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a b s t r a c t

An interesting hierarchy of random number generators is introduced in this paper based
on the review of random numbers characteristics and chaotic functions theory. The
main objective of this paper is to produce an ergodic dynamical system which can be
implemented in random number generators. In order to check the efficacy of pseudo
random number generators based on this map, we have carried out certain statistical tests
on a series of numbers obtained from the introduced hierarchy. The results of the testswere
promising, as the hierarchy passed the tests satisfactorily, and offers a great capability to
be employed in a pseudo random number generator.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

A random number generator is a critical component in modern cryptographic systems, communication systems,
statistical simulation systems and any scientific area incorporating Monte Carlo methods [1,2] and many others. In the
present era, there are few scientific fields that do not use randomnumber generators. One of themost important applications
of randomnumber generators is in cryptography to generate cryptographic keys, and to randomly initialize certain variables
in cryptographic protocols. Moreover, practical implementation of digital Fountain codes such as LT codes uses a pseudo
random number generator to determine the degree and neighbors of an encoding symbol [3]. In [4] the pseudo randomness
of chaotic sequence is applied in the encoding of LT codes. The obtained results showed that the implemented LT codes based
on chaos can perform aswell as the LT codes implemented by the traditional pseudo randomnumber generator [4]. Recently,
some efficient techniques for encoding based on discrete time chaotic systems are presented in [5,6]. A good randomnumber
generation improves the cryptographic security [7].

Random number generators can be classified in three classes; true random number generators, pseudo random number
generators (PRNG) and hybrid random number generators. Pseudo random number generators are deterministic processes
which generate a series of outputs from an initial seed state [8–10]. In this paper, we categorize pseudo random number
generators as a subset of rational order families of chaotic maps with an invariant measure. An accomplishment of these
chaotic maps is in their potential to simultaneously produce and use entropy [11]. Additionally, as they are measurable
dynamical systems, they can be studied analytically. To ensure that a random number generator is secure, its output must
be statistically proven unpredictable and indistinguishable from a true random sequence [8].

2. Rational order of chaotic maps

In this section, we firstly give a brief introduction about hierarchy of one-parameter chaotic maps which can be used in
the construction of rational order chaotic maps with an invariant measure. One-parameter families of chaotic maps can be
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Fig. 1. (a) Bifurcation diagram of chaotic map Eq. (5); for α ∈ (0.5, ∞), it is ergodic and for α ∈ (0, .5), it has stable fixed point at x = 0. (b) Time series
of selected example Eq. (5) while α = 1.5.

defined as the ratio of polynomials of degree N (see [11] for more detail):

xn+1(x, α) =
α2F

1 + (α2 − 1)F
, (1)

whereα is the control parameter that can potentially be used as the secret key for secure communication [7]. F is a substitute
for Chebyshev polynomial of first kind with degree N: TN(x). Hence

xn+1(x, α) =
α2(TN(

√
x))2

1 + (α2 − 1)(TN(
√
x))2

, (2)

where N is an integer greater that 1 and all points lay in the bounded [0, 1] interval. It is shown that these maps have
interesting properties, such as, for even values of N the xn+1(x, α) maps have only one fixed point attractor x = 1 provided
that α belongs to the interval (N, ∞), while at α ≥ N they bifurcate to a chaotic regimewithout having any period doubling
or period-n-tupling scenario and remain chaotic for all α ∈ (0,N). However for odd values of N , these maps tend to have
a single fixed point attractor at x = 0. For α ∈ ( 1

N ,N) again, they bifurcate to a chaotic regime since α ≥
1
N , and remain

chaotic for α ∈ (0, 1
N ) and finally they bifurcate at α = N to have x = 1 as fixed point attractor for all α ∈ ( 1

N , ∞) (see
Figs. 1(a) and (b)). Here in this paper, we are concerned about their conjugate maps which are defined as:

x̃n+1(x, α) = h ◦ xn+1(x, α) ◦ h−1
=

1
α2

tan2(N arctan
√
xn). (3)

