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Abstract

Let A be a (G,χ)-Hopf algebra with bijective antipode and let M be a G-graded A-bimodule. We
prove that there exists an isomorphism

HH∗
gr(A,M) ∼= Ext∗A-gr

(
K,ad (M)

)
,

where K is viewed as the trivial graded A-module via the counit of A, adM is the adjoint A-module
associated to the graded A-bimodule M and HH∗

gr denotes the G-graded Hochschild cohomology.
As an application, we deduce that the graded cohomology of color Lie algebra L is isomorphic to
the graded Hochschild cohomology of its universal enveloping algebra U(L), solving a question of
M. Scheunert.
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1. Introduction

Color Lie algebras have been introduced in [9] and studied systematically in [10–13].
Some recent interest relates to their representation theory and related graded ring the-
ory, [3]. The Cartan–Eilenberg cohomology theory for Lie algebras [1,2], has been ex-
tended to color Lie algebras by Scheunert and Zhang in [12,13]. In this note we introduce
a graded cohomology of Color Lie algebras which coincide, in the case of degree zero,
with the graded cohomology of L defined by Scheunert and Zhang. We show an isomor-
phism between the graded Hochschild cohomology of the universal enveloping algebra and
the Lie cohomology for arbitrary color Lie algebras, which amounts to a careful manip-
ulation of the group grading structure involved. We start from an abelian group G with a
skew-symmetric bicharacter ε. Consider a G-graded ε-Lie algebra L. Denote by U(L) its
universal enveloping algebra. Note that U(L) has a natural (G, ε)-Hopf algebra structure
in the sense of Definition 1. Therefore, first, we study the cohomology of arbitrary (G,χ)-
Hopf algebras, where χ is any bicharacter of G. We prove the main result concerning the
(graded) Hochschild cohomology of a (G,χ)-Hopf algebra with bijective antipode (see
Theorem 2). Then, we combine this with the information coming from the color Koszul
resolution of the trivial module K of color Lie algebra L to get the desired result for color
Lie algebras (see Theorem 4). Our theorem extends the result of Cartan–Eilenberg for Lie
algebras (see [2, p. 277]) and solves a question of M. Scheunert in the case (of degree
zero) [12].

This note is organized as follows: in Section 2 we fix notation and provide background
material concerning finite group gradings and color Lie algebras; in Section 3 we study
(G,χ)-Hopf algebras in detail and prove the main theorem, Theorem 2; in Section 4 we
study the color Koszul resolution of the trivial module K of color Lie algebra L (Theo-
rem 3), and, by using it, we obtain Theorem 4.

2. Preliminaries

Throughout this paper groups are assumed to be abelian and K is a field of characteristic
zero. We recall some notation for graded algebras and graded modules [8], and some facts
on color Lie algebras from [10–13].

2.1. Graded Hochschild cohomology

Let G be an abelian group with identity element e. We will write G as an multiplicative
group.

An associative algebra A with unit 1A, is said to be G-graded, if there is a family
{Ag | g ∈ G} of subspaces of A such that A = ⊕

g∈G Ag with 1A ∈ Ae and AgAh ⊆ Agh,
for all g,h ∈ G. Any element a ∈ Ag is called homogeneous of degree g, and we write
|a| = g.
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A (left) graded A-module M is a left A-module with an decomposition M = ⊕
g∈G Mg

such that Ag.Mh ⊆ Mgh. Let M and N be graded A-modules. Define

HomA-gr(M,N) = {
f ∈ HomA(M,N) | f (Mg) ⊆ Ng, ∀g ∈ G

}
. (2.1)

We obtain the category of graded left A-modules, denoted by A-gr (see [8]). Denote by
ExtnA-gr(−,−) the nth right derived functor of the functor HomA-gr(−,−).

Let us recall the notion of graded Hochschild cohomology of a graded algebra A.
A graded A-bimodule is a A-bimodule M = ⊕

g∈G Mg such that Ag.Mh.Ak ⊆ Mghk . Sim-
ilar as the above, we obtain the category of graded A-bimodules, denoted by A–A-gr.

Let Ae = A ⊗K Aop be the enveloping algebra of A, where Aop is the opposite algebra
of A. Note that the algebra Ae also is graded by G by setting Ae

g := ∑
h∈G Ah ⊗K Ah−1g .

Now the graded A-bimodule M becomes a graded left Ae-module just by defining the
Ae-action as

(a ⊗ a′)m = a.m.a′, (2.2)

and it is clear that Ae
gMh ⊆ Mgh, i.e., M is a graded Ae-module. Moreover, every graded

left Ae-module arises in this way. Precisely, the above correspondence establishes an equiv-
alence of categories

A–A-gr 	 Ae-gr. (2.3)

In the sequel we will identify these categories.
Let M be a graded A-bimodule, equivalently, graded left Ae-module. The nth graded

Hochschild cohomology of A with value in M is defined by

HHn
gr(A,M) := ExtnAe-gr(A,M), n � 0, (2.4)

where A is the graded left Ae-module induced by the multiplication of A, and the algebra
Ae = ⊕

g∈G Ae
g is considered as a G-graded algebra as above.

2.2. Color Lie algebras

The concept of color Lie algebras is related to an abelian group G and an anti-symmetric
bicharacter ε :G × G → K

×, i.e.,

ε(g,h)ε(h,g) = 1, (2.5)

ε(g,hk) = ε(g,h)ε(g, k), (2.6)

ε(gh, k) = ε(g, k)ε(h, k), (2.7)

where g,h, k ∈ G and K
× is the multiplicative group of the units in K.

A G-graded space L = ⊕
g∈G Lg is said to be a G-graded ε-Lie algebra (or simply,

color Lie algebra), if it is endowed with a bilinear bracket [−,−] satisfying the following
conditions
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[Lg,Lh] ⊆ Lgh, (2.8)

[a, b] = −ε
(|a|, |b|)[b, a], (2.9)

ε
(|c|, |a|)[a, [b, c]] + ε

(|a|, |b|)[b, [c, a]] + ε
(|b|, |c|)[c, [a, b]] = 0, (2.10)

where g,h ∈ G, and a, b, c ∈ L are homogeneous elements.
For example, a super Lie algebra is exactly a Z2-graded ε-Lie algebra where

ε(i, j) = (−1)ij , ∀i, j ∈ Z2. (2.11)

Let L be a color Lie algebra as above and T (L) the tensor algebra of the underlying
G-graded vector space L. It is well known that T (L) has a natural Z × G-grading which
is fixed by the condition that the degree of a tensor a1 ⊗ · · · ⊗ an with ai ∈ Lgi

, gi ∈ G,
1 � i � n, is equal to (n, g1 · · ·gn). The subspace of T (L) spanned by homogeneous ten-
sors of order � n will be denoted by T n(L). Let J (L) be the G-graded two-sided ideal
of T (L) which is generated by

a ⊗ b − ε
(|a|, |b|)b ⊗ a − [a, b] (2.12)

with homogeneous a, b ∈ L. The quotient algebra U(L) := T (L)/J (L) is called the uni-
versal enveloping algebra of the color Lie algebra L. The K-algebra U(L) is a G-graded
algebra and has a positive filtration by putting Un(L) equal to the canonical image of
T n(L) in U(L).

