicator or protein druggability) (Hopkins

et al., 2014) being identified in the cases where medicinal chem-

istry efforts have been attempted against SLCs. Even SLCs that

carry only inorganic species have been shown to be druggable,

including, for example, the SLC12 family targets of the loop and

thiazide diuretics. Thus, SLCs appear to offer the rare potential of

an underexplored gene family with high disease relevance and

general small-molecule druggability.

SLC Genes and Human Disease
Current thinking in biomedicine and drug discovery contends

that human genomics will provide the clues to those genes and

proteins of particular relevance to disease and therapy. Accord-

ingly, we looked at all SLC genes that are associated with human

disease and counted the number of compounds reported for

each (IC50 < 10 mM), using OpenPHACTS, a platform that pro-

vides a single access to disease, chemical, and target databases

(Ratnam et al., 2014; Williams et al., 2012). 76% of SLCs (145 out

of 190) with an already identified disease link have no compound

associated with them (Figure S2). It is notable how few SLC tar-

gets have more than 100 active compounds against them in the

database, likely to represent another measure indicative of how



few drug discovery programs have been run against the family. In

contrast, the most popular targets of monoamine uptake inhibi-

tors (SLC6A2,3,4) have more than a thousand compounds asso-

ciated with each, with likely thousands more such compounds in

pharmaceutical company collections as a result of extensive

drug discovery campaigns against these targets.

Of course, it could be argued that involvement of SLC genes in

monogenic disorders is a poor reason to call for drug discovery

efforts in the corresponding disease areas, as it appears coun-

terintuitive. Yet such arguments need not be always valid, as

there is a fundamental difference between life-long genetic

loss of function (LOF) and the titrated, reversible pharmacolog-

ical blockade of a protein. For instance, LOF mutations in the

dopamine transporter SLC6A3 lead to early stage Parkinsonism

disease (Kurian et al., 2009), but SLC6A3 is also a principal target

of methlyphenidate and in the treatment of psychiatric disorders.

Further, LOFmutations in SLC12A3 have been found associated

with Gitelman’s syndrome, characterized by low blood pressure,

and SLC12A3 could bemechanistically linked to the action of thi-

azides that treat hypertension (Brinkman et al., 2006). Even if we

take a more stringent connection to disease by counting only the

genetic mutations in the OMIM database (103 different SLCs)

(Amberger et al., 2015), it is clear that the ‘‘disease’’ zones of

the SLC network are not covered nearly enough by chemical

agents.

Why So Little Research Attention Then?
Whatmight have contributed to this apparent anomaly in the dis-

tribution of research attention for the SLC gene family, where

somemembers are well studied and somanymembers not stud-

ied at all? First, a unifying nomenclature has been adopted only

recently (Hediger et al., 2013, 2004), and as a consequence,

common principles and features may have been overlooked.

Second, there are a number of technical barriers that may have

impeded research in this area. In particular, acquiring competent

biological reagents for SLC study can be highly challenging.

These are complex integral membrane proteins that are difficult

to express and purify and are often poorly detected by typical

protocols for mass spectrometry. Accordingly, biochemical, bio-

physical, and structural biology characterization of SLCs has

also been challenging. Indeed, there are so far only three re-

ported human SLC structures (Deng et al., 2014; Gruswitz et al.,

2010; Schlessinger et al., 2013a; Deng et al., 2015) (Table S1).

Cell-based systems for studying SLC function can likewise be

challenging to obtain, as overexpression can cause toxicity

(presumably as a result of metabolic perturbation), and loss- or

gain-of-function studies can be confounded by endogenous

SLCs with overlapping specificities or by compensatory trans-

port or metabolic effects. Even when cell systems with function-

ally competent SLCs can be obtained, defining their relevant

endogenous substrates is not trivial, and establishing screening

assays can be difficult. Third, high-quality antibodies are avail-

able for only a few SLCs, with the human protein atlas reporting

just 45 SLCs for which they have raised reliable antibodies (Uhlen

et al., 2015). As a consequence, the current understanding of the

subcellular localization of SLCs, crucial for the interpretation of

their function, is indeed partial at best. Finally, the transport

assays are often challenging, even for those SLCs with known
substrates. Artificial lipid vesicles or microinjected frog oocytes,

two other useful assay systems, do not necessarily allow for

testing function in the context of the regulatory intricacies, and

the latter is not always robust enough for large-scale compound

screening. In short, despite the post-genomic era, ample

evidence for their important physiological role and their drugg-

ability, the systematic and parallel structural and functional inter-

rogation of human SLC proteins has not yet been carried out.

