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In this paper we employ the ‘‘nonclassical symmetry method’’ in order to obtain
Riemann multiple wave solutions of a system of first-order quasilinear differential
equations. We show how to construct a Lie module of vector fields which are
symmetries of the system supplemented by certain first-order differential con-
straints. We demonstrate the usefulness of our approach on several examples.
Q 1995 Academic Press, Inc.

1. INTRODUCTION

The objective of this paper is an adaptation of the symmetry reduction
method for the purpose of constructing Riemann wave solutions and their

Ž . w xsuperpositions multiple waves 1]5 for first-order quasilinear hyperbolic
Ž .systems of partial differential equations PDE . The traditional symmetry

reduction method is not a proper tool for obtaining these types of
solutions because in this case the Lie point symmetry groups of the basic
system are too small. To overcome this difficulty we make use of the

w x‘‘nonclassical’’ symmetry reduction, introduced by Bluman and Cole 6 .
ŽThis technique has been later developed by several authors i.e., Olver and

w x w x w xRosenau 7, 8 , Levi and Winternitz 9 , Pucci and Saccomandi 10, 11 ,
w x.Vorobev 12 . The most important element of this approach is the intro-

Ž .duction of the so-called nonclassical or conditional symmetries. These

879

0022-247Xr96 $18.00
Copyright Q 1996 by Academic Press, Inc.

All rights of reproduction in any form reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81111676?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
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are symmetries of the basic equations supplemented by certain first-order
differential constraints. The constraints are chosen in such a way as to
weaken the invariance criterion of the basic system and to provide us with
the larger Lie-point symmetry groups for the augmented system. This
approach is particularly useful in the application to our problem, i.e.,
constructing the Riemann wave type solutions.

The plan of this paper is as follows. In Section 2 we describe infinitesi-
mal symmetries of Riemann wave solutions. Section 3 contains a detailed
account of necessary conditions for the existence of nonclassical symme-
tries of differential equations. In Section 4 we present a description of how
to construct single and double wave solutions. Section 5 deals with exam-
ples which illustrate the theoretical considerations.

2. PROPERTIES OF RIEMANN WAVE SOLUTIONS

Let X and U be two differential manifolds of dimension p and q,
m Ž . j Ž . smrespectively, equipped with coordinates x on X and u on U . Let D ,j

Žs s 1, . . . , r be real valued functions on U components of tensors
smŽ . j .D u ­ m du on X = U . Consider the system of first-order differentialj m

equations

Dsm u u j s 0, 2.1Ž . Ž .j , m

where u j s ­ u jr­ x m and we adopt the convention that repeated indices, m

are summed unless one of them is in a bracket. For simplicity we assume
that all considered functions and manifolds are of the class C`. All our
considerations are of a local character. In the language of jet spaces,

Ž . 1 Žsolving Eqs. 2.1 is equivalent to finding a map f : X ¬ J where
1 1Ž . .J s J X = U denotes the first jet space over X which annihilates the

contact forms, i.e.,

f * du j y u j dx m s 0 2.2Ž .Ž ., m

1 Ž . Ž j jand which has an image in a submanifold of J given by 2.1 now x , u ,
j 1.u play a role of coordinates of J ., m

Ž . ŽLet us suppose that the system 2.1 is hyperbolic a weaker assumption
j 1 Ž ..is the existence of real valued functions l , g : U ª R satisfying 2.4 .m

w xThen, as is well known 1]3 , this system admits solutions in the form of
Riemann waves. The common property of these solutions is that the image
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of f lies in a submanifold of J 1 given by

k
j j Au s h g u l u , 2.3Ž . Ž . Ž .Ý, m A A m

As1

1 A Ž A A. Ž 1 q.where h are functions on J and l s l , . . . , l , g s g , . . . , gA 1 p A A A
are fields on U satisfying the so-called wave relation

Dsml Ag j s 0 2.4Ž .j m Ž A.