In particular, if L is ε-commutative (i.e., [L,L] = 0), then U(L) = S(L) (the
ε-symmetric algebra of the graded space L).

The canonical map i :L → U(L) is a G-graded homomorphism and satisfies

i(a)i(b) − ε
(|a|, |b|)i(b)i(a) = i

([a, b]). (2.13)

The Z-graded algebra G(L) associated with the filtered algebra U(L) is defined by let-
ting Gn(L) be the vector space Un(L)/Un−1(L) and G(L) the space

⊕
n∈N

Gn(L) (note
U−1(L) := {0}). Consequently, G(L) is a Z × G-graded algebra. The well-known gen-
eralized Poincaré–Birkhoff–Witt theorem, [10], states that the canonical homomorphism
i :L → U(L) is an injective G-graded homomorphism; moreover, if {xi}I is a homo-
geneous basis of L, where the index set I well-ordered. Set ykj

:= i(xkj
), then the set

of ordered monomials yk1 . . . ykn is a basis of U(L), where kj � kj+1 and kj < kj+1 if
ε(gj , gj ) �= 1 with xkj

∈ Lgj
for all 1 � j � n, n ∈ N. In case L is finite-dimensional

U(L) is a two-sided (graded) Noetherian algebra (e.g., see [3]).

3. (G,χ)-Hopf algebras, graded Hochschild cohomology

Through this section G is an abelian group with a bicharacter χ :G × G → K
×. All

unspecified graded spaces (algebras, coalgebras, . . . ) are graded by G; all unadorned Hom
and tensor are taken over K.
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3.1. Twisted algebras

Let (A = ⊕
g∈G Ag, ·,1A) be a graded algebra and χ be a bicharacter. Then there exists

a new (graded) associative multiplication ·χ on the K-space
⊕

g∈G Ag defined by

a ·χ b = χ
(|a|, |b|)a · b (3.1)

with a, b homogeneous elements. It is easy to see that (
⊕

g∈G Ag, ·χ ,1A) is a (graded)
associative algebra, which will be called the twisted algebra of A by the bicharacter χ and
will be denoted by Aχ .

Let A = (
⊕

g Ag, ·,1A) be a graded algebra and χ be a bicharacter. Let Aχ be the
twisted algebra of A by χ . Consider the opposite algebra Aop, and denote its multiplication
by ◦. Thus we may consider the algebra (Aop)χ , the multiplication of which will be denoted
by ·χ . Hence we have

a ·χ b = χ
(|a|, |b|)a ◦ b = χ

(|a|, |b|)b · a. (3.2)

Let A = (
⊕

g∈G Ag, ·,1A) be a graded algebra, and χ a bicharacter and Aχ =
(
⊕

g∈G Ag, ·χ ,1A) the corresponding twisted algebra of A. Let M = ⊕
g∈G Mg be a

graded A-module. Then there exists a new graded Aχ -module structure, denoted by ·χ ,
on the graded

⊕
g∈G Mg defined by

a ·χ m := χ
(|a|, |m|)a.m, (3.3)

where a ∈ A and m ∈ M are homogeneous. Thus
⊕

g∈G Mg becomes a right graded
Aχ -module, which will be denoted by Mχ . Clearly every graded Aχ -module arises in
the way.

Therefore we have

Proposition 1. Use the above notation. There exists an equivalence of categories between
A-gr and Aχ -gr.

For further use, we need to introduce: let A and B be graded algebras (by G), define a
(graded) associative algebra structure (A⊗B)χ on the space A⊗B , with the multiplication
“∗” given by the Lusztig’s rule [6],

(a ⊗ b) ∗ (a′ ⊗ b′) = χ
(|b|, |a′|)aa′ ⊗ bb′, (3.4)

where a, a′ ∈ A and b, b′ ∈ B are homogeneous.

3.2. Twisted coalgebras

Recall from [14] that a graded coalgebra C is a graded space C = ⊕
g∈G Cg with co-

multiplication Δ :C → C ⊗ C, and counit ε :C → K satisfying the following conditions:
Δ(Cg) ⊆ ∑

Ch ⊗ Ch−1g , and ε(Cg) = 0 for g �= e, g ∈ G.
h∈G
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We define twisted coalgebras as follows: let C = (C,Δ, ε) be a graded coalgebra, con-
sider a new (graded) comultiplication Δχ on C defined by

χΔ(c) =
∑

χ
(|c1|, |c2|

)
(c1 ⊗ c2), (3.5)

where Δ(c) = ∑
c c1 ⊗ c2 is Sweedler’s notation with all factors c1, c2 homogeneous. It is

easy to check that (C, χΔ, ε) is a (graded) coalgebra, it will be denoted by χC.
Note that the opposite coalgebra of χC, denoted by (χC)cop will have the comultiplica-

tion as follows

χΔ(c) =
∑

χ
(|c1|, |c2|

)
(c2 ⊗ c1). (3.6)

Let C be a graded coalgebra. Denote by gr-C the category of graded right C-comodules,
with morphisms being graded homomorphism of comodules (of degree e).

Dually to Proposition 1, we obtain

Proposition 2. Use the above notation. There exists an equivalence of categories between
gr-C and gr-χC.

We need the following construction: let (C,ΔC, εC) and (D,ΔD, εD) be two graded
coalgebras, then the following law

χ (ΔC ⊗ ΔD)(c ⊗ d) =
∑

χ
(|c2|, |d1|

)
(c1 ⊗ d1) ⊗ (c2 ⊗ d2) (3.7)

defines on the space C ⊗ D a structure of graded coalgebra with counit εC ⊗ εD , which is
denoted by χ (C ⊗ D).

3.3. (G,χ)-Hopf-algebras

Definition 1. A (G,χ)-Hopf algebra A (compare [5] and [7, p. 206]) is a 5-tuple
(A,m,η,Δ, ε,S) such that

(T1): A = ⊕
g∈G Ag is a graded algebra with multiplication m :A ⊗ A → A and the unit

map η :K → A. In the meantime, (A,Δ, ε) is a graded coalgebra with respect to the
same grading.

(T2): The counit ε :A → K is an algebra map. The comultiplication Δ :A → (A⊗A)χ is
an algebra map, where the algebra (A ⊗ A)χ is defined as in (3.4).

(T3): The antipode S :A → A is a graded map such that

∑
a1S(a2) = ε(a) =

∑
S(a1)a2 (3.8)

for all homogeneous a ∈ A, where we use Sweedler’s notation Δ(a) = ∑
a1 ⊗ a2.
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Remark 1.

