The Indivisibility of the Homogeneous K_{n}-Free Graphs

M. El-Zahar and N. Sauer*
Department of Mathematics and Statistics, University of Calgary, Alta, Canada T2N 1N4
Communicated by the Editors
Received January 5, 1987

Abstract

We will prove that for each $n \geqslant 3$ the homogeneous K_{n}-free graph H_{n} is indivisible. That means that for every partition of H_{n} into two classes R and B there is an isomorphic copy of H_{n} in R or in B. This extends a result of Komjáth and Rödl [Graphs Combin. 2 (1986), 55-60] who have shown that H_{3} is indivisible. © 1989 Academic Press, Inc.

Introduction

Graphs are undirected and without loops. The graph A is a subgraph of the graph G if $V(A) \subset V(G)$ and $E(A)=(A \times A) \cap E(G)$. A countable graph H is homogeneous if for every two finite subgraphs A, B of H and every isomorphism $f: A \rightarrow B$ there is an automorphism of H which extends f. This definition follows Fraïssé [2, p. 313]. Lachlan and Woodrow [3] named those graphs "ultra-homogeneous." In [3] they characterised the homogeneous graphs.

We will rely on this classification of the homogeneous graphs and on the more general information in [2]. A graph H is indivisible if for every partition of the vertex set of H into two classes R and B there is an embedding $f: H \rightarrow H$ such that $f(H) \subset R$ or $f(H) \subset B$. (See [2, 0. 174].)

It is clear that the complement of a homogeneous graph is again homogeneous and that the complement of an indivisible graph is indivisible. Lachlan and Woodrow [3] proved that up to taking complements the only homogeneous graphs are disjoint copies of isomorphic complete graphs, the universal graph \mathscr{U} and the K_{n}-free homogeneous graphs $H_{n}(n \geqslant 3)$. Of the graphs in the first group only K_{ω} and the graph which consists of ω copies of K_{ω} are indivisible. That the random graph \mathscr{U} is indivisible can easily be seen, but also follows from [2; 10, 4.4, p. 288]. In [1] it is shown that H_{3} is indivisible. In this paper we will now prove:

ThEOREM. Every homogenous K_{n}-free graph $H_{n}(n \geqslant 3)$ is indivisible.

[^0]
1. Some Preliminary Observations

We assume familiarity with the description of H_{n} given in [4]. Familiarity with the proof that H_{3} is indivisible as presented in [1] is not strictly necessary but probably helpful.

Lemma 1. Let G be a finite K_{n}-free graph and $x \in G$. Then to each embedding $f: G-x \rightarrow H_{n}$ there are infinitely many extensions of f to an embedding of G into H_{n}.

Proof. There is an embedding $g: G \rightarrow H_{n}$ [4, Theorem 2.3]. $f \circ g^{-1}$: $g(G)-g(x) \rightarrow f(G-x)$ is an isomorphism and can therefore be extended to an automorphism σ of $H_{n} . \sigma \circ g$ is then an extension of f. If G is a K_{n}-free graph with $V(G)=\left\{x_{1}, x_{2}, \ldots, x_{n}=x\right\}$, then the graph F with $V(F)=V(G) \cup\{y\}$, no edge from x to y, y is connected to x_{i} for $1 \leqslant i<n$ just in case x is connected to x_{i}, is also K_{n}-free. This observation implies that we can extend f in infinitely many ways.

Lemma 2. The K_{n}-free graph A is isomorphic to H_{n} if and only if:
for every finite K_{n}-free graph G and $x \in G$ each embedding $f: G-x \rightarrow A$ can be extended to an embedding of G into A.

Proof. Follows from Theorem 2.3 of [4].
Corollary 1. If $X \subset V\left(H_{n}\right)$ is finite then $H-X$ is isomorphic to H_{n}. ([4, Corollary 2.5].)

Corollary 2. Let X be a finite subset of $V\left(H_{n}\right)$ Let $Y=\left\{y \in H_{n}-X\right.$; $(y, x) \notin E\left(H_{n}\right)$ for every $\left.x \in X\right\}$. Then the subgraph induced by Y is isomorphic to H_{n}.

Lemma 3. Let G be a finite K_{n}-free graph and $X \subset V\left(H_{n}\right)$, such that G cannot be embedded into X. Then $H_{n}-X$ contains an isomorphic copy of H_{n}.

