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This paper deals with the study of the small scale effect on the pull-in instability of nano-switches sub-
jected to electrostatic and intermolecular forces. Using Eringen’s nonlocal elasticity theory, the nonlocal
Euler–Bernoulli beam model is derived through virtual displacement principle. The static governing
equation which is extremely nonlinear due to the intermolecular and electrostatic attraction forces is
solved numerically by differential quadrature method. The accuracy of the present method is verified
by comparing the obtained results with the finite difference method and those in the literatures and very
good agreement is obtained. Finally a comprehensive study is carried out to determine the influence of
nonlocal parameter on the pull-in instability characteristics of cantilever and clamped–clamped nano-
beam and some conclusions are drawn.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Since their astonishing discovery by Iijima (1991), carbon nano-
tubes have become a subject of extensive research due to their
remarkable mechanical, electrical, thermal and electro-mechanical
properties. These exceptional features have opened new era in sci-
ence and technology and have motivated many researchers of all
kind of studies including chemistry, physics, material science and
other natural science to engineering ones and invite them to chal-
lenge. The growing trend of scientific and engineering publications
reported annually and the investment of governments and private
institutions apparently confirm this claim. Nanotechnology con-
cerns to the study of observing, measuring, controlling, manufac-
turing and manipulation typically with dimensions smaller than
100 nm to create novel materials and devices.

Because of distinguished properties, carbons nanotubes have
played a significant role in the development of nanotechnology. The
small size, low mass, high stiffness, high integration density and tran-
sistor aspects make them ideal to use as a Nano-electro-mechanical
systems (NEMS) such as switches, actuators, tweezers and atomic
force microscopy (AFM). They also have the capability to withstand
the extreme conditions because of high mechanical strength and their
high frequency attribute is the key feature for designing super sensi-
tive sensors and high speed actuators. Regarding to this subject, Li et
al. (2008) reviewed some of the recent advances in nanotube and
nanotube-based composite sensors and actuators, with a particular
emphasis on the electromechanical behavior and introduced its
ll rights reserved.
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application towards the development of nano-scale sensor and actu-
ator systems. The review of articles about the application of nano-
technology in designing biosensors are presented by Vo-Dinh et al.
(2001) and Jianrong et al. (2004).

Typically, an electrostatic switch consists of a flexible electrode
suspended above a stationary ground electrode. Two electrodes are
conductive and a dielectric spacer fills the gap between them.
Applying electric voltage between two parts results in deformation
of the flexible electrode. When the applied voltage increases
beyond a certain value which is known as pull in voltage, the insta-
bility occurs and the upper electrode sticks to the ground. This
phenomenon is known as pull-in instability and the critical value
of voltage and the corresponding beam displacement at the insta-
bility condition are called pull-in parameters.

Before advent of NEMS, most of electrostatically actuated
devices include components that constructed in micro-scale called
micro-electro-mechanical systems (MEMS). Last few decades have
given much attention in this area of study and a large deal of
researches in the field of mini-structures are devoted to micro-
structures. Batra et al. (2008c) studied the vibration of fixed–fixed
narrow micro-beams pre-deformed by an electric field and
described the variation of fundamental frequency versus applied
DC voltage and shown the strain hardening and electrostatic
softening effect. Batra et al. (2006) applied the meshless local Pet-
rov–Galerkin method to investigate the electrostatic deformation
of different shape MEMS and extracted the pull-in parameters in
each case. Chaterjee and Pohit (2009) used the large deflection
nonlinear beam model to investigate the static and dynamic pull-
in instability analysis of micro-cantilever beam. Their study indi-
cated that although electrostatic forces cause softening effect
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whereas geometric nonlinearity leads to stiffening effect on the
microstructure. The static and dynamic behavior of electrically
actuated clamped–clamped micro-beams under applied axial load
is studied by Abdel-Rahman et al. (2002). In this research the
eigenvalue problem associated to vibration around its statically
deflected position is solved numerically and excellent agreement
was obtained in comparison to experimental results. Pamidighan-
tam et al. (2002) derived a closed-form solution for the pull-in
voltage of fixed–fixed and cantilever beams based on simplified
lump spring-mass system and verified the results with empirical
and analytical models as well as finite element results obtained
by COVENTORWARE software. The generalized differential quadra-
ture method (DQM) is used by Sadeghian et al. (2007) to study the
pull-in instability of cantilever and fixed–fixed beam-type MEMS
switches incorporating the fringing field effect.