(1) A 4-tuple (A,m,η,Δ, ε) satisfying (T1) and (T2) will be called a (G,χ)-bialgebra.
(2) The condition (T2) implies exactly that the following holds:

ε(1A) = 1, ε(aa′) = ε(a)ε(a′), (3.9)

Δ(1A) = 1A ⊗ 1A, (3.10)

Δ(aa′) =
∑

χ
(|a2|,

∣∣a′
1

∣∣)a1a
′
1 ⊗ a2a

′
2 = Δ(a) ∗ Δ(b), (3.11)

where 1A is the identity element of A, and a, a′ ∈ A are homogeneous. Note that these
four equations exactly state that

η : K → A, m : χ (A ⊗ A) → A (3.12)

are coalgebra maps, where the coalgebra χ (A ⊗ A) is defined in (3.6).
(3) A Hopf ideal of a (G,χ)-Hopf algebra A is a graded ideal I ⊆ A and a coideal (i.e.,

Δ(I) ⊆ A ⊗ I + I ⊗ A and ε(I ) = 0) satisfying S(I) ⊆ I .
Thus there exist a unique (G,χ)-Hopf algebra structure on the space A/I such that
the canonical map π :A → A/I is a (G,χ)-Hopf algebra morphism.

Let (A,m,η) and (C,Δ, ε) be a graded algebra and a graded coalgebra, respectively.
Then Hom(C,A) becomes an associative algebra with the convolution product � defined
by

(f � g)(c) = m ◦ (f ⊗ g) ◦ Δ(c) =
∑

f (c1)g(c2), (3.13)

for f,g ∈ Hom(C,A), c ∈ C. Note that the unit of Hom(C,A) is η ◦ ε. Moreover, it is easy
to see that Homgr(C,A) is a subalgebra of Hom(C,A), i.e., if f and g are graded maps
(of degree e), then so is f � g.

Let A = (A,m,η,Δ, ε,S) be a (G,χ)-Hopf algebra. Consider the algebra Hom(A,A)

with the convolution product �. Then the condition (T3) is equivalent to

S � IdA = η ◦ ε = IdA � S. (3.14)

This shows the uniqueness of the antipode S. Now we obtain a result similar to the one in
[14, p. 74] (compare [5, Theorem 2.10]).

Lemma 1.

(1) The antipode S : (A, ·,1A) → ((Aop)χ , ·χ ,1A) is an algebra morphism with ·χ defined
by Eq. (3.2).

(2) The antipode S : (χA)cop → A is a coalgebra morphism, where the comultiplication of
(χA)cop is defined by (3.6).
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Proof. We will imitate the proof in [14], and we will only prove the first statement, since
the second can be proved similarly.

One see S(1A) = 1A by the condition (T3). Now it suffices to show that S(aa′) =
S(a) ·χ S(a′) = χ(|a|, |a′|)S(a′)S(a) for all homogeneous elements a, a′ ∈ A. Consider
the convolution algebra Hom(χ (A ⊗ A),A), where the coalgebra structure of χ (A ⊗ A) is
defined as in (3.7). Now define two elements F,G ∈ Hom(χ (A ⊗ A),A) by

F(a ⊗ a′) = S(aa′) and G(a ⊗ a′) = χ
(|a|, |a′|)S(a′)S(a). (3.15)

So we need to show that F = G. We claim that

F � m = m � G = η ◦ (ε ⊗ ε) (3.16)

in the convolution algebra Hom(χ (A ⊗ A),A), where m denotes the multiplication of A.
Indeed that η ◦ (ε ⊗ ε) is the unit in the convolution algebra Hom(χ (A ⊗ A),A), thus we
obtain F = G, as required.

In fact, by the definition of the convolution product � and the coalgebra structure of
χ (A ⊗ A), we have

(F � m)(a ⊗ a′) = m ◦ (F ⊗ m) ◦ χ (Δ ⊗ Δ)(a ⊗ a′)

=
∑

χ
(|a2|,

∣∣a′
1

∣∣)S(
a1a

′
1

)
a2a

′
2 (by Remark 1)

= m(S ⊗ Id)Δ(aa′)

= ε(ab) = (
η ◦ (ε ⊗ ε)

)
(a ⊗ a′). (3.17)

On the other hand,

(m � G)(a ⊗ a′) = m ◦ (
m ⊗ G

) ◦ χ (Δ ⊗ Δ)(a ⊗ a′)

=
∑

χ
(|a2|,

∣∣a′
1

∣∣)a1a
′
1G

(
a2 ⊗ a′

2

)
=

∑
χ

(|a2|,
∣∣a′

1

∣∣)χ(|a2|,
∣∣a′

2

∣∣)a1a
′
1S

(
a′

2

)
S(a2)

(by |a′| = ∣∣a′
1

∣∣∣∣a′
2

∣∣)
=

∑
χ

(|a2|, |a′|)a1a
′
1S

(
a′

2

)
S(a2)

=
∑

χ
(|a2|, |a′|)a1S(a2)ε(a

′)

= ε(a)ε(a′) = (
η ◦ (ε ⊗ ε)

)
(a ⊗ a′). (3.18)

(Here the second to the last equality follows from the fact that if |a′| �= e then ε(a′) = 0;
otherwise, χ(|a2|, |a′|) = 1.) Thus we arrive at

(F � m) = η ◦ (ε ⊗ ε) = (m � G). (3.19)

This completes the proof. �
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Remark 2. If the antipode S is bijective with inverse S−1, then by Lemma 1, we have:

S−1(a)S−1(a′) = χ
(|a|, |a′|)S−1(a′a). (3.20)

In this case, we call such a (G,χ)-Hopf algebra a color Hopf algebra.

The following result is quite useful when we construct an antipode on a (G,χ)-
bialgebra.

Lemma 2. Let (A,m,η,Δ, ε) be a (G,χ)-bialgebra generated by a set Λ of homogeneous
elements (as an algebra). If there exists an algebra morphism S :A → (Aop)χ such that
each (3.8) holds for each a ∈ Λ, then S is the antipode of A.

Proof. We just need to check (3.8) for all elements in A. For this, it suffices to show that
if two homogeneous elements a, b ∈ A satisfy (3.8), so does ab.