Ž . Ano sum over A . The functions l and g can be constructed as follows.A
First, we seek functions l A, A s 1, . . . , k, such thatm

rank Dsml A - q. 2.5Ž .Ž .j m

Then, for each such choice of l A, we find corresponding solutions g j
m A

Ž .of 2.4 .
Let us assume, that at each point of X = U, the 1-forms l A s l A dx m

m

Ž .are linearly independent and k - p. Then it follows from 2.3 that there
exist linearly independent vectors

j s j m u ­ , a s k q 1, . . . , p , 2.6Ž . Ž .a a m

such that

j m u u j s 0. 2.7Ž . Ž .a , m

The fields j are defined bya

j m u l A u s 0. 2.8Ž . Ž . Ž .a m

Ž . Ž . Ž .In general, the condition 2.7 is weaker than 2.3 , since 2.7 implies
merely

u j s h j l A , 2.9Ž ., m A m

where h j are some functions on J 1, not necessarily satisfying the waveA
Ž .relation 2.4 .

Ž .In this paper we study Eqs. 2.1 augmented by the characteristic
equations

Q j ' yj m u u j s 0, 2.10Ž . Ž .a a , m

Ž .associated with the vector fields 2.6 .
Different approaches to this augmented system can lead to generaliza-

tions or modifications of the Riemann invariants method of solving PDEs.
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Ž . Ž .Here we shall investigate Eqs. 2.1 and 2.10 from the point of view of the
w xnonclassical symmetry method 6]9 .

3. CONDITIONS FOR THE EXISTENCE OF
NONCLASSICAL SYMMETRIES

Ž . `Ž .Let GG be a p y k -dimensional Lie vector module over C X = U
mŽ .with generators of the form j s j u ­ . Let L be the k-dimensionalm

Ž . mmodule generated by 1-forms l s l u dx annihilated by j g GG. Wem

Ž . Ž A. Ž .assume, that the fields j and l related by 2.8 form a basis of GG anda
L, respectively. However, at the moment, we do not require that L admits

Ž . Ž .a basis satisfying the wave relation 2.4 with some g ’s . We shall call ja
and GG nonclassical symmetries and the nonclassical symmetry module of
Ž . Ž . w2.1 , respectively, iff j are ordinary classical Lie point symmetries 13,a

x Ž . Ž .14 of the original system 2.1 augmented by Eqs. 2.10 . Note that one
Žcan choose j to form a basis of a finite dimensional subalgebra of GG onea

.can even assume that j commute . We will call j genuine nonclassicala a
Ž .symmetries of Eqs. 2.1 if GG is not spanned by classical symmetries of

Ž . Ž . Ž .2.1 . Equations 2.1 and 2.10 form an overdetermined system. It was
w x Ž .proved 11, 15 that a ‘‘large part’’ if not all of the integrability conditions

for this system is identically satisfied if j are nonclassical symmetriesa
Ž .of 2.1 .

Ž .Equations 2.10 say that the vector fields j are tangent to the grapha
�Ž Ž ..4 Ž .G s x, u x ; X = U. For j to be nonclassical symmetries of 2.1 onea

1 w xrequires that the first prolongation of j to J 13, 14 is tangent toa
�Ž Ž1.. sŽ Ž1.. jŽ Ž1.. 4RR s x, u : D x, u s Q x, u s 0 . So GG is a nonclassical sym-Q a

Ž .metry module of 2.1 iff equations

pr Ž1.j Dsm u j s 0 3.1Ž .Ž .a j , m

1 Ž . Ž . Ž .are satisfied on J modulo Eqs. 2.1 and 2.7 . It follows from 2.6 that