Proof. This is Theorem 4.1 of [4].

2. Proof of the Theorem

We will prove the following:
Theorem. The K_{n}-free homogeneous graph H_{n} is indivisible (for all natural numbers $n \geqslant 3$).

Proof. We shall assume that H_{n} is defined on the set of natural numbers. We will use the following notation

$$
\begin{array}{ll}
X<Y \leftrightarrow \max X<\min Y & \\
\begin{array}{ll}
a<Y \leftrightarrow\{a\}<Y & (a \in N, Y \subset \mathbb{N}) \\
{[\leftarrow a]=\{x \in \mathbb{N}: x \leqslant a\}} & \\
{[\leftarrow a)=\{x \in \mathbb{N}: x<a\},} & \\
\text { etc. } &
\end{array} \\
&
\end{array}
$$

Definition. For $a \in H_{n}, \Gamma(a)=\left\{x \in H_{n}: x<a\right.$ and $\left.x a \in E\left(H_{n}\right)\right\}$. The vertex a will be called a strong vertex if $\Gamma(a)$ is nonempty and contains the complete graph K_{n-2}. Otherwise a is a weak vertex.

Lemma 4. The set of strong vertices of H_{n} contains an isomorphic copy of H_{n}.

Proof. The set of all weak vertices cannot contain K_{n-1}. Apply Lemma 3.

Definition. Let $a \in H_{n}$ be a strong vertex. We define

$$
\begin{aligned}
\gamma_{1}(a) & =\min \Gamma(a) . \\
\gamma_{i}(a) & =\min \left\{x: \Gamma(a) \cap[\leftarrow x] \text { contains } K_{i}\right\} \quad \text { for } \quad 2 \leqslant i \leqslant n-2 . \\
\gamma_{n-1}(a) & =\min \{x: \Gamma(a) \subset[\leftarrow x)\} . \\
\Gamma_{i}(a) & =\left\{x \in \Gamma(a): \gamma_{i}(a) \leqslant x<\gamma_{i+1}(a)\right\} \quad \text { for } \quad 1 \leqslant i \leqslant n-2 .
\end{aligned}
$$

Note that $\gamma_{n-1}(a) \notin \Gamma(a)$. We could even have $\gamma_{n-1}(a)=a$.
In what follows we shall assume that the vertices of H_{n} are colored, in an arbitrary but fixed way, with two colors red and blue. We also introduce another (uncolored) copy H_{n}^{*} isomorphic to H_{n}. The vertices of H_{n}^{*} will be denoted by a_{1}, a_{2}, \ldots and we assume that they are ordered such that $a_{1}<a_{2}<\cdots$. We do not assume that the graph and order isomorphisms between H_{n} and H_{n}^{*} coincide. Since the vertices of H_{n}^{*} are ordered, we can define strong and weak vertices, $\gamma_{i}\left(a_{k}\right), \Gamma_{i}\left(a_{k}\right) \cdots$, etc. in H_{n}^{*}.

Statement. $\quad H_{n}$ contains a monochromatic copy of itself.
The statement will be proved by constructing a monotone map $\sigma: H_{n}^{*} \rightarrow H_{n}$ with the following properties:

1. The set $\left\{\sigma\left(a_{k}\right): a_{k}\right.$ is a strong vertex of $\left.H_{n}^{*}\right\}$ is monochromatic.
2. For every pair of natural numbers, $i, j, i<j$, we have

$$
\begin{aligned}
& \sigma\left(a_{i}\right) \sigma\left(a_{j}\right) \in E\left(H_{n}\right) \leftrightarrow a_{j} \text { is a strong vertex of } H_{n}^{*} \text { and } \\
& a_{i} a_{j} \in E\left(H_{n}^{*}\right) .
\end{aligned}
$$