In fact, by Remark 1 and then Lemma 1

∑
(ab)1S

(
(ab)2

) =
∑

χ
(|a2|, |b1|

)
a1b1S(a2b2)

=
∑

χ
(|a2|, |b1|

)
χ

(|a2|, |b2|
)
a1b1S(b2)S(a2)

=
∑

χ
(|a2|, |b|)ε(a)ε(b)

= ε(a)ε(b) = ε(ab). (3.21)

(The third equality uses the fact that |b| = |b1| · |b2|; the fourth equality uses the fact that
ε(b) �= 0 implies χ(|a2|, |b|) = 1.) In a similar way we may establish the right-hand side
of (3.8). This completes the proof. �
Example. Using Lemma 2, we will give an important example of color Hopf algebras.
Let V be a G-graded space and denote by T (V ) the tensor algebra on V . Thus T (V ) is a
G-graded algebra generated by V . By the universal property of T (V ), there exist unique
graded algebra morphisms

Δ :T V → (
T (V ) ⊗ T (V )

)χ
, v → 1 ⊗ v + v ⊗ 1, (3.22)

ε :T (V ) → K, v → 0, (3.23)

for all v ∈ V .
To show that (T (V ),Δ, ε) is a (graded) coalgebra, we need to verify

(Δ ⊗ Id) ◦ Δ = (Id ⊗ Δ) ◦ Δ and (ε ⊗ Id) ◦ Δ = Id = (Id ⊗ ε) ◦ Δ, (3.24)

where Id the identity map of T (V ).
Note that all above maps are algebra morphisms, so it suffices to check them on a set of

generators of the algebra T (V ). Clearly all elements in V satisfy the above equations, thus
we have shown that (T (V ),Δ, ε) is an coalgebra, hence T V is a (G,χ)-bialgebra.
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Again by the universal property of T (V ), there exists a unique algebra map

S :T (V ) → (
T (V )op)χ

, v → −v, (3.25)

for all v ∈ V . Now applying Lemma 2, we deduce that T (V ) is a color Hopf algebra. We
call the resulting color Hopf algebra T (V ) the tensor color Hopf algebra of V .

It follows from Remark 1 that if I is a Hopf ideal of T (V ), then we have a quotient
(G,χ)-Hopf algebra T (V )/I .

An important example is as follows: let L be a G-graded ε-Lie algebra, then its uni-
versal enveloping algebra U(L) = T (L)/J (L) is (G, ε)-Hopf algebra with J (L) defined
by (2.12), since J (L) is a Hopf idea. Explicitly, U(L) is a color Hopf algebra with comul-
tiplication Δ and ε given by

Δ(a) = 1 ⊗ a + a ⊗ 1, ε(a) = 0, ∀a ∈ L. (3.26)

We now consider graded right A-modules. As before A will be a (G,χ)-Hopf algebra.
Recall that a right gr-free A-module of the form V ⊗ A, where V is a graded space and
V ⊗ A is graded by assigning to v ⊗ a the degree |v| · |a|, for all homogeneous elements
v ∈ V and a ∈ A, and the right action is given by (see [8])

(v ⊗ a)a′ = v ⊗ aa′. (3.27)

In fact, gr-free modules are just the free objects in the category of graded right A-modules.
Since Δ :A → (A ⊗ A)χ is an algebra map, the algebra (A ⊗ A)χ becomes a graded

right A-module. Explicitly, the right A-action on (A ⊗ A)χ is given by

(a ⊗ a′)b := (a ⊗ a′) ∗ Δ(b) =
∑

χ
(|a′|, |b1|

)
ab1 ⊗ a′b2, (3.28)

for homogeneous a, a′, b ∈ A and Δ(b) = ∑
b1 ⊗ b2 is the Sweedler notation. Note that

the grading of (A ⊗ A)χ is given such that the degree of a ⊗ a′ is |a| · |a′|.

The following result will be essential.

Proposition 3. The right A-module (A ⊗ A)χ defined above is gr-free.

Proof. Let V denote the underlying graded space of A. Thus V ⊗ A becomes a right
gr-free module. Define a map Ψ : (A ⊗ A)χ → V ⊗ A by

Ψ (a ⊗ a′) =
∑

aS
(
a′

1

) ⊗ a′
2, (3.29)

where a, a′ ∈ A are homogeneous and Δ(a) = ∑
a′

1 ⊗ a′
2 is the Sweedler notation. It is

obvious that Ψ is a (graded) bijective map with inverse

Ψ −1(a ⊗ a′) =
∑

aa′ ⊗ a′ .
1 2
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We claim that Ψ is a right A-module morphism, then we are done.
In fact, we have

Ψ
(
(a ⊗ a′)b

) =
∑

χ
(|a′|, |b1|

)
Ψ (ab1 ⊗ a′b2)

=
∑

χ
(|a′|, |b1|

)
ab1S

(
(a′b2)1

) ⊗ (a′b2)2. (3.30)

By Remark 1 we have

Ψ
(
(a ⊗ a′)b

) =
∑

χ
(|a′|, |b1|

)
χ

(∣∣a′
2

∣∣, |b2|
)
ab1S

(
a′

1b2
) ⊗ a′

2b3, (3.31)

where we use (Δ ⊗ IdA)Δ(b) = ∑
b1 ⊗ b2 ⊗ b3 (see [14]).

By Lemma 1, we have S(a′
1b2) = χ(|a′

1|, |b2|)S(b2)S(a′
1), hence

Ψ
(
(a ⊗ a′)b

) =
∑

χ
(|a′|, |b1|

)
χ

(∣∣a′
2

∣∣, |b2|
)
χ

(
a′

1, b2
)
ab1S(b2)S

(
a′

1

) ⊗ a′
2b3

=
∑

χ
(|a′|, |b1||b2|

)
ab1S(b2)S

(
a′

1

) ⊗ a′
2b3

=
∑

χ
(|a′|, |b1|

)
aε(b1)S(a1) ⊗ a′

2b2. (3.32)

Using the fact that ε(b1) �= 0 implies that |b1| = e and hence χ(|a′|, |b1|) = 1, we obtain

∑
χ

(|a′|, |b1|
)
aε(b1)S(a1) ⊗ a′

2b2 =
∑

aS
(
a′

1

) ⊗ a′
2b2

=
∑

aS
(
a′

1

) ⊗ a′
2b. (3.33)

Note the right A-module structure on V ⊗ A. So we have proved that

Ψ
(
(a ⊗ a′)b

) = (
Ψ (a ⊗ a′)

)
b, ∀a, a′, b ∈ A. (3.34)

This completes the proof. �
We obtain

Theorem 1. Let (A,m,η,Δ, ε,S) be a color Hopf algebra. Then the categories A–A-gr
and (A ⊗ A)χ -gr are equivalent.

Proof. We are going to construct the functor

F :A–A-gr � (A ⊗ A)χ -gr (3.35)

as follows: let M be a graded A-bimodule, we denote the two-sided A-action on M by “.”.
Define F(M) = M as graded spaces with the left (A ⊗ A)χ -action given by

(a ⊗ a′)m = χ
(|a′|, |m|)a.m.S(a′), (3.36)
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where a, a′ ∈ A and m ∈ M are homogeneous. We claim that the action is well-defined,
i.e.,

(
(a ⊗ a′) ∗ (b ⊗ b′)

)
m = (a ⊗ a′)

(
(b ⊗ b′)m

)
, (3.37)

where ∗ denotes the multiplication of the algebra (A ⊗ A)χ (see (3.4)).
In fact, we have

(
(a ⊗ a′) ∗ (b ⊗ b′)

)
m = χ

(|a′|, |b|)(ab ⊗ a′b′)m

= χ
(|a′|, |b|)χ(|a′b′|, |m|)ab.m.S(a′b′)

= χ
(|a′|, |b|)χ(|a′b′|, |m|)χ(|a′|, |b′|)ab.m.S(b′)S(a′).