­
Ž1. m k j

kpr j s j y j u u . 3.2Ž .a a a , u , n , m j­ u , n

Ž . Ž .Substituting 3.2 into 3.1 yields

Dsnj m
k uk u j s 0. 3.3Ž .j a , u , n , m

Ž . Ž . Ž .Equations 3.3 should be satisfied whenever 2.1 and 2.7 are satisfied.
Ž A Ž . .They can be treated as equations for j or l since 2.8 holds . Thesea

equations always admit solutions j m s const, which correspond to transla-a
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Ž . Ž . Ž . Ž .tional classical symmetries of 2.1 . By virtue of Eqs. 2.9 Eqs. 3.3 are
equivalent to

Qs A j m h lB s 0, 3.4Ž .Ž .B a A m

where

Qs A s Dsnh j l A 3.5Ž .B j B n

and we define the vector fields h on U according toA

­
jh s h . 3.6Ž .A A j­ u

4. INVARIANT SOLUTIONS

In this section we describe conditions which guarantee the existence of
Ž .nonclassical symmetries of 2.1 and the corresponding invariant solutions

Ž .of rank k. For the vector fields j to be nonclassical symmetries of 2.1a
Ž . Ž Ž ..the conditions 3.4 or 3.3 have to be satisfied. Consider first the case

Ž . Ž .when k s 1. Then A s B s 1 and 2.1 and 2.9 yield

Dsnl h j s 0. 4.1Ž .j n

s A Ž .Hence Q s 0 and Eq. 3.4 is satisfied. Thus, in this case, any set ofB
vectors j generate a nonclassical symmetry module. However, not everya

Ž .such module admits nonconstant solutions of 2.1 . If h s 0 is the only
Ž . j jsolution of 4.1 , then evidently u s 0 and this implies u s const. To, m

have h / 0 one requires

rank Dsnl F q y 1. 4.2Ž .Ž .j n

Ž . Ž .If l satisfies condition 4.2 , then the space of solutions h of 4.1 is
Ž . Ž .spanned by vectors g satisfying 2.4 . Hence the decomposition 2.3 , with

possible degeneracy of l, is valid. We have proved the following.

Ž . mŽ .THEOREM 1. Any p y 1 -dimensional module GG generated by j u ­a m

Ž .is a nonclassical symmetry module of 2.1 . Nonconstant GG-in¨ariant solu-
Ž . Ž .tions of 2.1 exist iff l satisfies condition 4.2 . They are single Riemann

wa¨es.

Let us now consider the case k G 2. Then, in general, the existence of
Ž . Ž .k-waves, satisfying 2.3 and 2.4 , does not imply that the corresponding ja

Ž . Žare nonclassical symmetries of the system 2.1 e.g., j can be symmetriesa
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Ž . Ž . Ž . Ž w x.of 2.1 and 2.7 augmented by 3.1 see 10, 11 . However, this can be
true in special cases. For instance, let q s k s 2 and let l A admit g suchA

Ž . i ithat 2.4 is satisfied. If the vector fields g s g ­r­ u are linearlyA A
independent then

h s hBg , 4.3Ž .A A B

B Ž . Ž .where h are some coefficients. Equations 2.1 and 2.9 yieldA

˜s A BQ h s 0, 4.4Ž .B A

where

˜s A sm A jQ s D l g .B j m B

Ž . 2 1Equations 4.4 represent two linear equations for quantities h and h1 2
˜s1 ˜s2Ž .note that Q s Q s 0 . Assume that1 2

˜s11 ˜s2 2 ˜s21 ˜s12Q Q y Q Q / 0 4.5Ž .2 1 2 1

Ž . 2 1for some indices s , s . Then it follows from 4.4 that h s h s 0. Hence1 2 1 2
we get

h s h g 4.6Ž .A Ž A. A

Ž . Ž .and the decomposition 2.3 . The condition 3.4 becomes

˜s A m BQ h h j g l s 0;Ž .B A B a A m

Ž Ž ..hence due to 4.5

j mg lB s 0 for A / B 4.7Ž .Ž .a A m

Ž Ž .we assume that, in general, h ? h / 0, since Eqs. 3.4 have to be1 2
Ž . Ž ..satisfied for all solutions of Eqs. 2.1 and 2.7 .