For every vertex $x \in H_{n}$ we define two formulas: the blue formula $\varphi(x)$ and the red formula $\psi(x)$. The blue formula $\varphi(x)$ is the following formula:

$$
\begin{aligned}
& \left(\exists F_{1} \exists \alpha_{1}: x=\min F_{1} \wedge F_{1}<\alpha_{1} \wedge K_{2} \not \subset F_{1}\right) \\
& \left(\forall E_{1} \forall \beta_{1}: \alpha_{1}<E_{1}<\beta_{1} \wedge K_{2} \not \subset F_{1} \cup E_{1}\right) \\
& \left(\exists F_{2} \exists \alpha_{2}: \beta_{1}<F_{2}<\alpha_{2} \wedge K_{3} \not \subset F_{1} \cup E_{1} \cup F_{2}\right) \\
& \left(\forall E_{2} \forall \beta_{2}: \alpha_{2}<E_{2}<\beta_{2} \wedge K_{3} \not \subset F_{1} \cup E_{1} \cup F_{2} \cup E_{2}\right)
\end{aligned}
$$

$$
\left(\exists F_{i} \exists \alpha_{i}: \beta_{i-1}<F_{i}<\alpha_{i} \wedge K_{i+1} \not \subset F_{1} \cup E_{1} \cup \cdots \cup E_{i-1} \cup F_{i}\right)
$$

$$
\left(\forall E_{i} \forall \beta_{i}: \alpha_{i}<E_{i}<\beta_{i} \wedge K_{i+1} \not \subset F_{1} \cup E_{1} \cup \cdots \cup F_{i} \cup E_{i}\right)
$$

$$
\begin{aligned}
& \left(\exists F_{n-2} \exists \alpha_{n-2}: \beta_{n-3}<F_{n-2}<\alpha_{n-2} \wedge K_{n-1} \not \subset F_{1} \cup E_{1} \cup \cdots \cup E_{n-3} \cup F_{n-2}\right) \\
& \left(\forall E_{n-2} \forall \beta_{n-2}: \alpha_{n-2}<E_{n-2}<\beta_{n-2} \wedge K_{n-1} \not \subset F_{1} \cup E_{1} \cup \cdots \cup F_{n-2} \cup E_{n-2}\right) .
\end{aligned}
$$

(The set $\left\{y \in H_{n}: y>\beta_{n-2} \quad\right.$ and $\quad \Gamma(y) \cap\left[\leftarrow \beta_{n-2}\right]=F_{1} \cup E_{1} \cup \cdots \cup$ $\left.F_{n-2} \cup E_{n-2}\right\}$ contains infinitely many blue vertices.) $\varphi(x)$ is interpreted according to the following rules:

1. : means "such that."
2. $F_{1}, E_{1}, \ldots, F_{n-2}, E_{n-2}$ are restricted to be finite nonempty subsets of H_{n} and $\alpha_{1}, \beta_{1}, \ldots, \alpha_{n-2}, \beta_{n-2}$ are restricted to be elements of H_{n}.

The red formula $\psi(x)$ is obtained from $\varphi(x)$ by interchanging the quantifiers \forall, \exists and replacing the word "blue" by "red." One can convince oneself that for every $x \in H_{n}$ at least one of $\varphi(x)$ and $\psi(x)$ is true.

Definition. A vertex $x \in H_{n}$ is called a blue generator if $\varphi(x)$ is true. Otherwise x is called a red generator.

We shall divide the proof into two cases: The blue case where there are infinitely many blue generators in H_{n} and the Red Case where there are only finitely many blue generators.

The Blue Case

Here the formula φ will be used to generate certain subsets as follows. Suppose we have just chosen a vertex $x \in H_{n}$ which is a blue generator to be included in our construction. Then, since $\varphi(x)$ is true, there exist $F_{1} \subset H_{n}$ and $\alpha_{1} \in H_{n}$ such that $x=\min F_{1}$ and $F_{1}<\alpha$. We say that F_{1} and α_{1} have been introduced and denote them respectively by $F_{1}(x)$ and $\alpha_{1}(x)$. We also say that the quantifier block

$$
\varphi_{1}(x) \equiv\left(\forall E_{1} \forall \beta_{1}: \alpha_{1}(x)<E_{1}<\beta_{1} \wedge K_{2} \not \subset F_{1}(x) \cup E_{1}\right)
$$

has been activated. If at a later stage some set $E_{1} \subset H_{n}$ and an element $\beta_{1} \in H_{n}$ were recognized to satisfy

$$
\alpha_{1}(x)<E_{1}<\beta_{1} \quad \text { and } \quad K_{2} \not \not \neq F_{1}(x) \cup E_{1}
$$

then E_{1}, β_{1} will be called an instance pair for $\varphi_{1}(x)$. Corresponding to E_{1}, β_{1} there exist $F_{2} \subset H_{n}$ and $\alpha_{2} \in H_{n}$ such that

$$
\beta_{1}<F_{2}<\alpha_{2} \quad \text { and } \quad K_{3} \not \subset F_{1}(x) \cup E_{1} \cup F_{2} .
$$