(3.38)

The last equality uses Lemma 1(1). On the other hand,

(a ⊗ a′)
(
(b ⊗ b′)m

) = χ
(|b′|, |m|)(a ⊗ a′)b.m.S(b′)

= χ
(|b′|, |m|)χ(|a′|, ∣∣b.m.S(b′)

∣∣)a.
(
b.m.S(b′)

)
.S(a′). (3.39)

Note that the degree of the element b.m.S(b′) is |b| · |m| · |b′|. By comparing the above two
identities, we have proved the claim.

Conversely, we have the functor

G : (A ⊗ A)χ -gr � A–A-gr (3.40)

given as follows: let N be a left graded (A ⊗ A)χ -module, define G(N) to be N as graded
spaces, and its A-bimodule structure given by

a.n = (a ⊗ 1)n and a.a′ = χ−1(|a′|, |n|)(1 ⊗ S−1(a′)
)
n, (3.41)

for all homogeneous a, a′ ∈ A and n ∈ N . Clearly, G(N) is a left A-module. Note that

(n.a).b = χ−1(|b|, |a| · |n|)(1 ⊗ S−1(b)
)
(n.a)

= χ−1(|b|, |a| · |n|)χ−1(|a|, |n|)((1 ⊗ S−1(b)
)
�

(
1 ⊗ S−1(a)

))
n

= χ−1(|b|, |a| · |n|)χ−1(|a|, |n|)χ(|b|, |a|)(1 ⊗ S−1(ab)
)
n

= χ−1(|ab|, |n|)(1 ⊗ S−1(ab)
)
n = n.(ab). (3.42)

The third equality uses the fact S−1(b)S−1(a) = χ(|b|, |a|)S−1(ab), see Remark 2, hence
G(N) is also a right A-module. Note that (a.n).a′ = a.(n.a′), therefore, G(N) is a graded
A-bimodule. It is easy to check that the functors F and G are inverse to each other. Thus
we have proved the result. �
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3.4. Twisted tensor modules

In this subsection, we include some remarks and notation concerning tensor modules in
the category A-gr for a given (G,χ)-bialgebra A.

For given graded A-modules M = ⊕
g∈G Mg and N = ⊕

g∈G Ng , we define a graded
A-module (M ⊗χ N) as follows: as graded spaces (M ⊗χ N) coincides with M ⊗N (note
that the degree of m ⊗ n is just |m| · |n| for homogeneous m ∈ M and n ∈ N ); the (left)
A-action is given by

a(m ⊗ n) :=
∑

χ
(|a2|, |m|)a1m ⊗ a2n, (3.43)

for all homogeneous elements a ∈ A, m ∈ M , n ∈ N and Δ(a) = ∑
a1 ⊗a2 is the Sweedler

notation. It is easy to check that (M ⊗χ N) is a graded A-module.
Since ε :A → K is an algebra map, then K becomes a graded A-module, which will be

referred to as the trivial module (note that K is trivially graded). Thus the above defined
“(⊗)χ ” has the following properties:

(
(M ⊗χ N) ⊗χ L

) 	 (
M ⊗χ (N ⊗χ L)

)
,

(M ⊗χ
K) 	 M 	 (K ⊗χ M),

for all M,N,L ∈ A-gr.

3.5. Graded Hochschild cohomology

Throughout this subsection, assume that (A,m,η, δ, ε, S) is a color Hopf algebra.
Denote by A-gr (respectively (A ⊗ A)χ -gr) the category of (left) graded A-modules

(respectively (A ⊗ A)χ -modules) with graded morphisms (of degree e). Note that here
(A ⊗ A)χ is considered as an G-graded algebra as above.

Since Δ :A → (A ⊗ A)χ is an algebra map, there is a restriction functor

Res : (A ⊗ A)χ -gr � A-gr. (3.44)

More precisely, if M is a graded (A ⊗ A)χ -module, then Res(M) = M as graded spaces,
and its left A-action is given by

am =
(∑

a1 ⊗ a2

)
m, a ∈ A, m ∈ M. (3.45)

The following is a direct consequence of Proposition 3.

Proposition 4. The functor Res : (A ⊗ A)χ -gr � A-gr is exact and it preserves injective
objects.
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Proof. The exactness of Res is obvious. Let I be an injective object in (A ⊗ A)χ -gr. To
show that Res(I ) is an injective object in A-gr, take any monomorphism

i :N → N ′ (3.46)

and a morphism

f :N → Res(I ) (3.47)

in A-gr, we claim that there exists some morphism

f ′ :N ′ → Res(I ) (3.48)

such that f ′i = f , then we are done. In fact, by Proposition 3, (A ⊗ A)χ is a gr-free right
A-module, hence it is flat A-module. So we have a monomorphism of left (A ⊗ A)χ -
modules

j = (A ⊗ A)χ ⊗A i : (A ⊗ A)χ ⊗A N → (A ⊗ A)χ ⊗A N ′. (3.49)

Note that we have a morphism of right (A ⊗ A)χ -modules

g : (A ⊗ A)χ ⊗A N → I, (a ⊗ a′) ⊗ n → (a ⊗ a′)f (n), (3.50)

where a, a′ ∈ A and n ∈ N . Since I is an injective object in (A ⊗ A)χ -gr, there exist a
morphism

g′ : (A ⊗ A)χ ⊗A N ′ → I such that g′ ◦ j = g. (3.51)

Define

f ′ :N ′ → Res(I ), n′ → g′((1A ⊗ 1A) ⊗ n′), (3.52)

where n′ ∈ N and 1A ∈ A is the unit. Now it is easy to check that f ′i = f and this proves
that Res(I ) is an injective object in A-gr. �

Define the adjoint functor to be

ad(−) = Res ◦ F :A–A-gr � A-gr.

Explicitly, let M be a graded A-bimodule, then ad(M) = M as graded spaces, and the left
A-module structure is given by

am =
∑

χ
(|a(2)|, |m|)a1.m.S(a2), (3.53)

for homogeneous a ∈ A and m ∈ M . The resulting graded A-module ad(M) is called the
adjoint module associated the graded A-bimodule M .