Conjugacy means that invertible map h(x) =
1−x
x , maps I = [0, 1] into [0, ∞) [12]. Of course, the function given in Eq. (2) is

not the only choice leading to the hierarchy rational order of chaotic maps with invariant measure. Obviously, the following
choices of the functions also lead to the hierarchy of chaotic maps of trigonometric types (with an invariant measure):

•
1
α2

tan2(Narccot
√
x), �

1
α2

cot2(Narccot
√
x),

•
1
α2

cot2

N arctan

1
√
x


, �

1
α2

| cot2(Narccot
√
x)|,

•
1
α

| tan(N arctan |x|)|, �
1
α

| tan(Narccot|x|)|,

•
1
α

| cot(N arctan |x|)|, �
1
α

| cot(Narccot|x|)|.

(4)

In this paper, the following chaotic map Eq. (5) is used to design a new pseudo random number generator algorithm

x̃n+1(x, α) =
1
α2

tan2(N arctan
√
xn) (5)

while N = 4. Also it is possible to use composition of these chaotic maps as a pseudo random number generator too [12].

3. Ergodic dynamical system

‘‘Mathematicians have tried in vain to this day to discover some order in the sequence of prime numbers, and we believe
that it is a mystery into which the mind will never penetrate’’ (Leonhard Euler) [13]. This is a representative description
for the complexity of prime distribution. But according to the famous ‘‘Langlands program’’, a difficult problem in one area
could always be converted into an easy problem in other areas. Many recent efforts on this topic are all cross researches of
number theory, dynamical systems theory, statistical theory and ergodic theory, etc. [8,9].
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The probabilistic dynamical system is characterized as ergodic or non-ergodic by its marginal probability distributions.
If the distributions have infinite variances, so that a process-mean cannot be defined, the system is called non-ergodic. An
ergodic system has ‘‘convergent’’ qualities over time, variances are finite and a time-independent process-mean is clearly
defined. For ergodic systems, the time average is equal to the space (or phase) average [13]. Also, from the viewpoint of
estimating complexity, ergodic dynamical systems are most important because according to the Birkhoff ergodic theorem
many properties of such systems can be reconstructed from a single orbit with probability one. On other hand, the invariant
measurewhich is not equal to zero or one, appears to be characteristic of non-ergodic behavior. Consequently, studies based
on invariant measure analysis can be useful for confirming the ergodicity behavior of a map. Therefor, we first have to prove
that our system is ergodic.

3.1. Invariant measure

Invariant measure or the stationary density [14] provides a useful way to study the asymptotic behavior of dynamical
systems. It starts with a distribution of the initial conditions and studies their evolution as time goes towards the infinity.
It is interesting to note that even for chaotic dynamical system, there usually exist a well behaved limit which can be used
to study various average properties. There are various methods to find invariant measures. One of the approaches is called
Perron–Frobenius (PF) operator. When this operator acts on µ(x), the density at the n-th time step, yields to the density at
the (n + 1)-th time step.

If an initial point x is chosen using a probability distributionwith densityµ(x), the Lµ(x)will be the density for xn+1(x, α).

µ(y) =

∫ 1

0
δ (y − xn+1(x, α)) µ(x)dx. (6)

This is equivalent to µ(y) =
∑

x∈x−1
n+1(y,α)

µ(x) dx
dy . The action of PF operator L for the map is defined as [15]:

Lf (y) =

−
x∈x−1

n+1(y,α)

f (x)
dx
dy

. (7)

The invariant probability measure, µ(x), is the eigenstate of the PF operator, L, related to maximum eigenvalue 1. We have
already derived an analytically invariant measure for One-parameter families of chaotic maps, Eq. (1), by using arbitrary
values of the control parameter α, for each integer value of N [11]. Assuming that µ(x) has the following form:

µ(x) =

√
β

π(1 + βx2)
,

µ(x) =
1
π

√
β

√
x(1 − x)(β + (1 − β)x)