In recent years, the distance between movable electrode and ri-
gid ground electrode reduced to the range of hundreds or even tens
of nanometers. Decreasing the size of MEMS makes surface trac-
tion due to intermolecular interaction an important force in
designing micro and nano-structures. At such separation, the effect
of intermolecular forces (dispersion forces) become important and
may extremely influence the function of NEMS/MEMS devices and
change their pull-in instability parameters. Gusso and Delben
(2008) calculated the dispersion forces between two semi spaces
using the Lifshitz theory for different materials relevant for micro
and nano devices fabrication. The van der Waals (vdW) and Casi-
mir forces can be treated in unified form resulting from the electro-
magnetic quantum vacuum fluctuations existing between two
separated dielectric bodies. A detailed review of the theory of the
Casimir force which is comprised experiments and application his-
tory and its corrections for real material and finite temperature is
presented by Lamoreaux (2005). Based on the latter, it can be
found that when the separation is much less than the plasma
wavelength (for a metal) or the absorption wavelength (for a
dielectric) of the constitute material of the surfaces (typically
below 20 nm) the retardation is not significant and the intermolec-
ular force is simplified as the vdW attraction. However, when the
separation is large sufficient (typically above 20 nm) the retarda-
tion is dominant and the intermolecular interaction is described
by the Casimir force.

There exist many publications in literatures about microstruc-
tures which are considered the intermolecular interaction. Batra
et al. (2007a) analyzed the pull in instability of micro-membrane
and studied the effect of the Casimir force on the pull in parame-
ters. They found that when the size of device is reduced, the mag-
nitude of the Casimir force is comparable with that of the Coloumb
or electrostatic force and it substantially change the pull in param-
eters. Batra et al. (2008a), Batra et al. (2008b) investigated the
application of reduced order model for studying the pull-in behav-
ior of micro-plates in combination with the vdW and Casimir
forces. Zhang and Zhao (2006) studied the pull-in behavior of
micro-structure under electrostatic loading numerically and
analytically. Bending and vibration of electrically actuated circular
microplate were investigated by Wang et al. (2011b) in the
presence of the Casimir forces based on von Karman’s nonlinear
bending theory of thin plate. Wang et al. (2011a) also analyzed
the static pull-in instability and dynamic behavior of multi-layer
micro-beams actuated electrically based on the geometrically non-
linear Euler–Bernoulli beam equation. A comprehensive review of
modeling of electrostatically actuated MEMS can be found in a
work by Batra et al. (2007b).

Because of the smaller scale on which they can function, NEMS
are expected to significantly impact many areas of science and
technology and eventually replaced MEMS. Recently, many
researchers have been in contact with nano-devices more than
ever and have shown much interest for studying nano-structures.
Dequesnes et al. (2002) analyzed the pull-in instability of carbon
nanotube based nano-switches. They proposed continuum model
and compared the accuracy of the continuum theory with the
results obtained by molecular dynamic simulation and also
reported good agreement between experimental results and
numerical simulation data for nano-tweezers. They also developed
analytical expression for pull-in voltage of cantilever and doubly
clamped switches. The instability behavior of nano-switches and
nano-tweezers under the vdW and Casimir attractions and with
consideration of large deformation nonlinearity were presented
by Lin and Zhao (2003, 2005a,b), and Wang et al. (2004). Ke et al.
(2005b) tested the nanotube-based NEMS and reported the
in situ scanning electron microscopy measurement of the deflec-
tion of nano-cantilever actuated electrically. Their article includes
analytical model based on energy method in order to predict the
structural behavior and instability of the nanotube and the
accuracy of the model is assessed by experimental data. The role
of finite deformation, stretching and charge concentrations nano-
tube devices are investigated by Pugno et al. (2005) and Ke et al.
(2005a). Their results show significant effect of finite kinematics
to increasing the pull-in voltage of doubly clamped devices, but
it has negligible effect in singly clamped devices. Likewise, it was
demonstrated the reduction of pull-in voltage in singly clamped
devices due to charge concentration. Siddique et al. (2011) per-
formed new experimental electrostatic deflection and compared
with theoretical results in the literatures. They revealed the differ-
ences between theory and experiment results and indicated the
direction of future modeling and analysis. Ramezani et al. (2007)
used a distributed parameter model to obtain the closed form solu-
tion for pull-in instability of nano-cantilever beam. Ramezani
(2011) also studied the instability analysis of nano-tweezers under
electrostatic loading considering dispersion forces using distrib-
uted and lumped parameter models. Analytical solution of nonlin-
ear differential equation of nano-actuator under electrostatic and
dispersion forces is presented by Soroush et al. (2010) using the
Adomian decomposition method.