The main theorem in this section is as follows:
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Theorem 2. Let A = (A,m,η,Δ, ε,S) be a color Hopf algebra and let M be a graded
A-bimodule. Then there exists an isomorphism

HHn
gr(A,M) 	 ExtnA-gr

(
K, ad(M)

)
, n � 0,

where K is viewed as the trivial graded A-modules via the counit ε, and ad(M) is the
adjoint A-module associated to the graded A-bimodule M .

Proof. First we show that there exists a natural isomorphism

HomAe-gr(A,−) 	 HomA-gr
(
K, ad(−)

)
,

both of which are functors form A-A-gr to the category of vector spaces.
In fact, for each graded A-bimodule M = ⊕

g∈G Mg ,

HomAe-gr(A,M) = {m ∈ Me | a.m = m.a, for all a ∈ A},

and

HomA-gr
(
K, ad(M)

) = {
m ∈ Me | am = ε(a)m, for all a ∈ A

}
.

We deduce that the isomorphism in using the definition of am, see (3.53).
In general, for n � 1, we have

HHn
gr(A,−) = ExtnAe-gr(A,−) = Rn HomAe-gr(A,−),

where Rn means taking the nth right derived functors. Now apply the above observation,
we get

HHn
gr(A,−) = Rn

(
HomA-gr(K,−) ◦ ad(−)

)
.

By Theorem 1 and Proposition 4, we obtain the functor ad(−) is exact and preserves injec-
tive objectives. Hence Grothendieck’s spectral sequence (e.g., see [2] or [4, p. 299]) gives
us

Rn
(
HomA-gr(K,−) ◦ ad(−)

) = Rn
(
HomA-gr(K,−)

) ◦ ad(−).

Hence, we have

HHn
gr(A,−) = Rn HomA-gr(K,−) ◦ ad(−) = ExtnA-gr(K,−) ◦ ad(−)

= ExtnA-gr

(
K, ad(−)

)
.

This completes the proof. �
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3.6. Shift functor

We end this section with some observations on shift functor. Let A be a G-graded alge-
bra. For each h ∈ G, we define a shift functor [h] from A-gr to itself as follows: for each
M ∈ A-gr, define a graded A-module M[h] by setting (M[h])g = Mhg for each g ∈ G.
Note that M[e] = M .

Set

HomA(M,N)h = {
f ∈ HomA(M,N) | f (Mg) ⊆ Ngh, ∀g ∈ G

}
. (3.54)

So we have (see [8, p. 25]):

HomA(M,N)h = HomA-gr
(
M,N [h]). (3.55)

For M,N ∈ A-gr, set

HomA(M,N) :=
⊕
h∈G

HomA(M,N)h. (3.56)

Let EXTn
A(−,−) (respectively EXTn

A(−,−)h) be the nth right derived functor of the
functor HomA(−,−) (respectively HomA(−,−)h).

Clearly, we have

EXTn
A(M,N)h = ExtnA-gr

(
M,N [h]), n � 0 (3.57)

and, consequently,

EXTn
A(M,N) =

⊕
h∈G

ExtnA-gr

(
M,N [h]), n � 0. (3.58)

Let M be a graded A-bimodule which is regarded as a left Ae-module.
Set

HHn(A,M)h := EXTn
Ae (A,M)h = HHn

gr

(
A,M[h]), n � 0. (3.59)

From Theorem 2, we get immediately

Corollary 1. Under the hypotheses of Theorem 2. Then

HHn(A,M)h 	 ExtnA-gr

(
K,ad(M[h])) = EXTn

A

(
K,ad(M)

)
h

for each h ∈ G and n � 0.

Remark 3. In the above two corollaries, we use the notation ad(M[h]). Let us remark that,
in general, ad(M[h]) and (ad(M))[h] are not isomorphic in A-gr.
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4. Graded Cartan–Eilenberg cohomology

In this section we will extend the construction in [1,2] to color Lie algebras.

4.1. Color Koszul resolution

Let L be a G-graded ε-Lie algebra over K, and let V be the underlying graded space
of L. Set ∧

ε

V := T (V )/
〈
u ⊗ v + ε(u, v)v ⊗ u

〉
, (4.1)

where u,v are homogeneous in V . Clearly
∧

ε V is graded by the group Z × G, in other
words,

∧
ε

V =
⊕
n�0

n∧
ε

V , (4.2)

and each
∧n

ε V is graded by G.
Define Cn := U(L) ⊗K

∧n
ε V , which is graded by G such that the degree of u ⊗ v is

|u| · |v|, for homogeneous u ∈ U(L) and v ∈ ∧n
ε V , n ∈ N. Endow Cn with a left U(L)-

module structure, which is induced by the multiplication of U(L). Obviously, each Cn is
a graded U(L)-module (with respect to the group G) and it is gr-free (again in the sense
of [8]).

Denote by 〈x1, . . . , xn〉 the element x1 ∧ · · · ∧ xn of
∧n

ε V . Define, for every homoge-
neous y ∈ L, an L-module homomorphism θ(y) :Cn → Cn by

θ(y)
(
u ⊗ 〈x1, . . . , xn〉

) := −ε
(|y|, |u|)uy ⊗ 〈x1, . . . , xn〉

+
n∑

i=1

ε
(|y|, |u| · |x1| · · · |xi−1|

)
u ⊗ 〈

x1, . . . , [y, xi], . . . , xn

〉
.

We claim that

θ(x)θ(y) − ε
(|x|, |y|)θ(y)θ(x) = θ

([x, y]) (4.3)

for all homogeneous x, y, x1, . . . , xn ∈ L and u ∈ U(L). We check that θ verifies Eq. (4.3)
and the fact that θ = (θ1 ⊗ θ2)

χ is the twisted tensor product of L-module maps (see
Section 3.4):

θ1(x) :U(L) → U(L), u → θ1(x)(u) := −ε(x,u)ux

and

θ2(x) :
n∧

L →
n∧

L, 〈x1, . . . , xn〉 →
n∑

ε(x, xi)
〈
x1, . . . , [x, xi], . . . , xn

〉
.

i



436 X.-W. Chen et al. / Journal of Algebra 299 (2006) 419–442
We define also, for every y ∈ L, a graded L-module homogeneous homomorphism of
degree zero σ(y) :Cn → Cn+1 by

σ(y)
(
u ⊗ 〈x1, . . . , xn〉

) := ε
(|y|, |u|)u ⊗ 〈y, x1, . . . , xn〉

for all homogeneous elements x1, . . . , xn ∈ L and u ∈ U(L). It is easy to check that

σ
([x, y]) = θ(x)σ (y) − ε(x, y)σ (y)θ(x). (4.4)

Next we define by induction L-module homomorphisms of degree zero dn :Cn → Cn−1
by

σ(y)dn−1 + dnσ (y) = −θ(y) (4.5)

for all homogeneous elements y ∈ L and u ∈ U(L). We set d0 := 0. Since u ⊗
〈x1, . . . , xn〉 = ε(u, x1)σ (x1)(u ⊗ 〈x2, . . . , xn〉), it follows from Eq. (4.5) that

dn

(
u ⊗ 〈x1, . . . , xn〉

) = ε(u, x1)dnσ (x1)
(
u ⊗ 〈x2, . . . , xn〉

)
= ε(u, x1)

(−θ(x1) − σ(x1)dn−1
)(

u ⊗ 〈x2, . . . , xn〉
)
.

