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‘Abstract 

Conditions are given that assure convergence of an operator-valued periodic continued fraction of period 

two. These results and techniques are applied to get a solution of the quadratic operator equation in a complex 
Hilbert space. Special attention is then given to the important case of the quadratic matrix equation connected 

with the steady-state solution of the matrix Riccati equation from control theory. It is shown that a modification 
of the traditional matrix power approximation technique leads to a new, efficient and highly simplified method 
of approximating the unique nonnegative definite solution that exists in many important special cases. 
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1. Introduction 

Many of the standard theorems of continued fractions with entries from a field have been gener- 
alized to the case of noncommutative entries, see [ l-9,1 11. The applications given in [ 1,6,12] are 
evidence of the usefulness of such generalizations (see also the extensive references in [ 41 to applied 
mathematics and physics. In this paper we continue the work of [2,3] and give convergence criteria 
for periodic noncommutative continued fractions of period two. 

These results are of particular interest because we can use them to construct a continued fraction 
solution to the quadratic matrix equation describing the steady state of the matrix Riccati equation, a 
topic of great interest throughout much of control theory (see also [ 1,101). The resulting procedure 
shows that in many cases a simple modification of the classical power method of approximation 
will yield a solution of the matrix quadratic equation. It also yields precise numerical information, 
including the rate of convergence of the method to the solution. 
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2. Notation and basic lemmas 

Let H be a complex Hilbert space. We refer the reader to [ 21 for definitions and basic properties 
of spectral operators and, in particular, for the proof of the following lemma. 

Lemma 2.1. Let W, and W, be spectral operators on H such that 

inf{lAl I A E SP(WI)} > sup{14 I A E sp(W2>}. 

Then WI is invertible and limn+m IIW;-nl( IlW;ll = 0. 

Now let H = H @ H, the Hilbert space direct sum of H with itself. We now recall some of the 
definitions and results from [2]. Let Ui : H -+ H, i = 1,2, be linear isometries such that Hi = Ur (H) 

and H2 = U2 (H) intersect only in the zero vector of H. If H = H, @Hz, then the set { Ui , U2) is called 
an H-basis for H. The canonical H-basis for H is defined by V, (x) = (x, 0) and V2( y) = (0, y) for 
x and y in H. 

If {U,, U2) is an H-basis for H, then if x E H, x =x1 +x2, xi E U,(H). Define UT(x) = Ul”(xi), 
i = 1,2. Then UT is a continuous linear map from H onto H, and UTUj = 6,Z where 6, is the 
Kronecker delta and Z is the identity on H. Also UiU,~ = Pi, i = 1,2, where Pi is the projection of H 
onto Hi along the complementary subspace. 

Lemma 2.2. For each T E L(H), the set of all bounded linear operators on H, let Kj = lJIFTUj E 

L(H), and let 

MT= E M(2, HI, 

the algebra of two by two matrices with entries from L(H) with matrix operator norm and matrix 
operations. Then the correspondence T + MT is an isomorphism from L(H) onto M( 2, H). 

Lemma 2.3. “Change of basis ” works in the above context: let {U,, U2) and {W,, W2} be H-bases 

for H, let T E L(H) and let Mr and NT be the respective matrix representations of T in the H-bases 
just defined. Let S = 
S-’ MTS = NT. 

[ Sij] be the matrix in M(2, H) with entries Sij = U,‘Wj, i, j = 1,2. Then, 

3. Convergence of a periodic continued fraction 

Let Ai and Bi, i = 1,2,3,. . ., be entries in L(H), H a complex Hilbert space. The formal 
expression 

4 A2 A3 - - 

l?,+ l32+ B3+*.. 
(3.1) 

is a noncommutative continued fraction, see [ 111 for basic properties of these fractions. Provided 
that the appropriate inverses exist, the numerator P,, and the denominator Qn of the nth approximate 
PnQ;’ satisfy the relations 
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P n+l = P,B,+I + Pn-1 An+1 9 P-1 = I, PI) = 0, 

Qn,, = QnBn+l + Qn-l&+1, Q-I = 0, Qo = 1. 

379 

(3.2) 

We restrict ourselves to the two-periodic case 

Al A2 Al _ _ 
B1-t BZ+ B1+...’ 

If we define 

then 

(3.3) 

(3.4) 

(3.5) 

Here A can be assumed (see Lemma 2.2) to be the matrix, relative to the canonical H-basis {V, , I$}, 

of an operator A in L(H). We assume that A is spectral and satisfies the following additional 
conditions. 