(8)

with β > 0 the invariant measure of the maps will be x̃n+1(x, α) provided that we choose the parameter α in the following
form:

α =

[
N−1
2 ]∑

k=0
CN
2k+1β

−k

[
N
2 ]∑

k=0
CN
2kβ

−k

, (9)

while N represents the odd values. If N takes even values, we would have the following equation:

α =

β

[
N
2 ]∑

k=0
CN
2kβ

−k

[
N−1
2 ]∑

k=0
CN
2k+1β

−k

. (10)

The symbol [ ] shows the greatest integer part. For the map that is used in this paper, x̃n+1(x, α) =
1
α2 tan2(N arctan

√
x),

the invariant measure is derived and the calculations are mentioned in Appendix.

3.2. Lyapunov exponent

A useful numerical way to describe chaotic behavior in dynamical systems is by means of the Lyapunov exponents that
explain the separation rate of systems whose initial conditions differ by a small perturbation.

There is a close correlation between the Lyapunov exponent of the underlying chaotic map and the ‘‘randomness’’. Since
randomness is desired to be seen clearly on a random number generator, it must be correlated to the diverging nature of
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the trajectories of a chaotic map, which is tied to the existence of a positive Lyapunov exponent. It is natural to investigate
just how good the correlation is. As we know, each dynamical system has specific characteristics. The following properties
make a deterministic algorithm suitable to generate a pseudo random sequence of numbers: high value of entropy, high
dimensionality of the parent dynamical system and very large period of the generated sequence [16–18]. In fact, the
differences between discrete dynamical systems arise from these properties. By considering both bifurcation and Lyapunov
exponent diagrams, it can be concluded that the presented dynamical systems are fully chaotic on the defined interval.
Actually, in these dynamical systems, bifurcation is without any period doubling. In other words, bifurcation, from a stable
single periodic state to chaotic one, does not have usual period doubling or period-n-tupling scenario. This point makes
these dynamical systems distinctive and advantageous compared to the other dynamical systems. Taking into account that
these dynamical systems are fully chaotic on the defined interval, it seems that calculation of discrete Lyapunov exponent
may be avoided at the moment. Thus, the calculation of Lyapunov exponent is presented in general form. The Lyapunov
exponent can be expressed as:

λ(x0) = lim
n→∞

n−1−
i=0

dxn+1(xi)
dxi

 . (11)

where xi = xin+1(x0). In the case of a chaotic map, except for a set of zero measure, the Lyapunov exponent does not
depend upon x0. If the map is ergodic with respect to an invariant measure-µ, the Lyapunov exponent expressed as a time
average can also be expressed by the space average. We have simulated Lyapunov exponent of introduced hierarchy for
different values ofα in order to distinguish the suitable domain of control parameter for randomnumber generation process
(see Fig. 2). Increasing the values and the number of positive Lyapunov exponents makes the probability distributions
of the output chaotic sequences more homogeneous and reduces the correlations of chaotic outputs for different times
and different space units. The main result provides a necessary and sufficient condition for the introduced model to have
ergodicity.

4. Statistical complexity

Statistical complexity has reflects intricate structures hidden in the dynamics, emerging from a system which itself is
much simpler than its dynamics. Specifically, complexity measures were developed and refined that quantify the degree of
randomness and unpredictability generated by dynamical systems. The quantification of complexity is an important topic in
the theory and application of dynamical systems. In essence, they are simply alternatives to measuring the same property-
degrees of randomness. The measure of complexity C recently introduced in [19–21], the so-called LMC complexity, is
defined as

C = H.D (12)

where H represents the information content of the system and D is its disequilibrium. The disequilibrium D of a system can
be taken as some kind of distance to an equiprobable distribution. Following the discussion in the introduction the definition
of LMC complexity C is given by the formula [20]:

C(pi) = H(pi).D(pi) = −k


N−
i=1

pi log pi


·


N−
i=1


pi −

1
N

2


, (13)

C̄(x) = H̄(x).D(x) = −
1

log 2

[
x log


x

1 − x


+ log(1 − x)

]
.2

x −

1
2

2

(14)

where pi, with pi ≥ 0 and i = 1, 2, . . . ,N , represents the distribution of the N accessible states to the system, and k is a
constant.