Since the classical continuum theory has not capability to cap-
ture the small scale effect or the size dependent behavior of the
structures and components in micro and nano dimensions,
non-classical continuum theories have appealed much attention
in simulating nano-structures, recently. Differences between con-
tinuum model and experimental results as well as molecular dy-
namic simulation are often caused by the lack of small scale
considerations. Coupled stress theory (Kishida et al., 1990) and
non-local elasticity theory proposed by Eringen (2001) are two
well-known non-classical continuum theories which are able to
model the small scale effect. There are a few studies that investi-
gate the pull-in instability incorporating the small scale effect.
Abdi et al. (2011) used modified couple stress theory (Yang et al.,
2002) to study the size effect on the static pull-in instability of
nano-cantilever in the presence of dispersion forces by employing
monotonically iterative and homotopy perturbation methods as
well as numerical one. Their results demonstrate that the size ef-
fect can increase pull-in parameters. Rahaeifard et al. (2011) inves-
tigated the pull-in analysis of micro-cantilever based on modified
couple stress theory and compared the results with experimental
observations and obtained excellent agreement. Yang et al.
(2008) concluded the pull-in instability analysis of nano-switches
subjected to electric voltage and intermolecular interaction within
the framework of Eringen’s nonlocal elasticity theory. They pro-
posed a linear distributed load model to linearize the intermolecu-
lar and electrostatic forces and simplified the complex nonlinear
differential equation to obtain a closed-form solution for cantilever
and fixed–fixed nano-beam. They found that the pull-in voltage of
the cantilever nano-beam increases whereas that of fixed–fixed
nano-beam decreases as the small scale factor increases.
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In the present work, the nonlocal Euler–Bernoulli beam model
is used to investigate the pull-in instability of beam-type NEMS.
Using Eringen’s nonlocal elasticity theory, the static governing
equation is derived under the nonlinear dispersion and electro-
static forces. Then, the nonlinear governing equation is discretized
and solved by DQM. Finally, the influence of small scale effect on
the pull-in parameters of cantilever and doubly clamped nano-
beam are concluded via a comprehensive survey.

2. Nonlocal nonlinear governing equation

The nonlocal elasticity theory for the Euler–Bernoulli, Timo-
shenko, Reddy and Levinson beams are developed by Reddy
(2007, 2010) and analytical solution of bending deflection, buckling
loads and natural frequencies of vibration were obtained to demon-
strate the effect of nonlocal features. This section is served for deriv-
ing the nonlocal static governing equation of nano-switch based on
the developed nonlocal Euler–Bernoulli beam theory. Neglecting
axial displacement and finite kinematics, Dequesnes et al. (2002)
obtained closely matched results with experimental data.

2.1. Euler–Bernoulli beam theory (EBT)

The classical hypothesis for displacement field in EBT is of the
form

u1ðx; zÞ ¼ �z
du
dx
; u2 ¼ 0; u3 ¼ uðxÞ ð1Þ

where u is the mid-plane displacements in which z ¼ 0 in the trans-
verse direction. The only nonzero strain of EBT is given by

exx ¼ �z
d2u

dx2 ð2Þ

Since the principal of virtual displacement is independent of consti-
tutive equation, the governing equation which is expressed in terms
of stress resultant is valid for local and nonlocal theories. Principal
of virtual displacement states that for an object in equilibrium, the
total virtual work done by the all forces (internal and external) due
to an arbitrary small virtual displacement compatible to boundary
conditions, is zero.Z L

0
f du�Mdeð Þdx ¼ 0 ð3Þ

Substituting the small virtual axial strain in Eq. (3) and setting the
coefficient of du to zero leads to the Euler–Lagrange equation in the
following form

d2M

dx2 þ f ¼ 0 ð4Þ

where f ðxÞ is the external transverse distributed force (measured
per unit length) and M is the stress resultant

M ¼
Z

A
zrxxdA ð5Þ

The boundary conditions involve specifying one element of each of
the following three pairs at x ¼ 0 and x ¼ L

u ¼ 0; M ¼ 0
du
dx
¼ 0; Q ¼ dM

dx
¼ 0

ð6Þ
2.2. Nonlocal theory

According to the nonlocal elasticity theory by Eringen (2001),
the stress field at an arbitrary point in a continuum body not only
depends on the strain field at that point but also on strains at all of
the other points of the body. In other words, each point in a
continuum media generates a strain field around itself through
the long-range forces among atoms which influence other parts
of the media. Thus, the stress state at a point is affected by the con-
tribution of all strains from the whole surrounding area.

The nonlocal constitutive equation for a homogeneous isotropic
beam neglecting the nonlocal effect in the thickness direction, can
be expressed in one dimensional form as

£ðrxxÞ ¼ Eexx; £ ¼ 1� l d2

dx2 ; l ¼ e0að Þ2 ð7Þ

where e and a are material constant and the internal characteristic
length, respectively. E stands for Young’s modulus and £ is nonlocal
linear differential operator. The local or classic constitutive equa-
tion can be obtained by setting l ¼ 0.