(a) If CT is the spectrum of A, then u = CT~ U u2 where 

(i) (T] fl(72 = 8; 
(ii) the ranges of the disjoint spectral projections E(a,) and E(a2) are isomorphic with H; 

(iii) inf{(AJ 1 A E al} > sup{]A] I A E u2}. (3.6) 

In this case we will let y 3 Y(A,~~,(T~) = sup{]A] 1 A E 02}/inf{lAl 1 A E al} < 1. 
Now H1 = E(al)H and H2 = E( u2) H are invariant subspaces of H, and by part (i) and the first 

line of (a), we see that H = Hl @ Hz. By (ii) of ( CX) we may choose isometries Ui : H -+ Hi, 
i = 1,2, so that {Ul , U2} is an H-basis for H. Relative to this basis, A has the “Jordan canonical 
form” 

A= Al 0 
[ I 0 A2 ’ 

Ai E L(H). (3.7) 

By property (iii) of ((Y) and [ 2, Lemma 3.11, we have 

(3.8) 

s = &l s12 

[ I s21 s22 ) 

then 

S-'AS = A. 

Also if we define 

Lemma 2.3 tells US that if Sij = v*Uj and 

(3.9) 

(3.10) 

T12 1 G2 ’ 
(3.11) 
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then 7;i = UT vj. We can now state and prove a convergence theorem for (3.3). 

Theorem 3.1. Let (a) hold, and Zet S ,,, &,, T,, and T12 be invertible. Then, 
(a) all component matrices Sij and Tij, 1 < i, j < 2, are invertible; 
(b) Q;’ exists for su$ficiently large r and the sequence {PrQ;‘} converges to &,S,‘. 

Proof. (a) From the fact that T = S-’ , we have the relation S21Tl1 = -&T2,. By assumption, SZITII 
is invertible and therefore so is &T2,. This implies that both S22 and T2, are invertible. A similar 
argument works for S,2 and Tz2. 

(b) From (3.5) and (3.10), 

yielding 

Pzn = [Z + S~~A~TZ,T;;~A~‘S~‘]S*,A~T,,, 

Q2n = [Z + S12~~T21T~‘~~“S~1]S1,~~T,,r 

P2n-1 = [I + &zA;T&' A;“S;‘] &,A;T,z, 

Q2n-1 = [Z + S,2A~T22T~‘AlnSll’]S1,A;T,2 

or 

(3.12) 

(3.13) 

P2,, = [Z + X;1)]S2,A;T,,, Q2,, = [Z + X;2)]S,,A:T,,, 
(3.13’) 

P2,,_, = [I + Xi3’] &,ArfT,z, Q2n-1 = [I+ X:4)]S,1A;T12. 

We see that ]]X~‘)]] 6 CillA~“ll IlA;ll for some constants Ci, and so lim,,, ]]X~i,]] = 0, i = 1,. . . ,4, 

by Lemma 2.1. Thus for large enough n, Z + Xii) is invertible, and, by the assumptions of the theorem, 

so are Qa and Q2n_1. Furthermore, lim,,, P2nQG’ = lim,,, p,,_,Q& = S,,S,‘. Since the even 

and odd terms of the sequence have the same limit, we have lim,,, PrQ;’ = S21 S,‘. q 

4. Solution of a quadratic operator equation 

Let G,, i, j = 1,2, be in L(H) . The operator equation under consideration is 

XG,2X + XG,, - G22X - G2, = 0, (4.1) 

which is to be solved for X in L(H) . Let the corresponding matrix G in M( 2, H) be given by 

We will need to consider the equivalent equation 

XG,2X + X(G,, + 8Z) + ( -G22 - SZ)X - G2, = 0, (4.2) 
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with corresponding matrix 

1 = G + SZ, (4.3) 

in which 6 > 0 is arbitrary and will be assigned later. 
If there exist operators 

in M( 2, H) such that 

T=S and Gg=SAT, (4.4) 

then a direct computation and comparison of matrix elements shows that X = S2iS;’ is a solution to 
(4.2) (and therefore to (4.1) ) . Note that there are no conditions placed on S, T and A other than 
those implied in (4.4). The similarity between (4.4) and (3.10) suggests that one might be able to 
find a two-periodic continued fraction 