˜s AŽ .The requirement 4.5 is equivalent to the nondecomposability of QB
s A Ž s A.into the product ¨ P with some ¨ and P . By virtue of the linearB B

independence of vector fields g , this condition readsA

Dsml A / ¨ sQ A . 4.8Ž .j m j

Ž . ANote, that 4.8 does not depend on a choice of the basis l of L. It says
Ž . Ž .that Eqs. 2.1 reduce to more than one equation when 2.7 is satisfied.

Ž . ŽCondition 4.7 coincides with one of the sufficient conditions the other
.one is identically satisfied, since in this case g form a vector basis on XA

w xwhich guarantees the existence of double Riemann waves 1]3 . Therefore,
we have proved the following theorem.
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Ž .THEOREM 2. Let a system 2.1 be gï en with p G 3 independent ¨ariables
and q s 2 dependent ¨ariables. Assume there exist linearly independent ¨ector

j j A A m Ž .fields g s g ­r­ u and 1-forms l s l dx , A s 1, 2, satisfying 2.4A A m

Ž . Ž .and 4.8 . Then j , gï en by 2.8 , span a module GG of nonclassicala
Ž . Ž .symmetries of 2.1 iff condition 4.7 is satisfied. The rank-2 GG-in¨ariant

Ž .solutions of 2.1 are precisely the Riemann double wa¨es.

Ž . Ž .Relations 2.4 and 4.7 are rather complicated conditions that have to
Ž .be satisfied by the basic system of Eqs. 2.1 in order that they admit

nonclassical symmetries. In the following we show how these conditions
Ž .can be simplified generalizations to q G 2 are also possible .

A Ž . ALet q s k s 2 and j be related to l via relation 2.8 . Now the la
Ž .are not required to admit g ’s such that 2.4 is satisfied. It is convenient to

Ž .write Eqs. 3.4 in the form

Tr Dshu hl s 0, 4.9Ž .Ž .a

where matrices in the bracket are given by

Ds s Dsm , h s h j , u s l A
k j m , l s l A . 4.10Ž .Ž . Ž . Ž . Ž .j A a m , u a m

Since h and u are 2 = 2 matrices, they satisfy the identitiesa

h y Tr h h s ydet h ,Ž .
4.11Ž .

hu y Tr hu s y u y Tr u h y Tr h .Ž . Ž . Ž .a a a a

Ž . Ž . Ž s .Substituting 4.11 into 4.9 and taking into account that Tr Dhl s 0 is
Ž .equivalent to 2.1 yields

sTr D u y Tr u l s 0. 4.12Ž . Ž .a a

Ž .When looking for solutions of 4.12 and corresponding invariant solutions
Ž . m Aof the original system 2.1 it is convenient to split coordinates x into x

and x a and to assume that

j s ­ q j A­ , 4.13Ž .a a a A

l A s dx A y j A dx a 4.14Ž .a

Žone can obtain these expressions by making u-dependent linear transfor-
A.mations of the fields j and l . Thena

u s y j A
k ; 4.15Ž .Ž .a a , u

Ž . Ahence 4.12 becomes a system of quasilinear differential equations for j .a
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� A4 Ž .Assume that a solution j hence j of this system is given. In order toa a
Ž . Ž .find GG-invariant solutions of Eqs. 2.1 one can first solve conditions 2.10 .

It follows from them that

x A y j A u x a s r A u , 4.16Ž . Ž . Ž .a

A Ž .where r are functions of two variables. The implicit relations 4.16
determine the matrix of derivatives of ui in the form

y1i au s R u y u u x l, 4.17Ž . Ž . Ž .Ž .Ž ., m a

Ž i . Ž . Ž . Ž .kwhere R s r . By virtue of 4.11 and 4.12 substituting 4.17 into Eqs., u
Ž . AŽ .2.1 yields the following linear equations for the functions r u :

sTr D R y Tr R l s 0. 4.18Ž . Ž .