Multiplying Eq. (7) by z and then taking integration of both
sides, yields

£ðMÞ ¼ �EI
d2u

dx2 ð8Þ

where I is the second moment of area about the I-axis and defines as

I ¼
Z

A
z2dA ð9Þ

By substitution of the second derivative of M from Eq. (4) into Eq.
(8) gives the bending moment in terms of displacement and exter-
nal loads and the resulting shear force take the form as

M ¼ �EI
d2u

dx2 � lf

Q ¼ �EI
d3u

dx3 � l df
dx

ð10Þ

By putting bending moment from Eq. (10) into Eq. (4), the equilib-
rium equation can be written as

d2

dx2 EI
d2u

dx2

 !
¼ £ðf Þ ð11Þ

The classical Euler–Bernoulli beam theory and the related stress
resultants are obtained by setting l ¼ 0 and £ ¼ 1 in Eqs. (10)
and (11).

2.3. Electrostatic and dispersion forces

Fig. 1 shows a typical cantilever nano-switch which consists of a
movable beam suspended above a fixed ground plane. Applying
the electric potential difference between the movable and fixed
parts inducing electrostatic charge to switch and cause to function
as a capacitor. The electric field between two parts result in an
attractive electrostatic force and deflect the beam downward. In
addition to electrostatic force, the intermolecular forces also act
on the switch and enforce it to deflect moreover. Due to deflection,
strain energy is stored in the switch and the elastic restoring force
acts at apposition to electrostatic and intermolecular forces and try
to return the beam to the original position. At a certain value of
voltage, the beam becomes unstable and sticks to the ground
plane. This instability is a kind of buckling and called pull-in insta-
bility and the corresponding critical voltage and deflection named
pull-in parameters. Therefore, there are two sources which applied
the external forces to nano-switch. First one is electrostatic force
arising from inducing voltage and the second one is dispersion
force which comes from intermolecular interaction of fixed and
movable parts. Incorporation the fringing field effect by first order
correction assumption and neglecting charge concentration due to



Fig. 1. Schematic of a nano-switch.
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finite length, the electrostatic force per unit length of the beam is
given by Huang et al. (2003)

felec ¼
e0wV2

2 g � uð Þ2
1þ 0:65

g � u
h

� �
ð12Þ

where e0 ¼ 8:854� 10�12 C2 N�1 m�2 is the permittivity of vacuum,
V is the applied voltage and g is the initial gap between the movable
part and the ground plane.

The dispersion forces appear in two forms, vdW and Casimir.
The vdW force per unit length of the beam is expressed as (Gusso
and Delben, 2008)

fvdW ¼
Aw

6p g � uð Þ3
ð13Þ

While the Casimir force per unit length of the beam can be
expressed as (Gusso and Delben, 2008)

fCasimir ¼
p2hcw

240 g � uð Þ4
ð14Þ

where A is the Hamaker constant, h ¼ 1:055� 10�34 Js is the
Plank’s constant divided by 2p and c ¼ 3� 108 m s�1 is the speed
of light.

2.4. Non-dimensional nonlocal governing equation

For convenience, the governing equation is reformulated in
non-dimensional form. Introducing the non-dimensional variables
as

y ¼ 1� u
g
; n ¼ x

L

a3 ¼
AwL4

6pg4EI
; a4 ¼

p2hcwL4

240g5EI

b ¼ e0wV2L4

2g3EI
; c ¼ 0:65

g
w

ð15Þ

Substituting the electrostatic and intermolecular forces into Eq. (11)
and using the non-dimensional variables from Eq. (15), we obtain
the non-dimensional nonlocal governing equation which is
expressed as

yð4Þ þ �£ �f
� �
¼ 0 ð16Þ

in which

�f ¼ an

yn
þ b

y2 þ
bc
y
; �£ ¼ 1� e2 d2

dn2 ; e ¼ e0a
L

ð17Þ

The index n is 3 for the vdW force and 4 for the Casimir force. �£
stands for dimensionless form of the nonlocal differential operator.
The non-dimensional shear force and bending moment are written
as
�M ¼ ML2

EIg
¼ d2y

dn2 � e2�f

�Q ¼ QL3

EIg
¼ d3y

dn3 � e2 d�f
dn

ð18Þ

The boundary conditions involve specifying one element of each of
the following pairs at n ¼ 0 and n ¼ 1:

y ¼ 1; �M ¼ 0
dy
dn
¼ 0; �Q ¼ 0

ð19Þ
3. Differential quadrature method (DQM)

