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1. INTRODUCTION 

Polyhedral cones of the form P = P(T) = {Z ] z E R”, TX > 0}, for some m x n matrix T, are 
well-known objects in linear optimization [l] as feasible set of solutions. Here we are interested in 
the characterization of a zero polyhedral cone given an m x n matrix. The problem, an interesting 
mathematical problem by itself, is motivated by the studies of so-called hybrid systems [2]. In [2], 
the well-posedness of the solutions in the Caratheodary sense of piecewise linear systems was 
characterized by whether zero is the intersection of a number of lexicographic homogeneous 
linear inequalities. To check this, Imura and van der Schaft [2] proposed an algorithm based on 
linear programming to see whether the polyhedral cone determined by the iirst inequality of 
every lexicographic component is zero. If it is not, the original problem was reduced to lower- 
dimensional problem for iteration. It is noted, however, that the linear programming problem as 
formulated there in [2] is always degenerate. 

Here we present elimination properties of zero polyhedral cones by making use of the Fourier- 
Motzkin transformation [3,4]. Two algorithms will be given for the characterization of zero 
polyhedral cones. 

2. PROPERTIES OF ZERO POLYHEDRAL CONES 
First, there ls a necessary condition. 

LEMMA 1. P(T) = (0) only if rankT = n and m > n. 

PROOF. If rankT = r < n, then the nonzero solution of 

TX = 0 

belongs to P(T). So if P(T) = {0}, then rank7 = n. 
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If rankT = n, then m 1 n. Suppose m = n, then the nonzero solution to 
TIx = 1, 

T2x = 0, 

T,x = 0, 

where Ti is the ith row of T, belongs to P(T). So necessarily, m > n if P(T) = (0). 

From now on, we assume that m > n and rankT = (TT, . . . , TJ)T = n, and denote 

T n+l Tl 
-1 

A= ; i . [ I[1 Tm Tn 

Define a coordinate transformation t = (Tl, . . . , Tn)Tz, then P(T) is equivalently defined by 

P(T)={zER*Iz>O, Az>O}. 

The cone defined by 
{x E Rn 1 x 2 0, Ax > 0). 

is called the positive cone of A and denoted by P+(A). 
Immediately, we have the following equivalence. 

LEMMA 2. P(T) = (0) if and only if P+(A) = (0). 

LEMMA 3. P(T) = (0) only if each column of A has at least one negative element. 
PROOF. If all elements of, say, the first column of A are greater or equal to zero, then it is easy 
to see that (l,O,... , O)T belongs to P+(A). By Lemma 2, P(T) contains a nonzero element. A 
contradiction. 

Before we propose algorithms to check whether a polyhedral cone is zero, we develop an im- 
portant property which is needed in the algorithms. 

Suppose each column of the matrix A E RmX” has at least one negative element. As usual, 
denote the ith row of A by Ai. Denote 

Q = {k I an < 0) , p = {k I Ukn > 0) , 2 = {k 1 akn = 0) . 

For each k E Q, define a matrix Bk, called’ a Fourier-Motzkm reduction of A, as 
B” = (bjj) E ~“+‘-l) 

in which 
bkj = akj, 

forj=l,...,n-1,and 
bij = aij - zakj, 

fori#kandj=l,...,n-1. 
We also define matrix B, called a Fourier-Motzkin elimination of A, as 

B = (bjj) E @X(n-‘), 

in which, denoting I . I for the size of the set ‘, 

rsZ = IZI+ IPI + IQ x PI. 

For the first 121 + IPI rows, 
bkj = c&j!, 

forj=l,..., n - 1, and some (one and only one) j’ E Z + P. 
For the last JP x &I rows, 

wn bij = avj - Gavj, 

forj=l,..., n - 1, and some (one and only one) index set (i’, k’) E P x Q. 
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THEOREM 1. The following statements are equivalent. 

(1) P+(A) = (0). 
(2) For all k E Q, P+(Bk) = (0). 
(3) P+(B) = (0). 

PROOF. ((1) + (2)) By contradiction. Without loss of generality, assume that m E Q, and 
P+(J3”) contains a nonzero element (31, . . . , Z’n-l)T. 

Then, we have, in particular, 

%lQ + . . * + am*-13&-1 = b,lZ, +. . . + bmn-13&-1 > 0. 

Define 
zn = 

a,131 + . . . + %7wa- 1% 1 

-amn 

Since by assumption, am,, is negative, we have &, > 0 and A,,,3 = 0. 
Forthis??,andfori=l,..., m-l, 

A$? = ail& + . . . + u~~-~z~-I + uinz’n 

so 0 # 3 E P+(A). A contradiction. 
((2) + (3)) By construction, each row of B is a row of one of the matrix Bk, so 

P+(B) C nP+ (Bk) . 
k 

((3) + (1)) Also by contradiction. Assume that 0 # 3 = (&, , . . , z,)~ E P+(A). Then, for all 
k E Q, 

Define 
Zn = min 

aklfl + ’ ’ + akn-1%-l 

KQ 
7 

-akn 

then by (1) and the fact that akn’s are negative, we have f, 2 0. 
Define E = (21,. . . ,~i-l,&)~, then by (1) and (2), it is verified that 

for k E Q, and there is an index k E Q such that 

Ai? = 0. 