Thus we have proved the following.

Ž .THEOREM 3. A system of PDEs 2.1 with p G 3 independent ¨ariables
Ž .and q s 2 dependent ¨ariables admits p y 2 -dimensional Lie module GG s

� mŽ . 4Span j s j u ­ of nonclassical symmetries iff the fields j satisfy Eqs.a a m a
Ž . A Ž . Ž .4.12 . Gï en j and l in the form 4.13 , 4.14 rank-2 GG-in¨arianta

Ž . Ž . Asolutions of 2.1 are defined implicitly by 4.16 , where functions r are
Ž .required to satisfy the linear equations 4.18 .

Ž . Ž .If the system 2.1 is properly determined i.e., q s r s 2 , then, generi-
A Ž .cally, given j one can find l and g possibly complex such that g area A A
Ž . Ž .linearly independent and Eqs. 2.4 and 2.8 are satisfied. To this end, one

A Ž .can choose first any pair of real 1-forms l9 satisfying 2.8 and then look
for solutions of

det Dsml s 0 4.19Ž .Ž .j m

in the form l s a l9 A, where a are unknown coefficients. Then Eq.A A
Ž .4.19 becomes a quadratic equation for the ratio of a to a , which, in1 2

Ž .most cases, possesses two different solutions real or complex . The eigen-
vectors g of the matrix Dsml corresponding to the zero eigenvalue willj m

Ž .usually be linearly independent real or complex, respectively . In the case
Ž . Ž . Ž .q s r s 2, Eqs. 4.12 form a system of 2 p y 2 equations for 2 p y 2

A Ž Ž .. Ž .functions j see 4.13 . So, in the generic case, Eqs. 4.12 admita
solutions depending on arbitrary functions of one variable. Hence they are
not equivalent to translations or dilations, which are, in general, the only

Ž . Ž .classical symmetries of 2.1 . Note also that the inequality 4.8 is satisfied
for most systems. Combining these facts with Theorems 2 and 3 we obtain
Theorem 4.
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Ž .THEOREM 4. Generically, the system of two equations 2.1 , with p G 3
Ž .independent ¨ariables and q s 2 dependent ¨ariables, admits p y 2 -

dimensional genuine nonclassical symmetry modules GG. GG-in¨ariant solutions
Ž . Ž . Žof 2.1 are generically double Riemann wa¨e solutions possibly with

.complex single composite wa¨es .

5. EXAMPLES

In this section we demonstrate the usefulness of Theorem 3 on several
examples.

EXAMPLE 1. In this example, we consider a special case of the fluid
dynamic equations which describe the potential of solutions of a conserva-

w xtive system in Lagrangian coordinates 5 ,

u q u u q A u u s 0, i , j, k s 1, 2. 5.1Ž . Ž .i , t j i , j i jk k , j

Here A are functions of u satisfyingi jk

A s 0. 5.2Ž .i j j

Ž .It is easy to check that Eq. 4.12 is satisfied in this case by the vector field

j s ­ q u ­ , 5.3Ž .t j j

Ž .which is not proportional to any classical symmetry of 5.1 . Theorem 3
Ž .says that j-invariant solutions of 5.1 are given implicitly by

x i y tu s r u , 5.4Ž . Ž .i i

where r i satisfy the linear equations

A r s 0. 5.5Ž .i jk k , u j

It is worth noting that one can choose a specific form of coefficients
Ž .A such that Eq. 4.13 does not admit two linearly independent vectorsi jk

A Ž .l hence, there are no double Riemann waves . For instance, this is the
case for the equations

u qu u qa u u y u qb u u s 0Ž . Ž . Ž .1, t j 1, j 1, 1 2, 2 1, 2
5.6Ž .

u qu u qc u u s 0,Ž .2, t j 2, j 1, 2
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where a, b, c are functions of two variables such that a ? c / 0. In this
Ž .case, solutions invariant under 5.3 are defined by

x1 y tu q g u s 0, 5.7Ž . Ž .1 1

x 2 q h uŽ .1
u s , 5.8Ž .2 t y g , u1

where g, h are arbitrary functions of u1. These solutions have rank 2, but
they are not double Riemann waves.