We deduce that the operator dn is explicitly given by

dn

(
u ⊗ 〈x1, . . . , xn〉

)
=

n∑
i=1

(−1)i+1εiuxi ⊗ 〈x1, . . . , x̂i , . . . , xn〉

+
∑

1�i<j�n

(−1)i+j εiεj ε
(|xj |, |xi |

)
u ⊗ 〈[xi, xj ], x1, . . . , x̂i , . . . , x̂j , . . . , xn

〉
,

for all homogeneous elements u ∈ U(L) and xi ∈ L, with εi = ∏i−1
h=1 ε(|xh|, |xi |), i � 2,

ε1 = 1 and the sign ˆ indicates that the element below it must be omitted. We will show
preceding by induction on n ∈ N that

θ(y)dn = dnθ(y). (4.6)

It is obvious if n = 0. For n � 1, we have

θ(y)dn − dnθ(y)
(
u ⊗ 〈x1, . . . , xn〉

)
= ε(u, x1)

(
θ(y)dnσ (x1) − dnθ(y)σ (x1)

)(
u ⊗ 〈x2, . . . , xn〉

)
.

Since ε(u, x1) �= 0 for all homogeneous elements x1, u, it sufficient to show that

θ(y)δnσ (x) − dnθ(y)σ (x) = 0.
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On the other hand,

θ(y)dnσ (x) − dnθ(y)σ (x)

= −θ(y)θ(x) − θ(y)σ (x)dn−1 − ε(y, x)dnσ (x)θ(y) − dnσ
([y, x])

(by Eqs. (4.5) and (4.4))

= −θ(y)θ(x) − θ(y)σ (x)dn−1 + ε(y, x)
(
θ(x)θ(y) + σ(x)dn−1θ(y)

) + θ [y, x]
+ σ [y, x]dn−1 (by (4.5))

= {−θ(y)θ(x) + ε(y, x)θ(x)θ(y) + θ [y, x]}
+ {−θ(y)σ (x) + ε(y, x)σ (x)θ(y) + σ [y, x]}dn−1

(by the induction hypothesis)

= 0 (by Eqs. (4.3) and (4.4)).

Finally, we show that

dn−1dn = 0. (4.7)

It is obvious that d0d1 = 0. We reason by induction. We have, for n � 2:

dn−1dn

(
u ⊗ 〈x1 · · ·xn〉

) = ε(u, x1)dn−1dnσ (x1)
(
u ⊗ 〈x2 · · ·xn〉

)
,

from Eq. (4.5) we obtain:

ε(u, x1)dn−1dnσ (x1)
(
u ⊗ 〈x2 · · ·xn〉

)
= −ε(u, x1)dn−1

(
θ(x1) + σ(x1)dn−1

)
= ε(u, x1)dn−1dnσ (x1)

(
u ⊗ 〈x2 · · ·xn〉

)
= −ε(u, x1)dn−1

(
θ(x1) + σ(x1)dn−1

)
= −ε(u, x1)

(
dn−1θ(x1) + dn−1θ(x1) + σ(x1)dn−2dn−1

)
= 0

from Eq. (4.6) and the induction hypothesis.
Let {xi}I be a homogeneous basis of L, where I is a well-ordered set. By the generalized

PBW theorem the elements

ek1 · · · ekm ⊗ 〈el1 · · · eln〉 (4.8)

with

k1 � · · · � km and ki < ki+1 if ε
(|ek |, |ek |) = −1 (4.9)
i i
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and

l1 � · · · � ln and li < li+1 if ε
(|eli |, |eli |

) = 1 (4.10)

form a homogeneous basis of Cn.
We define a family of G-graded subspace FpC of C with p ∈ Z, as follows:

(FpC)−1 := K and (FpC)n, n � 0, is the subspace of Cn generated by the homogeneous
basis (4.8) with m + n � p. We see that for all n � 0 the differential dn maps (FpC)n
into (FpC)n−1, then FpC is a G-graded subcomplex of C. For every p � 1 we define a
G-graded complex Wp by (FpC)n/(FpC)n−1 for n � 0 and W

p

−1 := K. It is now clear
that the differential d

p
n :Wp

n → W
p

n−1 is G-graded and given by

d
p
n

(
ek1 · · · ekm ⊗ 〈el1 · · · eln〉

)
≡

n∑
i=1

(−1)i+1
i−1∏
h=1

ε
(|elh |, |eli |

)
ek1 · · · ekmeli ⊗ 〈el1 , . . . , êli , . . . , eln〉 mod(Fp−1C)n−1.

Note that the summands on the right-hand side are not necessarily of the form (4.8), since
we cannot guarantee km � li .

Lemma 3. We have that the homology groups Hn(W
p) = 0 for all p � 1 and all n.

Proof. We define a G-graded homomorphisms t
p
n as follows: t

p

−1 : K → W
p

0 is given by
t
p

−1(1K) := 1 ⊗ 〈 〉 and, for n � 0, we define t
p
n :Wp

n → W
p

n+1 by

t
p
n

(
ek1 · · · ekm ⊗ 〈el1 · · · eln〉

)
≡

m∑
i=1

m∏
h=i+1

ε
(|eki

|, |ekh
|)ek1 · · · êki

· · · ekm ⊗ 〈eki
, el1, . . . , eln〉 mod(Fp−1C)n.

We will show that

d
p

n+1t
p
n + t

p

n−1d
p
n = p id,

d
p

n+1t
p
n

(
ek1 · · · ekm ⊗ 〈el1 · · · eln〉

)

=
m,n∑

i,j=1

(−1)j
m∏

h=i+1

ε
(|eki

|, |ekh
|)ε(|eki

|, |elj |
) j−1∏

h=1

ε
(|elh |, |elj |

)
× ek1 · · · êki

· · · ekmelj ⊗ 〈eki
, el1, . . . , êlj , . . . , eln〉

+
m∑

(−1)1+1
m∏

ε
(|eki

|, |ekh
|)ek1 · · · êki

· · · ekmeki
⊗ 〈el1 · · · eln〉
i=1 h=i+1
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=
m,n∑

i,j=1

(−1)j
m∏

h=i+1

ε
(|eki

|, |ekh
|)ε(|eki

|, |elj |
) j−1∏

h=1

ε
(|elh |, |elj |

)
× ek1 · · · êki

· · · ekmelj ⊗ 〈eki
, el1 , . . . , êlj , . . . , eln〉

+
m∑

i=1

m∏
h=i+1

ε
(|eki

|, |ekh
|) m∏

h=i+1

ε
(|ekh

|, |eki
|)ek1 · · · eki

· · · ekm ⊗ 〈el1 · · · eln〉

=
m,n∑

i,j=1

(−1)j
m∏

h=i+1

ε
(|eki

|, |ekh
|)ε(|eki

|, |elj |
) j−1∏

h=1

ε
(|elh |, |elj |

)
× ek1 · · · êki

· · · ekmelj ⊗ 〈eki
, el1 , . . . , êlj , . . . , eln〉

+ mek1 · · · eki
· · · ekm ⊗ 〈el1 · · · eln〉.