Al A2 4 
- - 

B,S- B*+ I?,+... 
(4.5) 

such that the corresponding matrix A is equal to Ga . This may not be possible for G, particularly 
if the elements G, are not invertible, but it can be done for Gg, if S is large enough. In fact, if 
S > ]]G221], then G22 + SZ = 6[ ( 1/6)Gz2 + I] is invertible, and a comparison of the entries of (4.5) 
with those of the middle matrix in (3.4) shows that G6 will equal A if 

A, =G22+8Z, BI = ‘512, 

A2 = ((5, + 61) - Giz(G22 + 6Z)-‘G2r, B2 = (G22 + SZ)-1G21. 
(4.6) 

Whether or not Gs arises from a continued fraction, we can apply the same analysis to it that we 
used for A prior to Theorem 3.1 (and note that the S and T of that theorem will be the same S and 
T of (4.4) ). That analysis does not depend on the nature of the entries of A, but only on relation 
(3.10) (which in this case is given by (4.4) ), the relative locations of the entries in the powers of 
A, and the conditions on S, T and A. We get the following immediate result. 

Theorem 4.1. Zf 6 in (4.2) can be chosen so that 
(i) Condition (a) of Section 3 holds for the matrix G,; 

(ii) The entries S, 1, &l, T,, , Tl2 (and therefore all entries) of the corresponding matrices S and 
T are invertible. 

Then, 
(a) if G22 + SZ is invertible, (4.5) converges to a solution of (4.2) (and therefore (4.1) ) if Al, 

AZ, B,, B2 are de$ned by (4.6); 
(b) in any case if 
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then for large n, Z$’ and rig’ are invertible, and the sequences Z$’ [ZI;‘] -’ and Z$” [Z$“] -’ 
converge to the solution &,S,’ of (4.1). 

Remark 4.2. Condition (ii) above depends only on G, and therefore holds for all 6 if it holds for 
one. This is because if such an S and T produce a canonical form for a matrix, they will do the 
same when any multiple of the identity is added to that matrix. 

5. Application to a quadratic matrix equation 

We now apply the previous development to the important case of the matrix quadratic equation 

XMX+XC+C*X-D=O, (5.1) 

associated with the steady-state solutions of the matrix Riccati equation. Here M and D are non- 
negative definite r x r matrices, and certain conditions (called controllability or observability) are 
often imposed on C. The situation arises in optimal control theory, and a host of other engineering 
applications (see [ lo] ) . The corresponding matrix is 

G= ’ M 
[ 1 D-C’ ’ (5.2) 

which is a 2r x 2r matrix. 

Lemma 5.1. The spectrum of G above is symmetric with respect to the imaginary axis. 

Proof. Let 

0 -I 

T= I 0 [ 1 I 0 
and Z= o Z . 

[ 1 

Then it is easily seen that T* = -Z and 

TGT = ; _“c = G*. 
[ 1 

For any complex number A, T ( G - AZ) T = TGT - AT2 = G’ + AZ. Thus A E (T(G) (where u denotes 
spectrum) if and only if -A E (T(G*) if and only if -x E a(G). Cl 

This adaptation of a proof in [lo] applies equally well if the matrices are operators on a Hilbert 
space. 

Theorem 5.2. Let G be the 2r x 2r matrix given above. Then the following holds. 
(1) If G. has no purely imaginary eigenvalues, and u1 = {A,, AZ, . . . , Ak} is the set of distinct 

eigenvalues of G having positive real part, then Gs will satisfy (i) of Theorem 4.1 (i.e., condition 
(a) of Section 3) if and only if 

6 > max 
(Ail* - IAjI* 

l<i,j<k 2 Re( Ai + Aj) ’ 
(5.3) 
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(2) If both conditions of Theorem 4.1 hold for some Gs, then the iterative process described in 
part (b) of that theorem will converge to a solution of (5.1) . The rate of convergence of this process 
can be described as follows. IS, as in Theorem 4.1 (b), 

with D blockdiagonal, so that lim,,, @ [ri;l’] -’ = &,S,’ is a solution of (5.1), then for large 

enough n, 

where p(n) and q(n) are polynomials in yt of degree r, and 

(5.4) 

(5.5) 

A similar result holds for &,S,’ - I’$’ [I$)] -’ with dizerent polynomials p and q. 
(3) If G has a diagonal Jordan canonical form, and the conditions of Theorem 4.1 hold for 

some Gs (in particular G should have no purely imaginary eigenvalues), then the solution of (5.1) 
referred to in part (2> will be positive de~nite, and is the unique solution of (5.1) with that property. 
Moreover; in this case, the rate of convergence of the iterative process is eventually geometric of 

order Cs; spec$cally, for large enough n, 

(5.6) 

where a and b are constants. Again a similar result holds for &.,SI,’ - I$’ [r{t)] -I. 
In particular; (5.4) and (5.6) tell us that we should choose 6 so as to minimize (5.5), subject to 

the constraint of (5.3). 