Delving into the ‘‘Sparse Zones’’ of Our Knowledge
Here, we argue that an energetic and detailed exploration of the

human ‘‘SLCome’’ is warranted because the family comprises

one of the largest ‘‘sparse zones’’ of human biology. Indeed,

the concept of the rational filling of sparse zones of knowledge

is starting to guide strategies in other collaborative efforts (Roll-

and et al., 2014; Snijder et al., 2014). Furthermore, we argue that

the problem should be tackled systematically to capture the

efficiencies that come with economies of scale and the learnings

that derive from studying related proteins. Finally, we believe that

the initial objective of this effort should focus on generating high-

quality, enabling reagents (antibodies, purified proteins, cell-

based assays, chemical probes, CRISPR-cell lines) and data

sets (protein interaction, tissue and sub-cellular distribution).

Such a concerted effort is not only called for but is also timely

due to recent technological developments, listed and referenced

in Table 2. Such developments cover protein expression, metab-

olomics, structure determination, gene knockout technologies,

and mass spectrometry, as well as assay development and me-

dicinal chemistry, to deliver high-quality chemical tools into the

public domain. We listed possible project aims of a concerted

campaign, fully aware that such lists are not comprehensive

and are meant to spur additional thoughts. There are several ex-

amples of successful de-orphanization of SLCs using recently

developed technologies (Abplanalp et al., 2013; Caulfield et al.,

2008; Iharada et al., 2010; Rebsamen et al., 2015; Wang et al.,

2015; Wikoff et al., 2009; Winter et al., 2014).

In broad terms, the strategy to study proteins by family, where

experimental methods on one familymembermay facilitate anal-

ysis of the next (Hoglund et al., 2011; Schlessinger et al., 2010),

has been highly successful for tackling the structure and chem-

ical tractability of other gene families such as kinases, GPCRs,

and proteins involved in the regulation of the epigenome (Barr

et al., 2009; Edwards et al., 2009). Importantly, although one

would expect similar success applying this approach to the

SLC family, there is an additional opportunity that functional in-

ter-relationships among SLCs, on top of phylogeny, may greatly

aid in the design of the experimental strategy.

Working Groups of SLCs
It is highly likely that the transport activity of one SLC may affect

the activity of others, acting in parallel or in sequential order, in

redundant or interdependent function, integrating with the

cellular metabolism in various ways (Nigam, 2015; Thiele et al.,

2013). If this is the case, there may be several ways to uncover

such functionally linked groups, for example, by analyzing co-

expression patterns (Huynen et al., 2003; Jordan et al., 2004;

Stuart et al., 2003). Proteins acting together are more likely to

be co-expressed across tissues and conditions than if they are
Cell 162, July 30, 2015 ª2015 Elsevier Inc. 481



Table 2. Approaches to Enable SLC De-orphanization

Objective Enabling New Technology References

Expression map of SLCs across the human

body, at single-cell and sub-cellular

resolution

large-scale RNA-seq; single-cell RNA-seq;

expression proteomics and antibody

mapping efforts; MALDI imaging mass

spectrometry; CyTOF

(Bendall et al., 2011; Clemencon et al.,

2015; Cornett et al., 2007; Kim et al., 2014;

Mele et al., 2015; Uhlen et al., 2015; Wilhelm

et al., 2014)

Human cell lines mutated in individual SLC

genes

CRISPR technology; insertional

mutagenesis in haploid cells

(Burckstummer et al., 2013; Carette et al.,

2009; Doudna and Charpentier, 2014)

Cell lines with multiple SLC gene deletions;

cells with minimal SLC repertoire

CRISPR-mediated genomic engineering (Doudna and Charpentier, 2014; Hsu et al.,

2014)

SLC genetic interaction landscape SLCome- and genome-wide CRISPR

inactivation and gain of function libraries;

k.o. cells

(Cong et al., 2013; Qi et al., 2013)

Chemical genomics high-throughput phenotypic screening (Carette et al., 2009; Reiling et al., 2011;

Winter et al., 2014)

SLC interactome label-free high-throughput AP-MS;