DQM is a higher order numerical method which provide a cost-
effective tool for solving many nonlinear differential equations and
was introduced by Richard Bellman and his associates in the early
1970s (Shu, 2000). The rudimentary concept of DQM is presented
here and readers are referred to book by Zong (2009) and Shu
(2000) for detailed information. The basic idea of DQM comes from
the Gauss quadrature, a useful numerical integration method
which is approximated a definite integral by a weighted sum of
integrand values at a group of the so-called Gauss points. Extend-
ing this idea, the partial derivatives of a function with respect to a
space variable at a given discrete point can be approximated by a
weighted linear sum of the function values at all discrete points.
The approximation value of kth derivative at the ith discrete points
for a one dimensional continuous function f ðxÞ can be presented by

dkf

dxk

�����
x¼xi

¼
XN

j¼1

CðkÞij f ðxjÞ ð20Þ

where xi ¼ 1;2; . . . ;N are the discrete points and often introduced in
uniform and non-uniform patterns and CðkÞij are weighting functions.
The non-uniform Chebyshev–Gauss–Lobatto (Shu, 2000) nodal dis-
tribution is most frequently used pattern in literatures that ensures
the solution convergence and is expressed as

xðiÞ ¼ 1
2

1� cos p i� 1
N � 1

� �	 

; i ¼ 1;2; . . . ;N ð21Þ

The weighting function associate to first order derivative of f ðxÞ
based on the Lagrange interpolation functions are formulated as
followsflip

Cð1Þij ¼

YN

k¼1;k–i;j

xi�xkð Þ
YN

k¼1;k–i;j

xi�xkð Þ
YN

k¼1;k–j

xj�xk

� �, YN
k¼1;k–j

xj�xk

� �
i – jð Þ

XN

k¼1;k–i

1
xi�xkð Þ i¼ jð Þ

i; j¼1;2; . . . ;N

8>>>>><
>>>>>:

ð22Þ

The higher order weighting coefficients associate to higher order
derivatives can be calculated by matrix product of the weighting
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coefficients of the first and lower order ones and therefore any lin-
ear differential operators such as nonlocal differential operator �£
can be treated in the same way. This is the main feature and most
important advantage of DQM which has made it a simple numerical
method as well as powerful one.

Cð2Þij ¼ Cð1Þik Cð1Þkj ; Cð3Þij ¼ Cð1Þik Cð2Þkj ; Cð4Þij ¼ Cð1Þik Cð3Þkj ð23Þ

Approximating the spatial derivative in Eq. (16), one obtains

Cð4Þij yj þ dij � e2Cð2Þij

� �
�f j ¼ 0 ð24Þ

Evaluating Eq. (24) in all of the Gauss points result in a set of non-
linear algebraic equations which can be shown in the following ma-
trix form.

Cð4Þy þ T �f
� �
¼ 0 ð25Þ

in which T ¼ I� e2Cð2Þ.
I is the identity matrix and the vector �f contains the nonlinear

terms of electrostatic and intermolecular forces. The iterative tech-
niques such as Newton–Raphson algorithm can be used to solve
the final nonlinear algebraic equation (Eq. 25). The shear force
and the bending moment in all points can be calculated by replac-
ing the beam deflection obtained from Eq. (25), which are ex-
pressed as

M ¼ Cð2Þy þ e2�f

Q ¼ Cð1ÞM ¼ Cð3Þy þ e2Cð1Þ�f
ð26Þ
4. Results and discussion

In this section based on the developed model the instability of
nano-switches is investigated in two subsections. The pull-in insta-
bility behavior due to the applying electric voltage is presented at
first and then the freestanding behavior is studied. The procedure
to find the instability characteristics is explained at following.
When the electric voltage increases, both the electrostatic and
elastic restoring forces increase. Before instability, the forces bal-
ance each other and the beam remains in static equilibrium posi-
tion. At a certain value of voltage which is called pull-in voltage,
the beam cannot sustain the electrostatic force and becomes unsta-
ble. Further increasing the voltage will cause the beam to deflect
dramatically and finally buckled. Near instability region the slope
of u–b curve approaches to infinity because the beam takes large
displacement due to tiny applied voltage. Therefore, the pull-in
parameters for any given value of a and g=w can be obtained by
setting du=db!1. This goal will be achieved easily by analytical
methods as a closed form solution. In numerical methods the volt-
age increases from zero to the unstable value in a step by step
manner and in each step a set of nonlinear algebraic equation is
solved by the iterative procedures such as the Newton–Raphson
algorithm. The step before whom the solution of the nonlinear
equation set is not available gives the pull-in parameters. For can-
tilever beam the displacement at the tip position (utip) is plotted
Table 1
Comparison of results for cantilever nano-beam when nonlocal effect and intermolecular