Proof. ( 1) Since G has no imaginary eigenvalues, the preceding lemma shows that a(G) = s1 U--S, 3 
sI U ~2. Therefore G has a Jordan canonical form 

A= 4 0 I 1 0 -2, ’ 

where A, is r x r, and has diagonal elements only from sl. Let S be the matrix that implements the 
similarity between G and A. Then, 

S-‘G&S= S-‘(G+BI)S= . 
1 1 

(5.7) 

Thus the eigenvalues of Gs fall into two sets: (TV = {Al + 8, A2 + 6, . . , , Ak + 6) corresponding to A1 
and CT~ = {6-;1,,6-;i;, . . . ,6 - &) co~esponding to A,. The form of (5.5) shows that, with the 
above definition of (TV and ~72, (i) and (ii) of condition (a) hold. Part (iii) of ((x) will hold if and 
only if minlgiGk (Ai + S( > maxlGjGk 16 - Xjiji. Equivalently, 
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1 > c 

8 
_ max*<j<k I6 - xjl _ Is-xjl _ IAj - 4 

mh<iGk IAi + 61 

- max ___ - max ~ 
16i,j<‘k JAi + SJ IGJ,<k JAj + 61. 

(5.8) 

Thus we need that for every 1 < i, j < k, 

0 < Ihi + &I* - lAj - 61* = l&l* - lAjl’+2S Re(Ai) + 26 Re(Aj). 

Since the real parts of the hi are positive, we get that condition (ar) holds if and only if (5.3) holds. 
(2) The proof of [2, Lemma 3.11 shows that if gl and c2 are as above, then 

(II<4 +W’ll IIS-&II)” < P’kw3”~ (5.9) 

for sufficiently large IZ, where p’(n) is a polynomial of degree 12. This follows from the observation 
that if N is a nilpotent matrix of order r, then NS = 0 when s > r. Now, borrowing the notation of 
the proof of Theorem 3.1, we have 

f$;l’ [ri;‘] -l = (I + X~‘))S*,S, (I + x:2))-‘. (5.10) 

Then, using (5.9), we have 

Ilxyll G IP22ll llT2lll ll~;;‘ll Il~,-,‘II(II(~l +@-‘I1 IP-ml)” < Pl(n)(G)“7 (5.11) 

and similar computations hold for XA*). For sufficiently large yt, XA’) < 1, and so (I + XL’)) -’ 
is expandable in the usual geometric series, convergent in matrix norm. This is dominated by the 
corresponding norm series. Thus if we use (5.10) and (5.11) , and sum the resulting scalar series, 
we have 

(3) In [ lo] it is shown that, under the conditions we have specified for (5.1), a unique positive 
definite solution will exist if G has diagonal Jordan canonical form and satisfies invertibility conditions 
on some of the matrices S,. Then the solution is constructed from these Sjj and has a similar, but not 
identical, form to our solution. Since the forms are not identical, and as a convenience to the reader, 
we briefly sketch a modification of some of his arguments to show that our solution &r [ S1 1] -’ is the 
desired positive definite solution to (5.1) . 

If A is diagonal with diagonal elements {A,, A*, . . . , Azn}, and if the columns of S are (ai, 22, . . . , 

a*,,}, then G& = A&, k = 1, . . . , 2n, since S’GS = A. Let P be the n x n matrix S;,&, and let T 
be as in Lemma 5.1. Then an easy computation shows that 

if S*TS E 
Z-* 

[ 1 , then r = ST2SII - S;,&i = P* - l? . . 

By considering the columns of S, we have that 

[P* - P]ij = [T]ij =~if~j, for 1 < i,j < n. 

We can see in a similar way that if 

A*S*TSr @ ’ 
[ 1 

and S*TSA z 
0. 

[ 1 
, . . . . 
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then 

[@]ij =XiaTi*j and [O]ij = Z,*njAj, for 1 < i,j < IZ. 