BirA-mediated BioID; membrane

interaction mapping

(Cox and Mann, 2011; Lambert et al., 2015;

Petschnigg et al., 2014; Varjosalo et al.,

2013)

Metabolomic data and SLC genetic

polymorphisms

genetic association studies; population-

wide whole-genome sequencing; rare

disease genome sequencing coupled with

deep metabolomics

(Shin et al., 2014)

Metabolome-wide transport assays, in

dependence of individual SLC gene

alteration

high-throughput accurate LC/ GC-mass

spectrometry and databases; libraries of

metabolites; k.o. cells

(Kell, 2004)

Transport assays using recombinant

proteins

proteoliposomes; liposome microarrays;

pure solutes, complex body fluids

(Krumpochova et al., 2012; Saliba et al.,

2014; Scalise et al., 2013)

High-throughput determination of 3D

structure

single-particle cryo-EM; high-throughput

crystallization protocols; serial

femtosecond crystallography

(Bai et al., 2015; Bartesaghi et al., 2015;

Chapman et al., 2011; Moraes et al., 2014;

Zeev-Ben-Mordehai et al., 2014; Zhou

et al., 2015)

Potent and selective chemical probes for

each SLC

better libraries; more accurate screening

technologies; assays to assess target

engagement and specificity in cells and

tissues

(Edwards et al., 2009; Frye, 2010)
functionally independent. SLCs that are consistently identified to

be co-expressed and thus represent such putative working

groups or functional modules may, in turn, help to shed light

on the role of the individual family members. Perhaps these

connections can be used to distinguish an underlying overall ar-

chitecture, which might be suggestive of dependencies and vul-

nerabilities of the system.

To explore this concept more fully, we analyzed different gene

expression data sets of human tissues (Fantom5, Illumina body

map, and the ‘‘32 tissues’’; Forrest et al., 2014; Parkinson

et al., 2011; Uhlen et al., 2015) and derived a global and high-

confidence survey of patterns of co-expression across SLC

genes. These patterns for co-expression were analyzed to iden-

tify SLCs that are frequently and consistently co-expressed. Co-

expression relationships were ranked based on the combined

p values of the correlations in the three independent data sets

used. For visualization convenience, we chose to display only

the top 2,500 co-expressed SLCs observed in at least two

data sets. We found at least five major clusters and several

smaller ones, perhaps representing fundamental functional rela-

tionships (Figure 2A). The edges were colored according to the
482 Cell 162, July 30, 2015 ª2015 Elsevier Inc.
tissue in which two connected SLCs are most highly, but not

necessarily exclusively, expressed. We found that the clusters

correspond to individual tissues (kidney, liver, brain, testis, leu-

kocytes). Interestingly, kidney and liver seem to share the highest

number of co-expressed SLCs despite their different germ-layer

origin. A more fine-grained tissue annotation shows that the kid-

ney/liver intersection harbors the SLCs whose co-expression is

highest in intestinal tissue (Figure S3A). This similarity between

kidney and liver co-expression is specific for SLCs, as a recently

published genome-wide tissue expression comparison revealed

a considerably larger ‘‘distance’’ between these organs (Mele

et al., 2015).

The network displayed does not automatically reveal all text-

book cases of co-expression. For example, expression of

SLC26A4 (iodide transporter, pendrin) and SLC5A5 (sodium io-

dide co-transporter) is well known to be coordinately expressed

in thyroid tissue. While a significant level of co-expression is

observed in the thyroid, several tissues either express one or

the other, suggesting that they may not always be obligatory

partners and may have independent functions. Accordingly,

the correlation, although significant, did not reach the top



Figure 2. SLCs Are Expressed in Robust Tissue-Dependent Modules

(A) Network visualization of SLC co-expression. Nodes in the network represent SLCs. Edges between nodes correspond to significant correlations consistently

retrieved in three independent expression data sets from healthy human tissues. Only the top 2,500 most significant edges are shown, based on combined

p values of the three independent correlations. Gray nodes indicate SLCs with at least one disease association, and red node outlines indicate the presence of at

(legend continued on next page)
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2,500. To allow the interrogation of the full data set beyond what

can be reasonably visualized in a single network, we include an

extended list of SLC co-expression pairs across all tissues (Ta-

ble S2).