Model uPI

g=w ¼ 0

Numerical (FDM) 0.436
DQM (present) 0.436
Distributed parameter (Ramezani et al., 2007) 0.472
Lumped parameter (Lin and Zhao, 2003, 2005a) 0.333
LDL (Yang et al., 2008) 0.333
versus bto determine the pull in voltage bPI and the pull-in tip
deflection which is denoted by uPI

tip. In clamped–clamped beam,
the displacement at the middle point of the beam (umid) is plotted
versus bto calculate bPI and the pull-in mid-point deflection uPI

mid.
Similarly, the critical value of intermolecular force parameter acr

n

and the maximum deflection associated to the instability point in
freestanding behavior can be calculated by plotting u versus an

and by setting du=dan !1.

4.1. The electrostatic behavior

In order to validate the obtained results, the proposed model is
compared with those of numerical and analytical methods such as
lumped parameter model (Lin and Zhao, 2003, 2005a), distributed
parameter model (Ramezani et al., 2007) and linear distributed
load (LDL) model used by Yang et al. (2008). The comparison of
the results is performed in critically pull-in condition with and
without fringing field effect and are presented in Table 1 for canti-
lever nano-beam when intermolecular forces and the small scale
effect are neglected. As can be observed, the present results are
quite coinciding with the numerical results which are obtained
by MAPLE commercial software. The numerical algorithm used
by MAPLE to solve nonlinear differential equation is based on the
finite difference method (FDM). To compare with analytical ones,
the results are close to the distributed parameter model and also
with LDL model because of the same modeling of the nano-beam
as a continuous system. But, the result of the lumped model which
considers the system with single degree of freedom and neglects
the bending deformation of the beam significantly differ with other
results and underestimates the pull-in parameters. It can be found
that the fringing field effect has a remarkable influence on the pull-
in characteristics and could decrease the pull-in voltage. The sensi-
tivity analysis of the results based on the number of the chosen
Gauss nodes used in DQM must be established. For this purpose
forces are neglected.

bPI

g=w ¼ 1 g=w ¼ 0 g=w ¼ 1

0.478 1.680 1.174
0.478 1.680 1.174
0.517 1.827 1.274
0.369 1.185 0.834
0.369 1.616 1.136



Table 2
Comparison of dimensionless pull-in voltage bPI for various value of nonlocal parameters when the Casimir force is considered.

Model Cantilever Clamped–Clamped

e ¼ 0:1 e ¼ 0:2 e ¼ 0:3 e ¼ 0:1 e ¼ 0:2 e ¼ 0:3

Numerical (FDM) 0.497 0.742 2.780 45 30.4 19.4
Present (DQM) 0.497 0.742 2.780 45 30.5 19.4
LDL (Yang et al., 2008) 0.452 0.637 1.322 50.41 27.29 13.95
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w ¼ 0;1.
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the convergence of dimensionless pull-in voltage for cantilever
beam versus to variation of number of the Gauss nodes is plotted
in Fig. 2 when n ¼ 4. It can be seen that the accuracy of results is
improved by increasing the number of nodes N and the conver-
gence is obtained for N P 9. But, N ¼ 17 has been exhibited high
efficiency in the wide range of variation in parameters and is used
cautiously for all of the following results due to inherent nonlin-
earity of governing equation and the associated boundary
conditions.

Before investigating the influence of the small scale on the pull-
in instability, it should be better to assure the accuracy and effi-
ciency of the present model and DQM in such an extreme nonlinear
equation and their complicated boundary conditions when the
electrostatic and dispersion forces are considered with nonlocal ef-
fect. Therefore, it is possible to study all of the consideration,
simultaneously. The results list in Table 2 for cantilever and
clamped–clamped nano-beam and are compared with numerical
and LDL model. The results demonstrate perfect agreement with
numerical but LDL model still underestimate the pull-in parame-
ters due to linearization of the external forces. The variation of
tip deflection utip with respect to bfor cantilever nano-beam is
shown in Fig. 3 for different values of nonlocal parameter when
the intermolecular parameter a is set to value 0. It can be found
apparently from the figure that the nonlocal parameter increases
the pull-in voltage and decreases the pull-in tip deflection. There-
fore, the small scale effect causes the beam to become stiffen and
delays the pull-in instability, consequently the beam collapse at
higher value of b. Furthermore, Fig. 3 presents that the fringing
field effect decreases the pull-in voltage and slightly increases
the pull-in tip deflection.
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Fig. 6. External forces and stress resultant distribution for cantilever nano-beam
with and without nonlocal effect when a ¼ 0:5; b ¼ 0:5; g