(The last equality uses the fact that
∏m

h=i+1 ε(|eki
|, |ekh

|)∏m
h=i+1 ε(|ekh

|, |eki
|) = 1.)

And we have

t
p

n−1d
p
n

(
ek1 · · · ekm ⊗ 〈el1 · · · eln〉

)

=
m,n∑

i,j=1

(−1)j+1
j−1∏
h=1

ε
(|elh |, |elj |

) m−1∏
h=i+1

ε
(|eki

|, |ekh
|)ε(|eki

|, |elj |
)

× ek1 · · · êki
· · · ekmelj ⊗ 〈eki

, el1 , . . . , êlj , . . . , eln〉

+
n∑

j=1

(−1)j+1
j−1∏
h=1

ε
(|elh |, |elj |

)
ek1 · · · ekmelj ⊗ 〈el1, . . . , êlj , . . . , eln〉

= −
m,n∑

i,j=1

(−1)j
j−1∏
h=1

ε
(|elh |, |elj |

) m−1∏
h=i+1

ε
(|eki

|, |ekh
|)ε(|eki

|, |elj |
)

× ek1 · · · êki
· · · ekmelj ⊗ 〈eki

, el1 , . . . , êlj , . . . , eln〉

+
n∑

j=1

(−1)j+1(−1)j+1
j−1∏
h=1

ε
(|elh |, |elj |

) j−1∏
h=1

ε
(|elj |, |elh |

)
ek1 · · · ekm

⊗ 〈el1, . . . , elj , . . . , eln〉

= −
m,n∑

i,j=1

(−1)j
j−1∏
h=1

ε
(|elh |, |elj |

) m−1∏
h=i+1

ε
(|eki

|, |ekh
|)ε(|eki

|, |elj |
)

× ek1 · · · êki
· · · ekmelj ⊗ 〈eki

, el1 , . . . , êlj , . . . , eln〉
+ nek1 · · · ekm ⊗ 〈el1, . . . , elj , . . . , eln〉.

(Here again we use
∏j−1

ε(|el |, |el |)∏j−1
ε(|el |, |el |) = 1.)
h=1 h j h=1 j h
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From that we deduce that

(
d

p

n+1t
p
n + t

p

n−1d
p
n

)(
ek1 · · · ekm ⊗ 〈el1 · · · eln〉

)
= (m + n)

(
ek1 · · · ekm ⊗ 〈el1 · · · eln〉

)
. (4.11)

We set

tp =
⊕

n,m∈N, n+m=p �=0

1

p
t
p
n , (4.12)

and thus, we deduce that

dptp + tpdp = Id. (4.13)

Hence Hn(W
p) = 0 for all p � 1 and all n. �

The following theorem gives the color Koszul resolution.

Theorem 3. Then the sequence

C : · · · → Cn
dn−→ Cn−1 → ·· · → C1

ε−→ C0 → 0 (4.14)

is a G-graded U(L)-free resolution of the G-graded trivial module K via ε.

Proof. We consider the (G-graded) exact sequence of complexes

0 → Fp−1 → FpC → Wp. (4.15)

For the associated long exact homology sequence it follows from Lemma 3 that

Hn(Fp−1C) 	 Hn(FpC) (4.16)

for all n, and all p � 1. Since F0C is the graded complex 0 → K → K → 0, we then obtain
Hn(F0C) = 0, for all n. Hence, by induction, Hn(FpC) = 0 for all n and all p � 0. Since
C = ⋃

p�0 FpC then the result follows that Hn(FpC) = 0. �
4.2. Cohomology of color Lie algebras

Let M be a left L-module, we define the nth graded cohomology group of L with value
in M as

Hn(L,M)h := EXTn
U(L)(K,M)h = ExtnU(L)-gr

(
K,M[h]) (4.17)

for all h ∈ G, where K is the trivial graded L-module, or equivalently, U(L)-module.
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We also define

Hn
gr(L,M) = Hn(L,M)e. (4.18)

Thus Hn(L,M)h = Hn
gr(L,M[h]).

Set

H(L,M) =
⊕
h∈G

Hn(L,M)h.

To compute Hn
gr(L,M), we may be used the gr-free resolution of the trivial module K

in Theorem 3. Let M be a graded L-module, the cohomology groups Hn
gr(L,M) are the

homology groups of the complex

HomU(L)-gr(Cn,M) = HomU(L)-gr

(
U(L) ⊗

n∧
ε

L,M

)

	 Homgr

(
n∧
ε

L,M

)
,

where C is the complex in Theorem 3. Under the above isomorphisms, the corresponding
differential operator is given by

δn(f )(x1, . . . , xn+1)

=
n+1∑
i=1

(−1)i+1εixi · f (x1, . . . , x̂i , . . . , xn+1)

+
∑

1�i<j�n+1

(−1)i+j εiεj ε
(|xj |, |xi |

)
f

([xi, xj ], x1, . . . , x̂i , . . . , x̂j , . . . , xn+1
)
,

(4.19)

for all f ∈ Homgr(
∧n

ε L,M), where the εi ’s are given in Section 4.1. This description
of the graded cohomology groups Hn

gr(L,B) shows that these coincide, in the case of
degree e, with the graded Cartan–Eilenberg cohomology of L introduced by Scheunert
and Zhang in [11,13].

Now we can apply Corollary 1 to the universal enveloping algebra U(L) of a G-graded
ε-Lie algebra L: by the example in Section 3, we see U(L) is a color Hopf algebra. Note
that if M is a graded U(L)-bimodule, the corresponding adjoint L-module ad(M) is given
by (compare (3.53))

xm = x.m − ε
(|x|, |m|)m.x (4.20)

for homogeneous x ∈ L and m ∈ M .
In summary, we get
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Theorem 4. Let L be a G-graded ε-Lie algebra, and let U(L) be its universal enveloping
algebra. Let M be a graded U(L)-bimodule. Then there exists an isomorphism of graded
spaces

HHn
(
U(L),M

)
h

	 Hn
(
L, ad(M)

)
h

= Hn
gr

(
L, ad(M[h])), n � 0. (4.21)

In particular we obtain

HHn
gr

(
U(L),M

) 	 Hn
gr

(
L, ad(M)

)
, n � 0. (4.22)
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