We shall denote these F_{2} and α_{2} by $F_{2}\left(x ; E_{1}: \beta_{1}\right)$ and $\alpha_{2}\left(x ; E_{1} ; \beta_{1}\right)$. In turn, the quantifier block

$$
\begin{aligned}
\varphi_{2}\left(x ; E_{1} ; \beta_{1}\right) \equiv & \left(\forall E_{2} \forall \beta_{2}: \alpha_{2}\left(x ; E_{1} ; \beta_{1}\right)<E_{2}<\beta_{2}\right. \\
& \left.\wedge K_{3} \not \not F_{1}(x) \cup E_{1} \cup F_{2}\left(x ; E_{1} ; \beta_{1}\right) \cup E_{2}\right)
\end{aligned}
$$

will be activated.
In general, if the quantifier block

$$
\begin{aligned}
\varphi_{i}(x ; & \left.E_{1}, \ldots, E_{i-1} ; \beta_{1}, \ldots, \beta_{i-1}\right) \\
\equiv & \left(\forall E_{i} \forall \beta_{i}: \alpha_{i}\left(x ; E_{1}, \ldots, E_{i-1} ; \beta_{1}, \ldots, \beta_{i-1}\right)\right. \\
& <E_{i}<\beta_{i} \wedge K_{i+1} \not \subset F_{1}(x) \cup E_{1} \cup \\
& \left.\ldots \cup F_{i}\left(x ; E_{1}, \ldots, E_{i-1} ; \beta_{1}, \ldots, \beta_{i-1}\right) \cup E_{i}\right)
\end{aligned}
$$

has been activated, then a pair E_{i}, β_{i} satisfying this quantifier block will be called an instance pair for it. This paper will induce the existence of

$$
F_{i+1}\left(x ; E_{1}, \ldots, E_{i} ; \beta_{1}, \ldots, \beta_{i}\right) \quad \text { and } \quad \alpha_{i+1}\left(x ; E_{1}, \ldots, E_{i} ; \beta_{1}, \ldots, \beta_{i}\right)
$$

which in turn will activate the quantifier block

$$
\varphi_{i+1}\left(x ; E_{1}, \ldots, E_{i} ; \beta_{1}, \ldots, \beta_{i}\right)
$$

Note that all the previous quantifier blocks

$$
\varphi_{1}(x), \quad \varphi_{2}\left(x ; E_{1} ; \beta_{1}\right), \ldots, \quad \varphi_{i}\left(x ; E_{1}, \ldots ; \beta_{1}, \ldots\right)
$$

are assumed to remain activated. In other words we can use them to generate sets as many times as we want. The sets E_{1}, E_{2}, \ldots will be called initiators and the sets $F_{1}(x), F_{2}\left(x ; E_{1}, \beta_{1}\right), \ldots$ will be called the induced sets.

The general picture of our construction will be as follows. There will be an infinite sequence of blue generators B_{1}, B_{2}, \ldots and another sequence consisting of $\sigma\left(a_{1}\right), \sigma\left(a_{2}\right), \ldots$ We shall use sets of the form $E_{i}=\left\{\sigma\left(a_{i_{1}}\right), \ldots, \sigma\left(a_{i_{k}}\right)\right\}$ as initiators to generate sets of the form $F_{j}\left(B_{l} ; E_{1}, \ldots ; \beta_{1}, \ldots\right)$ as induced sets. The relative position of these elements and sets will be as follows. Above a generator B_{k} will be the set $F_{1}\left(B_{k}\right)$. This will be followed by $\sigma\left(a_{k}\right)$. Above $\sigma\left(a_{k}\right)$ there will be some induced sets of the form $F_{i}\left(B_{l} ; E_{i_{1}}, \ldots ; \beta_{i_{1}}, \ldots\right), i \geqslant 2$ and $l \leqslant k$. Next will lie the generator B_{k+1}. The open interval $\left(\sigma\left(a_{k-1}\right), B_{k}\right)$ will be denoted by I_{k}. Except for the sets $F_{1}\left(B_{j}\right)$, each induced set will lie in an interval I_{k} for some k. All the induced sets will be so constructed to be disjoint and to contain no element B_{j} or $\sigma\left(a_{k}\right)$. In order to be able to do this we shall introduce the time bound T. At any stage of the construction the current value of T will be equal to some element in H_{n} larger than all the previously constructed sets and elements. Having introduced the next element or set into our construction, we set the current value of T to some element in H_{n} which is above the newly introduced element or set and so on.