EXAMPLE 2. In order to apply Theorem 3 to a more realistic physical
situation let us consider equations describing an isentropic flow of a

w xpolitropic gas with no external forces 5 . For simplicity we assume that the
velocity of the gas along the third axis vanishes. In this case the equations
read

u q u u q ry1 p s 0, 5.9Ž .i , t j i , j , i

r q ru s 0, 5.10Ž . Ž .t i , i

p s krg , k , g s const, g ) 1, 5.11Ž .

where i, j s 1, 2. In order to reduce the number of dependent variables to
Ž . Ž . Ž .two we assume that r s r u . Then Eqs. 5.9 and 5.10 yieldi

u qu u q f u s 0, 5.12Ž .i , t j i , j , u j , ij

f f u y g y 1 fu s 0, 5.13Ž . Ž ., u , u i , j i , ii j

where f is a function of the velocities u . The pressure p and the energyi
density r are given in terms of f

p s k 1 y gy1 fg rŽgy1. , 5.14Ž .Ž .1

r s k f 1rŽgy1. , 5.15Ž .1

where

k s 1 y gy1 k 1yg . 5.16Ž .Ž . 1

Ž . Ž .Given f , Eqs. 5.12 and 5.13 form an overdetermined system of equa-
tions for u with three independent variables. According to Theorem 3 thisi

Ž .system admits a nonclassical symmetry of the form j s ­ q j u ­ iff thet i i
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equations

q u y j q q f s 0, 5.17Ž .Ž .i j j j ji , u j

f f q y g y 1 fq s 0 5.18Ž . Ž ., u , u i j i ii j

are satisfied, where

q s j y j d . 5.19Ž .i j i , u k , u i jj k

Ž . Ž .One can choose the function f in such way that Eqs. 5.17 and 5.18
admit nontrivial solutions j . In other words, these equations can bei
considered as a system for the functions j and f. The following simplei

Ž . Ž .solutions of Eqs. 5.17 and 5.18 can be obtained under the assumption
that the functions j and f depend, respectively, linearly and quadraticallyi
on the velocities u :j

1Ž . Ž . Ž . Ž .i for any g f s g y 1 u u , j s g u , 5.20i i i i2

Ž . Ž .ii for 1 - g - 3

g y 1 g q 12f s u , j s u , j s u , 5.21Ž . Ž .1 1 1 2 23 y g 3 y g

Ž . Ž .iii for g s 2

1f s u u , j s u y u , j s u q u . 5.22Ž .i i 1 1 2 2 1 22

In all these cases the Galilean transformations were used to simplify the
expressions. The resulting vectors j are not proportional to any of the

Ž . Ž . Ž .classical symmetries of Eqs. 5.12 and 5.13 for this choice of f . Thus j
represents a genuine nonclassical symmetry of these equations. Rank-2

Ž .solutions u t, x , which are invariant under j , are given implicitly byi j

x y j u t s r u , 5.23Ž . Ž . Ž .i i i

Ž .where det r / 0 and the functions r are required to satisfy, respec-i, u ij

tively, the linear equations:
1Ž . Ž .i r s r , u u r y u u r s 0 5.24i , u i j , u , u i i , u , u2i i j j j

Ž . Ž . Ž . Ž .ii r s r , 3 y g r y g q 1 r s 0, 5.25i , u , u , u , u , ui 1 1 2 2

u q u r q u r y u r s 0,Ž .1 2 2, u 1 1, u 2 2, u2 2 1Ž . Ž .iii 5.26
u y u r q u r q u r s 0.Ž .1 2 1, u 1 1, u 2 2, u1 2 1
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Ž . Ž .The method of separation of the variables in 5.24 in polar coordinates
yields solutions of the form