Not all SLCs are represented in the network because their

expression does not correlate strongly enough with any given

other to be among the top 2,500 that we chose to represent for

visualization. Of these SLCs, some 48 appear to be expressed

in all tissues and may thus represent a ‘‘core’’ of housekeeping

functions (Table S3). Membership to this group may make some

of them attractive to study for pharmacokinetic considerations.

We then looked at the distribution of disease-associated SLCs

across the network (dark gray filled nodes, Figure 2A). All clus-

ters (except the testis cluster) contain several positive SLCs,

confirming that SLC gene functions bear important pathophysi-

ological implications across many tissues and processes. The

SLCs for which high-affinity chemical agents have been devel-

oped are marked; their distribution was considerably less even

(red halos, Figure 2A). At least three cluster regions seem rela-

tively sparse in terms of drugs: heart and skeletal muscle, leuko-

cytes, and the intersection of liver and kidney. Perhaps these

regions merit more attention in the future.

The SLC families do not appear to group in clusters or tissues

(i.e., most SLC families appear distributed over the different

tissues), but there is a non-random pairing of co-expression be-

tween different SLC families whose pattern likely reflects meta-

bolic/biochemical dependencies (Figure 2B). For instance,

strong interaction between the SLC13 and SLC22 families is

likely to reflect an integration of energy and homeostatic regula-

tion of intermediate metabolism, particularly the Krebs cycle.

Enrichment in the interactions between families SLC5 (glucose

reuptake), SLC13 (citrate/dicarboxylate reuptake), and SLC47

(toxin/xenobiotic secretion) might be also explained by the role

of some of their members in kidney, where a coordinated trans-

port of their cargos is required. Furthermore, the sodium and

chloride symporter family SLC6, which transports monoamine

neurotransmitters and amino acid neurotransmitters, is heavily

linked with glutamate/neutral amino acid transporters of the

SLC1 family. This link suggests a connection at both a metabolic

and physiological level, especially important in brain tissue.

The robustness of SLC co-expression patterns across

different large-scale data sets was very high and clearly ex-

ceeded, for example, that of protein kinases (Figure S3B).

Possibly, SLC function has a particularly high degree of interde-

pendence reflective of the integrative nature of metabolism

required for homeostatic stability. The resulting co-expression

networks are likely to be reinforced by the integration with envi-

ronmental parameters.

The patterns of SLC co-expression may reflect normal cell

function; when we compared co-expression in different cancer

cell lines, we observed massive changes, corresponding to a

general loss of structural organization in the network. The
least one interacting small compound with an IC50 below 10 mM (OpenPHACTS)

share the highest expression (highest mean rank; Illumina Body Map data set), a

(B) SLC family co-expression enrichment network. Nodes in the network repre

betweenmembers of the connected SLC families, as calculated by a hypergeome

is proportional to the number of co-expressed SLC pairs (see legend).
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network of SLC co-expression in cancer is not robust, i.e., it is

not as reproducible across data sets, and it shows considerably

less clustering (Figure S3C). The degree by which cancer per-

turbs the SLC co-expression pattern is much higher than the dif-

ferences between normal tissues and cancer cell lines observed

with protein kinases.

Could loss of these ‘‘healthy’’ SLC co-expression patterns be

a good marker for the loss of homeostasis in certain diseases?

This analysis may suggest that there is a SLC regulatory circuitry

that may be crucial to medical and pharmacological consider-

ations and that might assist strategic choices in the effort to fill

the SLC knowledge gap. Armed with this knowledge, redun-

dancy and dependency are not annoying impediments of the

large SLC group but, rather, exploitable features.

Conclusions
In summary, SLCs are particularly understudied and fascinating

proteins, vital for correct cellular function by controlling the cor-

rect import andexport of themoleculesof life acrossmembranes.

They are important in disease and in the action and transport of

drugs. A broad attack on their structure, expression, regulation,

chemical structure-activity relationships, and functional charac-

terization in terms of transport and signaling is warranted. The

study of their regulation and interdependencies should be

particularly fascinating, as the functional target may be not only

a single protein but the vulnerability within the functional network,

perhaps involving ATP-dependent efflux transporters of the

ABC family as well. A full-force effort to study the ‘‘SLCome’’

would open the doors to the interface between human health

and metabolism, nutrition, and the environment. The large and

important family of SLCs should be neglected no longer.
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