Let us now describe our construction in full detail.
Choose a blue generator B_{1} and introduce B_{1} and $F_{1}\left(B_{1}\right)$. Set the current time bound $T=\alpha_{1}\left(B_{1}\right)$. Choose a vertex y such that

$$
y>T \quad \text { and } \quad \Gamma(y) \cap[\leftarrow T]=\varnothing
$$

Put $\sigma\left(a_{1}\right)=y$ and set $T=\sigma\left(a_{1}\right)+1$. Now the pair $\left(\left\{\sigma\left(a_{1}\right)\right\}, T\right)$ is an instance pair for the activated subformula $\varphi_{1}\left(B_{1}\right)$ so that $F_{2}\left(B_{1}\right.$; $\left.\left\{\sigma\left(a_{1}\right)\right\} ; T\right)$ and $\alpha_{2}\left(B_{1} ;\left\{\sigma\left(a_{1}\right)\right\} ; T\right)$ exist. We introduce $F_{2}\left(B_{1} ;\left\{\sigma\left(a_{1}\right)\right\} ; T\right)$ and set $T=\alpha_{2}\left(B_{1} ;\left\{\sigma\left(a_{1}\right)\right\} ; T\right)$.

Next we choose a blue generator B_{2} such that $B_{2}>T$. We introduce B_{2} and $F_{1}\left(B_{2}\right)$ and set $T=\alpha_{1}\left(B_{2}\right)$.

Let us now describe the construction after $\sigma\left(a_{k-1}\right)$ has been introduced and the current time bound has been set to $T=\sigma\left(a_{k-1}\right)+1$. Consider all pairs $\left(Y, \varphi_{i}\left(B_{j}\right)\right)$ satisfying:

$$
\begin{equation*}
Y \subset\left\{\sigma\left(a_{1}\right), \ldots, \sigma\left(a_{k-1}\right)\right\}, Y \neq \varnothing \tag{i}
\end{equation*}
$$

(ii) $\phi_{i}\left(B_{j}\right)$ is an activated quantifier block belonging to B_{j}.
(iii) for any $T^{\prime} \in H_{n}, T^{\prime} \geqslant T$, the pair Y, T^{\prime} is an instance pair for $\varphi_{i}\left(B_{j}\right)$.

Order all such pairs in an arbitrary way. Pick the first such pair Y, $\varphi_{i}\left(B_{j}\right)$. Since Y, T is an instance pair for $\varphi_{i}\left(B_{j}\right)$, we introduce $F_{i+1}\left(B_{j} ; \ldots, Y ; \ldots, T\right)$ and set $T=\alpha_{i+1}\left(B_{j} ; \ldots, Y ; \ldots, T\right)$. We repeat the same process one at a time for every such pair $Y, \varphi_{i}\left(B_{j}\right)$. Then we choose a blue generator $B_{k}>T$. We introduce $F_{1}\left(B_{k}\right)$ and set $T=\alpha_{1}\left(B_{k}\right)$.

The next step is to show how $\sigma\left(a_{k}\right)$ is constructed. If a_{k} is a weak vertex of H_{n}^{*}, then choose a vertex $y \in H_{n}$ satisfying

$$
y>T \quad \text { and } \quad \Gamma(y) \cap[\leftarrow T]=\varnothing
$$

We put $\sigma\left(a_{k}\right)=y$ and set $T=\sigma\left(a_{k}\right)+1$. Assume now that a_{k} is a strong vertex of H_{n}^{*}. Define m_{1}, \ldots, m_{n-1} by

$$
\gamma_{i}\left(a_{k}\right)=a_{m_{i}} \quad\left(\text { in } H_{n}^{*}\right), \quad i=1, \ldots, n-1
$$

We also denote

$$
D_{i}=\sigma\left(\Gamma_{i}\left(a_{k}\right)\right), \quad i=1, \ldots, n-2
$$