Based on the calculations mentioned above, in Fig. 3 the complexity measure for the proposed map is drawn compared
to the logistic map. Apparently, the presented dynamical system has good properties from the complexity point of view.

5. Randomness in deterministic chaos

Theory of chaos, a subfield of nonlinear dynamical systems, has suggested that low-dimensional dynamical systems
may manifest complex and unpredictable behaviors. The existence of complexity and random behavior of the chaotic maps
motivates the idea of using chaotic maps in designing pseudo random number generators.

5.1. Definition of random number generator

Pseudo random number generators are deterministic processes that take M bits as an input, often referred to as key
(or seed) and expand it into an infinitely large sequence of K bits output. The generation of these random numbers uses
entropy obtained from another source, which might be hard-ware or perhaps unpredictable system processes. According
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Fig. 2. Lyapunov exponents: red line shows the variation of Lyapunov exponents of selected example Eq. (5) in terms of the control parameter α, while
blue line shows the variation of Lyapunov exponent of logistic map in terms of the control parameter. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Fig. 3. Statistical complexity: red line shows the variation of complexity of selected example Eq. (5) in terms of the control parameter α, while blue line
shows the variation of complexity of logistic map in terms of the control parameter. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

to information theory a system can never generate more entropy than what was supplied as input to the system. In many
practical situations the demand for entropy is far more than available entropy; in such situations a PRNG comes handy.
Logistic map has a very simple structure and it was first proposed as pseudo random number generator by von Neumann in
1947 [22]. The Logistic map has a known algebraic distribution which was later mentioned in 1969 in [23,24]. Logistic map
can be used as a pseudo random number generator effectively when r = 3.9 ∼ 4 and in which the behavior is chaotic. But
a few years later it was found that Logistic map is a poor pseudo random number generator [25] as it generates sequences
of extremely short period. On other hand, Logistic map contains only one quadratic term, therefore we are still unable to
analytically find its natural invariant measure, the metric and topological entropy, except for the case of fully developed
chaos [23].

6. Tests for randomness

A good random number generator must have some properties such as good distribution, long period and portability.
In this paper, we used various types of tests to examine the quality of our proposed pseudo random number generator
algorithm based on chaotic function, Eq. (5), and to draw conclusions on the randomness of the sequences produced by
deterministic processes. Several tests are used to examine the randomness of the presented algorithm, these tests are
DIEHARD [26], NIST statistical test suite [27] and ENT test suite. ENT test is a collective term for the three tests which are the
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Fig. 4. Block diagram of the proposed PRNG.

Entropy, Chi-square, and Serial correlation coefficient (SCC) test. According to Tables A.1–A.4 which present NIST, DIEHARD
and ENT test results respectively, the introduced generator passes all the tests and demonstrates better results in comparison
to the other chaotic pseudo random number generators such as the Logistic map [28,29]. The flowchart of the algorithm is
presented in Fig. 4.

6.1. Key space analysis

Randomnumber generators are commonly used in encoding algorithms [5,6]. In the proposed randomnumber generator
algorithm, the combination of control parameter (α), initial condition (x) and degree of Chebyshev polynomial (N) of the
chaotic system (Eq. (5)), can be used as encoding keys. The parameterN is originally the degree of the Chebyshev polynomials
and a change in this parameter would lead to a change in the structure of the whole map and its characteristics, such as
chaotic behavior, interval and the attractors. Therefore, the generated sequences by two maps with a single digit difference
in their N parameter are completely random in respect to each other. The keys are chosen as follows: x = 0.233456439,
α = 1.123659685694 and N = 4. The key space for a cryptographic algorithm should not be less than 2128 in order to
resist brute force attacks [30]. The presented chaotic map is highly sensitive to the all parameters mentioned above. If the
precision is 1016, therefore, the size of the key space for x and α is 1032. For the space of parameter N we have 1014, giving
a total size for the key space of 1046

≈ 2152. Apparently, the key space is large enough to resist all kinds of brute force
attacks.