That is, z i Q is chosen such that 

and for all other k E Q, 

(2) 

(3) 

(4) 
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We claim that P+(B) contains a nonzero element. 
For the first I,%‘( rows of B, obviously we have 

For each of the next l&I rows of B, there is a (unique) j’ E Q, 

bil& + . . . i- bin-l&-1 = aj~l~l + . . . + aj+l&-l 

2 -a+, 

L 0, 

in which the last step is implied by the fact that ojln is negative and Z,, is nonnegative. 
From (1) and (3), we know that ukn(Zn - kn) 2 0 or 

(5) 

Now for each of the last JP x &I rows of B, since there is a (unique) index set (i’, k’) E P x Q, 

bilk1 + . . . + bin-lZn-l = 

Combining (5) and (7), we have (?I,. . . ,Z,-i)T = (21,. . . , %-I)~ E P+(B). 
Finally, from (l), it is easy to see that (II,. . . , f,-r)T is not zero. A contradiction. ‘I 

3. ALGORITHMS AND SPECIAL CASES 
Now we are ready for the algorithm to check whether ‘P(T) = (0) for a matrix T E Rmxn. 
The first algorithm is based on (3) of Theorem 1. 

ALGORITHM 1. 
Step 1. Check: n = rankT and m > n. If not, stop! 
Choose n linearly independent rows Ti, , . . . , Ti, of T, and denote the other m - n rows of T 

ate Tj,,*,.,Tj,,,-,,. 
Define 

Check: each column of A1 has at least one negative element. If not, stop! 
Step k (2 5 k 5 n). Denote the Fourier-Motzkin elimination of A”-’ as Ak. 

The second algorithm is based on (2) of Theorem 1. 

ALGORITHM 2. 
Step 1. Same as Step 1 of Algorithm 1. Denote Ml = {Al}. 
Step k (2 5 k L n). Denote & as the collection of all the Fourier-Motzkln reductions of all 

matrices in &-I. 
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Check: each column of each of the matrix in Mk has at least one negative element. If not, 
stop! 

REMARK 1. Algorithm 1 is based on the original Fourier-Mot&in eliminations, the row size of 
the Fourier-Motzkin transformation is generally less than the sum of the row size of all Fourier- 
Motzkin descendents. But because of the block structure of Algorithm 1, it is better for parallel 
computing. The second algorithm is sometimes more effective when verifying a polyhedral cone 
is not zero, as demonstrated in [2] for the well-posedness of piecewise linear systems. 

REMARK 2. Both algorithms can be improved by arguments of extreme rays, as done in the dual 
algorithms of double description [5]. 

We look at some special cases. 
When m = n + 1, P(T) = (0) is very easy to characterize. 

LEMMA 4. When A = (a~, . . . , a,) is a row vector, then P+(A) = (0) if and only if ai < 0 for 
i=l,...,n. 

PROOF. Sufficiency is clear. Necessity is implied by Lemma 3. 
When m = n + 2, a more dedicated result can be obtained. 
In this case, 

A= a11 

[ 

... al, . 

a.21 ... a2n I 
(8) 

From Lemma 3, for each i = 1,. . . , n, ali or a2i are negative. Without loss of generality, 
assume that in the first row: all, . . , al,. are negative and al,.+l, . . . , al, are nonnegative. Then 
necessarily, azr+lr . . . , a2n are negative. 

LEMMA 5. When A is given by (8), and all,. . . , al, are negative and al,+l, . . . , al, are nonneg- 
ative, then P+(A) = (0) if and only if 

0< max ali max s<l. 
i=r+1,..., n a2i i=l,..., 1‘ ali 

(9) 

PROOF. 

NECESSITY. First of all, 
Uli max - max *>O, 

i=r+1,..., 12 a2i i=l,..., r ali 

since otherwise there is at least one nonnegative element from a2,.+l,. . . , uznr contradicting 
Lemma 3. 

Since all < 0, we use Fourier-Motzkin transformation to eliminate ~1, and we get a matrix 

B= 
a12 ... al, ah-+1 . . . ah 

a22 - a122 ... a2r - al,% %l . . . a2r+1 - al,+1 aI1 a2n - ah% 1 
By (2) of Theorem 1, for i = T + 1,. . . , n, 

cL2i-ali~ <o, 

or 
a1i a21 

aziip. 

Therefore, 
max a1i a21 < 1. 

i=r+l,...,n a2i a11 

By symmetricy, for i = 1,. . . , T, 

max ali a2i < 1. 
i=r+l,...,n azi alj 
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so 
max 22 ma azi < 1. 

i=r+l,_._, II qli i=l,..., 7- ali 

SUFFICIENCY. When (9) holds, it is possible to find an (II > 0 such that 

a> max 2 
i=r+Z,...,n azi 

L> mm a2i 
CY’ i=l,...,r ali 

For this choice of a, 

AI +aAz 4 (all +~a21,...,al, +(~a2~), 

in which Al and A2 denote the two rows of matrix A. 
Fori=l,...,r, 

ali + ffa2i = -[ali + cxa2i 

= -Ial& (i - f$) 
< 0, 

and for i = r + 1,. . . , n, 

ali + cxa2i = ali - ala2il 

= -b2ib (a - f$) 

< 0, 

For any x E P+(A), since 2 2 0, AIZ 2 0 and A2x > 0,we have 

(Al+cxA2)x>o. 

However, since each element of A1 + aA are negative, we have that x =,O. 
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