We claim that the subformula $\varphi_{n-2}\left(B_{m_{1}} ; D_{1}, \ldots, D_{n-2} ; T_{1}, \ldots, T_{n-2}\right)$ has been activated where T_{i} is a value of the time bound satisfying $T_{i} \in I_{m_{i+1}}$ ($i=1, \ldots, n-2$). Assume for the moment that this is true. This means that $F_{1}\left(B_{m_{1}}\right), F_{2}\left(B_{m_{1}} ; D_{1} ; T_{1}\right), \ldots F_{i}\left(B_{m_{1}} ; D_{1}, \ldots, D_{i-1} ; T_{1}, \ldots, T_{i-1}\right), \ldots$ have been introduced. From the formula $\varphi\left(B_{m_{1}}\right)$, we deduce that there are infinitely many blue vertices y such that

$$
\begin{aligned}
& y>T_{n-2} \quad \text { and } \\
& \Gamma(y) \cap\left[\leftarrow T_{n-2}\right]= \\
& \quad F_{1}\left(B_{m_{1}}\right) \cup D_{1} \cup F_{2}\left(B_{m_{2}} \cdots\right) \\
& \\
& \cup \cdots \cup F_{n-2}(\cdots) \cup D_{n-2},
\end{aligned}
$$

choose such a vertex y satisfying $y>T$ and put $\sigma\left(a_{k}\right)=y$. We also set $T=\sigma\left(a_{k}\right)+1$.

Assume now that all $\sigma\left(a_{l}\right), l<k$, have been constructed according to the previous description. We shall use induction on i to prove that all $\varphi_{i}\left(B_{m_{1}}, D_{1}, \ldots, D_{i}, T_{1}, \ldots, T_{i}\right)$ have been activated where $i \leqslant n-2$ and $T_{j} \in I_{m_{j+1}}(j \leqslant i)$. First, if $a_{i} \in \Gamma_{1}\left(a_{k}\right)$ then there is no edge $a_{i} a_{m_{1}} \in H_{n}^{*}$. Therefore, according to the prescribed construction, $F_{1}\left(B_{m_{1}}\right) \cup D_{1}$ is an independent set. Thus $\varphi_{2}\left(B_{m_{1}} ; D_{1} ; T_{1}\right)$ was activated and $F_{2}\left(B_{m_{1}} ; D_{1} ; T_{1}\right)$ was introduced when $T=T_{1}$ where $T_{1} \in I_{m_{2}}$.

Assume that for all $j \leqslant i$, the sets $F_{j}\left(B_{m_{1}} ; D_{1}, \ldots, D_{j-1} ; T_{1}, \ldots, T_{j-1}\right)$ have been introduced and the formulas $\varphi_{j}\left(B_{m_{1}} ; D_{1}, \ldots, D_{j-1} ; T_{1}, \ldots, T_{j-1}\right)$ have been activated. For simplicity we shall write F_{1}, F_{2}, \ldots instead of $F_{1}\left(B_{m_{1}}\right), F_{2}\left(B_{m_{1}} ; D_{1} ; T_{1}\right), \ldots$ We also write $\varphi_{1}, \varphi_{2}, \ldots$ instead of $\varphi_{1}\left(B_{m_{1}}\right)$,
$\varphi_{2}\left(B_{m_{1}} ; D_{1} ; T_{1}\right), \ldots$. We show that D_{i}, T_{i} is an instance pair for φ_{i} where $T_{i} \in I_{m_{i+1}}$. We have to prove that the set

$$
X=F_{1} \cup D_{1} \cup \cdots \cup F_{i} \cup D_{i}
$$

contains no K_{i+1}. Assume, on the contrary, that X contains vertices $x_{1}<x_{2}<\cdots<x_{i+1}$ which form a K_{i+1}. By the definition of F_{i} we have