2 a 2Ž1ya. ' 'r s c u q c u c sin 2 a a y 1 f q c cos 2 a a y 1 f ,Ž . Ž .Ž . ž /1 2 3 4

5.27Ž .

where u s u cos f, u s u sin f and a, c , c , c , c are constants,1 2 1 2 3 4
Ž . Ž .a a y 1 ) 0. These solutions can be superimposed. Equation 5.25 pos-

sesses the general solution

r s g u q cu q h u y cu , 5.28Ž . Ž . Ž .1 2 1 2

2 Ž .where g, h are arbitrary functions of one variable and c s 3 y g r
Ž . Ž .1 q g . Equation 5.26 is more difficult to solve. The only nontrivial
solution known to the authors is given by

r s u c earctgŽu1 r u2 . q c earctgŽyu2 r u1. . 5.29Ž .Ž .i i 1 2

In all these cases solutions u of the original equations are definedi
Ž .implicitly by relations 5.23 . They have the form of Riemann double

Ž . Ž . Ž . Ž .waves. The functions p, r are given by 5.14 , 5.15 and 5.20 ] 5.22 .

EXAMPLE 3. In this example we consider the modification of the
Ž .2 q 1 -dimensional wave equation,

f s f q r f , f y f f , 5.30Ž .Ž ., t t , x x , y , t , x , y y

where r is any function of two variables. Let us define new coordinates
x , x , x and new dependent variables u , u by1 2 3 1 2

1 1x s t q x , x s t y x , x s y , 5.31Ž . Ž . Ž .1 2 32 2

u s f , u s f y f . 5.32Ž .1 , y 2 , t , x

Ž .In these new variables Eq. 5.30 reads

r u , u u s u . 5.33Ž . Ž .1 2 1, 3 2, 1

Ž . Ž .Solutions of 5.33 yield solutions of 5.30 , provided

u s u . 5.34Ž .2, 3 1, 2



NONCLASSICAL SYMMETRY REDUCTION 891

Ž . Ž .We look for a nonclassical symmetry of Eqs. 5.33 and 5.34 of the form

j s ­ q j u ­ q j u ­ . 5.35Ž . Ž . Ž .3 1 1 2 2

Ž .Condition 4.12 yields

rj j y rj j y j s 0, 5.36Ž .1 2, u 2 1, u 2, u2 2 1

j j y j j q j s 0. 5.37Ž .1 2, u 2 1, u 1, u1 1 2

Ž . Ž .Simple solutions of Eqs. 5.36 , 5.37 are given by

i j s 0, j s f u ,Ž . Ž .1 2 2 2

ii j s f u , j s 0.Ž . Ž .1 1 1 2

Ž .In both cases j is not proportional to any classical symmetry of Eqs. 5.33 ,
Ž . Ž .5.34 . In case i all j-invariant solutions of these equations are given
implicitly by

2
x s h u q f u , x y t f s y f rh du q h u ,Ž . Ž .Ž . Ž . H1 1 1 2 2 , u , u 1, u 1 2 22 2 1

5.38Ž .

Ž .where f , h , h are arbitrary functions of one variable. In case ii the1 2
j-invariant solutions are given by

x y t f s yf n , x s n , 5.39Ž .1 1 1 , u 2 , u1 2

Ž .where n u satisfies the linear equation

r f n q n s 0. 5.40Ž .1 , u u , u u2 2 1 2

Ž . Ž .For r s r u one can find the general solution of Eq. 5.40 . The1
Ž .resulting solutions of 5.30 are given implicitly by

2
r x y t f s y f x q h u , u s h x y f u , 5.41Ž . Ž . Ž . Ž .Ž .1 , u , u 2 1 1 2 2 2 11 1

where f , h , h are arbitrary functions of one variable.1 2
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