w ¼ 0:5; n ¼ 3.
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Fig. 4 illustrates the beam deflection for different nonlocal
parameters and compares the result of the vdW and Casimir forces
Fig. 7. Effect of intermolecular forces and nonlocal parame
in the absence of electric voltage for cantilever nano-beam. As
expected, the stiffening effect of the nonlocal beam can be found
from the figure as well and the beam treated differently compared
with classical beam (without nonlocal effect) especially in higher
values of nonlocal parameter. When the nonlocal parameter
increases, the beam tends to become stiffer and the work done
by the electrostatic load enforces the beam to deform rather than
to deflect, so that the beam experiences small displacement and
large deformation. In addition, the beam deflection predicted by
the Casimir force is greater than vdW force at the same value of
e. It should be noted that the Casimir force is proportional to the
inverse fourth power of the separation gap which led to act higher
force on the beam in comparison with the vdW force which is
proportional to the inverse third power of the separation. Thus,
the beam under the Casimir force pulls-in on the voltage lower
than the vdW force.

Because of the distinct behavior of the cantilever nano-beam in
the presence of nonlocal effect as mentioned above in Fig. 4, the
beam deflection is depicted in Fig. 5 when the electric voltage ap-
proaches from zero to pull-in value for e ¼ 0:5. When the applied
voltage increases, the beam not only deflects naturally but also
prefers to deform as well. It is not possible to easily clarify this
behavior unless to study the total external force which includes
the electrostatic and the intermolecular attractions. That is why;
the total external force and the resulting moment and shear forces
in pull-in condition are drawn in Fig. 6. As can be observed, the
total external force distribution which is dependent on the beam
deflection, increases from the clamped end and then decreases to
the free end of the beam due to the small scale effect and finally
causes the beam to undergo deformation as well as deflection.

To go through in details and obtain deep understanding of
cantilever nano-switches behavior, Fig. 7 shows how the intermo-
lecular and fringing field effects in combination with nonlocal
parameter affect the pull-in characteristics. As seen, when the
intermolecular forces increase due to the small initial gap and
the long narrow beam, the pull-in voltage decreases. In addition,
increasing the nonlocal parameter results in increasing the pull-
in voltage while the fringing field effect shifts instability to the
lower value of voltage which also was shown previously in Fig. 3.

The same survey is performed for clamped–clamped nano-
beam to study the electrostatic instability and extract the related
pull-in parameters. The main features of doubly clamped nano-
beam is investigated and briefly discussed via some figures. The
variation of the beam deflection associated to middle point umid

with respect to dimensionless voltage parameter bis displayed in
ter on pull-in parameter bPI for nano-cantilever beam.



Fig. 8. Clamped–clamped mid-deflection as a function of parameter b for different nonlocal parameters when a ¼ 0; g
w ¼ 0;1.

Fig. 9. External forces and stress resultant distribution for clamped–clamped nano-
beam with and without nonlocal effect when a ¼ 10; b ¼ 10; g

w ¼ 0:5; n ¼ 3.
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Fig. 8 and the effect of g=w is also shown. The results demonstrate
that the nonlocal parameter decreases the pull-in voltage bPI and
the pull-in deflection uPI

mid. So, the doubly clamped nano-beam
Fig. 10. Effect of intermolecular forces and nonlocal parameter
becomes soften due to the nonlocal effect in contrast to the
nano-cantilever beam and because of such strong fixed end bound-
ary conditions, the instability of doubly clamped nano-beam oc-
curs in the voltage much higher than the cantilever type beam.
Furthermore, the fringing field effect decreases bPI and increases
uPI

mid. The external forces and the resulting stress resultants are de-
picted in Fig. 9 when the vdW force is considered. Comparing with
nano-cantilever beam, there is not any strange behavior under
small scale effect and the distributions are as usual as local beam.
Fig. 10 shows the effect of intermolecular forces on pull-in voltage
for different values of nonlocal parameter with and without
fringing filed effect. The intermolecular attraction like fringing field
effect decreases bPI and as predicted before, the beam under the
Casimir force collapses in the voltage lower than the vdW force.
4.2. The freestanding behavior

This subsection is devoted to study the freestanding behavior of
nano-switches. The nano-switch may collapse onto the ground
electrode due to intermolecular interactions even if no voltage is
applied. When the length of nano-devices (nano-beam) is long or
the gap between surfaces (initial gap) is small enough, the inter-
molecular forces is significant in the absence of electric voltage.
This behavior is substantially important in designing NEMS for pre-
on pull-in parameter bPI for clamped–clamped nano-beam.