$$
x_{i+1} \notin F_{1} \cup D_{1} \cup \cdots \cup D_{i-1} \cup F_{i}
$$

so that $x_{i+1} \in D_{i}$. We also observe that $\left\{x_{1}, \ldots, x_{i+1}\right\} \cap \bigcup_{j=1}^{i} F_{i} \neq \varnothing$ since $K_{i+1} \notin \bigcup_{j=1}^{i} \Gamma_{j}\left(a_{k}\right)$. Let h be maximum such that $x_{h} \in \bigcup_{j=1}^{i} F_{j}$, say $x_{h} \in F_{p}, p \leqslant i$. Write $x_{l}=\sigma\left(a_{q l}\right)$ for $h<l \leqslant i+1$. We observe that $h \leqslant p$ since $K_{p+1} \not \subset F_{1} \cup D_{1} \cup \cdots \cup F_{p}$. Now each $x_{l}(h<l)$ has an edge to F_{p}. By our construction, this implies that $\left\{\gamma_{p}\left(a_{k}\right)\right\} \cup \Gamma_{1}\left(a_{k}\right) \cup \cdots \cup \Gamma_{p-1}\left(a_{k}\right)$ for each $h<l$. This is a contradiction, however, since $D_{1} \cup \cdots \cup \Gamma_{1}\left(a_{k}\right) \cup \cdots \cup$ $\Gamma_{p-1}\left(a_{k}\right)$ contains a complete graph K_{p} which together with $a_{q_{h+1}}, \ldots, a_{q_{i+1}}$ will form a K_{i+1} in $\bigcup_{j=1}^{i} \Gamma_{j}\left(a_{k}\right)$. This shows that F_{i+1} has been introduced and φ_{i+1} has been activated or, in the case $i=n-2$, we can introduce $\sigma\left(a_{k}\right)$. This completes the proof in the blue case.

The Red Case

In this case, we can assume that each vertex in H_{n} is a red generator since deleting finitely many vertices of H_{n} we still have a copy isomorphic to H_{n} (in the graph-theoretic sense). The construction will go along similar lines as in the blue case except for some minor changes which we describe below. First of all we do not introduce special vertices to act as red generators since each vertex by itself is a red generator. We shall use the red formula to generate sets in the same way as we did in the blue case. The initiatiors, here the F_{i} 's, will be again sets of the form $\left\{\sigma\left(a_{i 1}\right), \ldots\right.$, $\left.\sigma\left(a_{i_{m}}\right)\right\}$. For each vertex of the form $\sigma\left(a_{k}\right)$ the subformula

$$
\psi_{1}\left(\sigma\left(a_{k}\right)\right) \equiv\left(\forall F_{1} \forall a_{1}: \sigma\left(a_{k}\right)=\min F_{1} \wedge F_{1}<\alpha_{1} \wedge K_{2} \not \subset F_{1}\right)
$$

will be automatically activated. If the subformula

$$
\begin{aligned}
& \psi_{i}\left(\sigma\left(a_{k}\right) ; F_{1}, \ldots, F_{i-1} ; \alpha_{1}, \ldots, \alpha_{i-1}\right) \\
& \quad \equiv\left(\forall F_{i} \forall \alpha_{i}: \beta_{i-1}\left(\sigma\left(a_{k}\right), F_{1}, \ldots, F_{i-1} ; \alpha_{1}, \ldots, \alpha_{i-1}\right)\right. \\
& \quad<F_{i}<\alpha_{i} K_{i+1} \notin F_{1} \cup E_{1}\left(\sigma\left(a_{k}\right) ; F_{1}\right) \\
& \left.\quad \cup \cdots \cup E_{i-1}\left(\sigma\left(a_{k}\right) ; F_{1}, \ldots, F_{i-1} ; \alpha_{1}, \ldots, \alpha_{i-1}\right)\right)
\end{aligned}
$$

has been activated and F_{i}, α_{i} is an instance pair of it then we can introduce the new set $E_{i}\left(\sigma\left(a_{k}\right) ; F_{1}, \ldots, F_{i} ; \alpha_{1}, \ldots, \alpha_{i}\right)$ and the next quantifier block will be activated.

The time bound T will act in the same way as in the blue case. Also the proof for the existence of $\sigma\left(a_{k}\right)$ for each k will be similar as in the blue case.

References

1. P. Komiáth and V. Rödl, Coloring of universal graphs, Graphs Combin. 2 (1986), 55-60.
2. R. Fraïssé, Theory of relations, Stud. Logic Foundations Math. 118 (1986).
3. A. H. Lachlan and R. E. Woodrow, Countable ultrahomogeneous undirected graphs, Trans. Amer. Math. Soc. 262 (1980), 51-94.
4. C. W. Henson, A family of countable homogeneous graphs, Pacific J. Math. 38, No. 1 (1971).

[^0]: * This work was supported by N.S.E.R.C. Grant 69-1325.