Now since the first y1 columns of P correspond to eigenvalues in set s1 and these have positive real 
parts, we cm never have Xi + Aj = 0 if 1 < i, j < II. Thus, 

[P* -p],=ZifT~$ = _ ’ 
(Ai + Aj) 

[Xiizi*nj + ZiTlEjAj] = [@ + @]jj, 
for 1 < i, j < n_ 

On the other hand, we note that A*S*TS = S*G*TS = S (TGT)TS (see the proof of Lemma 5.1) 
= -S*TGS = -ST&i. Thus, 

O=A*STS+S*TSA= @+@ * [ 1 . . . 
Thus P* - P = 0 and P is self-adjoint. But then so is S,iS;’ = [S,‘]*S;,S,,S;’ = [S,']*PS;'. The 
proof that S,,S;’ is nonnegative definite is obtained by modifying the proof in [ lo] a similar way. 

Finally, if the Jordan form of G (and therefore 81 f G) is diagonal, then the polynomial p’(n) of 
(5.9) reduces to a constant. Thus (5.4) reduces to (5.6). 0 

Remark 5.3. If a reasonably good estimate of the eigenvalues is available, one can often plot (5.4) as 
a function of 6, using easily available software products. This provides a graphical way to approximate 
the optimal 6 and corresponding CS. 

Remark 5.4. Instead of computing the powers ( Gg)“, it is just as easy to compute ( G612’, by squar- 
ing, then squaring that result, etc. In practice this is what we do, resulting in far better convergence 
properties. 

Discussion. The usual way of solving (5.1) is to find precisely the eigenvalues and eigenvectors of 
the corresponding matrix G in (5.2), use these to construct the matrix S that diagonalizes G, and 
then construct the solution &i S,’ or a closely related one (see [ 10 ] ) . This procedure is numerically 
costly and it is difficult to get precise error estimates for the solution in terms of error analysis for 
the eigenvectors. By contrast, our method is a simple adaptation of the familiar power method, and 
requires only enough knowledge of the eigenvalues to verify (5.3) and the fact that none of them 
are imaginary. No knowledge of eigenvectors is needed to approximate the solution. 

It is certainly true that verification of the invertibility conditions on the entries of the similarity 
matrix S and its inverse (Theorem 4.1 (ii)) would require a knowledge of the eigenvectors of G, or 
at least of certain geometric properties of the eigenspaces. However, if one has a good estimate of 
the rate of convergence (5.4) or (5.6), one may certainly apply the method formally to the point 
where one should have a solution to the desired accuracy, and check the result in (5.1) . Thus it is 
usually not necessary to verify the invertibility conditions directly. 

The invertibility conditions do not always hold for a controllable system. Experimentation has 
shown that when this is true, the algorithm very quickly becomes singular, or at least violates 
convergence formula (5.4). 
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6. Numerical examples 

We consider several low-order examples from standard treatises on control theory. The exact 
answers are given, so as to evaluate the convergence. 

Example 6.1. Consider the matrix quadratic equation 

The corresponding matrix G is given by 

O-l 

G=Ol [ 

0 0 

10 

01 I 00’ 
0 1 1 -1 

and it is easily seen that the eigenvalues of G are 1 and -1, each of algebraic multiplicity two, and 
so gr = (1) (Theorem 5.2(l)). 

Clearly, 6 = 1 produces a best C’s of 0. We have two choices of approximating sequence: 
ri;’ [I’!;‘] -I and r$;) [r;z”)] -I and for pz = 2 we get the exact unique positive definite solution 

(easily verified) of [f :]. 

Example 6.2. Again consider the matrix quadratic equation 

(6.2) 

whose unique positive definite solution is known to be 

2-a 3-2h 
3-2d? 1 6-42/2 * 

In this case, 

0 01 0 
-1v50 0 

G=O 00 1 ’ 

i I 0 1 0 -ylz 

and the eigenvalues are again 1 and -1, of multiplicity two. 
As in the previous example, S = 1 is alfowable and produces the minimal Cs of 0. Eq. (5.6) then 

implies that for some IZ, r!$) [Z$j)] -’ will be the exact answer. Recall that we write 
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Computing symbolically, we have 

Ws>* = 

I -2-h -1 0 1 (l+J2)* 0 2 1 -1 0 2 1 (-l+J2)2 2-h 0 1 

and so 

@ [rp-’ = T, ; 
[ I[ l 0 1 

-1 

-2-d (l+J2)* 

2+Jz/(l+Jz)* l/(l+J2)* 1 [ 245 3-2&- = 
1/( 1 + Jz)’ 2/U + Jz>* = 3-2&’ 6-N? 1 

Thus r;;) [I$‘]-’ ’ IS already exactly correct. We may also do the approximation with the sequence 

I$’ [rfg’] -‘, which again is exact for it = 2. 
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