Table 3
Comparison of results for freestanding behavior of cantilever nano-beam when nonlocal effect is ignored.

Model Van der Waals force Casimir force

ucr
tip acr

3 ucr
tip acr

4

Numerical (FDM) 0.328 1.204 0.267 0.939
DQM (Present) 0.328 1.204 0.267 0.939
Distributed parameter (Ramezani et al., 2007) 0.359 1.313 0.289 1.025
Lumped parameter (Lin and Zhao, 2003, 2005a) 0.250 0.844 0.200 0.655
LDL (Yang et al., 2008) 0.250 1.151 0.200 0.894

Fig. 11. Effect of nonlocal parameter on critical freestanding parameter acr
n for

cantilever nano-beam.

Fig. 12. Effect of nonlocal parameter on critical freestanding tip deflection ucr
tip for

cantilever nano-beam.

Fig. 13. Effect of nonlocal parameter on critical freestanding parameter acr
n for

clamped–clamped nano-beam.

Fig. 14. Effect of nonlocal parameter on critical freestanding mid-deflection ucr
mid for

clamped–clamped nano-beam.
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dicting the minimum initial gap and also maximum freestanding
length of nano-beam which is known as detachment length to pro-
hibit self-buckling. Knowing these parameters help designers to
ensures that the switch does not stick to the ground automatically.
The detachment length and the minimum initial gap are summa-
rized in dimensionless parameter a and can be computed easily.

Table 3 compares the results for critical values of dimensionless
intermolecular parameter acr

n and the corresponding beam dis-
placement at the tip position ucr

tip for the cantilever nano-beam
when no voltage is applied and the nonlocal effect is ignored.
The comparison is concluded for the vdW and Casimir effects
and again the same agreement with other methods is obtained.
Fig. 11 gives the critical intermolecular force parameter acr

n as a
function of nonlocal parameter for cantilever nano-beam and the
critical tip deflection ucr

tip versus nonlocal parameter is shown in
Fig. 12 for the vdW and Casimir forces. The figures also reveal
the comparisons of the present DQM results with LDL results.
The results in Fig. 11 shows good agreement between two methods
and indicates that acr

n increases with an increasing in nonlocal
parameter. As can be observed in Fig. 12, based on LDL results
the nonlocal parameter does not affect ucr

tip due to linearization of
intermolecular forces whereas our result shown considerably
decreasing. Based on the obtained results, the stiffening behavior
of nano-cantilever beam can also be found once again due to the
small scale effect.
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The same approach is used to investigate the freestanding
behavior of clamped–clamped nano-beam. Fig. 13 shows acr

n versus
nonlocal parameter for the Casimir and vdW forces and the critical
mid-point deflection ucr

mid as a function of nonlocal parameter is
illustrated in Fig. 14. In contrast to cantilever beam, the nonlocal
parameter causes to decrease acr

n due to softening effect of nonlocal
aspects and also decreases the critical beam deflection.

5. Conclusion remarks

Based on Eringen’s nonlocal elasticity theory, the nonlinear
static governing equation of beam-typed NEMS subjected to elec-
trostatic voltage and intermolecular attractive forces is derived.
The DQM is used as a solution method to numerically solve the
governing equation and the associated boundary conditions.
According to the present model, the effect of nonlocal parameter
on the pull-in instability and freestanding behavior of nano-
switches are studied in details.

It is observed that the cantilever and the doubly clamped
nano-beam treated differently under the small scale effect. For
cantilever nano-beam, the nonlocal effect increases the pull-in
voltage while the corresponding critical deflection decreases. It is
in contrast to clamped–clamped nano-beam which results in lower
pull-in voltage and pull-in deflection. The nonlocal cantilever
nano-beam shows stiffening effects due to the small scale effect
and tends to become stiffer compared to local one. Furthermore,
in the high values of the nonlocal parameter, the beam undergoes
small deflection and large deformation and the work done by the
electrostatic and intermolecular attractions enforce the beam to
deform rather than to deflect whereas doubly clamped nano-beam
deflects such as classical beam and displays softening effects. It is
shown that the fringing field effect has the same influence on both
cantilever and clamped–clamped nano-beam which causes to de-
crease the non-dimensional pull-in voltage.

The freestanding behavior is studied through some figures with
respect to the variation of nonlocal parameter. The results show
that in the presence of nonlocal effect, the critical intermolecular
parameter which containing the minimum initial gap and the
detachment length increases for cantilever nano-beam and
decreases for clamped–clamped nano-beam due to stiffening and
softening effects, respectively.
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