7. Conclusion

According to the Information theory, a system can never generate more entropy than supplied as an input to the system,
and in some situations there is a huge demand to the entropy, in such conditions PRNG can be used to supply the needed
entropy. Logistic map turns out to be a poor pseudo random number generator because it generates sequences of extremely
short period. In this paper a method for producing truly unpredictable sequences of random numbers is presented. The new
proposed pseudo random generator algorithm is based on the generalized Logistic maps [11]. In our proposed algorithm
we have used Eq. (5) as a prototype taken from the hierarchy of one dimensional chaotic map. Apparently, any introduced
dynamical model of a 1D chaotic map (see Eq. (3)) can also be applied in the presented algorithm. The presented algorithm
passes all the standard statistical tests in DIEHARD, NIST statistical test suite and Entropy test suite, therefore, it can be used
for any application that requires randomness such as cryptographic applications.
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Appendix. Derivation of the invariant measure

In order to prove that the measure (Eq. (6)) satisfies the Frobenius–Perron (FP) integral equation, we consider the map.

x̃n+1(x, α) =
1
α2

tan2(N arctan
√
x) (A.1)

with measure x̃n+1(x, α) related to the measure µΦ̃N
with the following relation:

x̃n+1(x, α) =
1

(1 + x)2
µx̃n+1


1

1 + x


.

Denoting x̃n+1(x, α) on the left hand side of (A.1) by y and inverting it, we get :

xk = tan2


1
N

arctan

yα2 +

kπ
N


k = 1, . . . ,N. (A.2)

Then, taking derivative of xk with respect to y, we obtain:dxkdy

 =
α

N
√
xk(1 + xk)

1
√
y(1 + α2y)

.

Substituting the above result in Frobenius–Perron (FP) equation, we get:

µ̃x̃n+1(y)
√
y(1 + α2y) =

α

N

−
k

√
xk(1 + xk)µ̃x̃n+1(xk),

Now, considering the following ansatz for the invariant measure µ̃x̃n+1(y):

µ̃x̃n+1(y) =

√
β

√
y(1 + βy)

,

the above equation reduces to:

1 + α2y
1 + βy

=
α

N

N−
k=1


1 + xk
1 + βxk


which can be written as:

1 + α2y
1 + βy

=
α

β
+


β − 1
β2


∂

∂β−1
(ln(ΠN

k=1(β
−1

+ xk))).

Table A.1
Results of the SP800-22 test suite for the 32-bit proposed nonlinear PRBG.

Test name P-value Result

Frequency 0.444867 SUCCESS
Block-frequency 0.500934 SUCCESS
Runs (M = 10000) 0.500617 SUCCESS
Long runs of ones 0.644942 SUCCESS
Rank 0.517363 SUCCESS
Spectral DFT 0.295498 SUCCESS
No overlapping templates 0.976927 SUCCESS
Universal (L = 7,Q = 1280, K = 141, 577) 0.802942 SUCCESS
Lempel ziv complexity 0.178278 SUCCESS
Linear complexity 0.416273 SUCCESS
Serial P-value 1 0.798665 SUCCESS

P-value 2 0.849237 SUCCESS
Approximate entropy 0.616827 SUCCESS
Cumulative sums forward 0.343168 SUCCESS
Cumulative sums reverse 0.888137 SUCCESS
Random excursions X = −4 0.889127 SUCCESS

X = −3 0.772858 SUCCESS
X = −2 0.23113 SUCCESS
X = −1 0.743415 SUCCESS
X = 1 0.171268 SUCCESS
X = 2 0.349231 SUCCESS
X = 3 0.43468 SUCCESS
X = 4 0.423174 SUCCESS
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Table A.2
Results of the SP800-22 test suite for the 32-bit proposed nonlinear PRNG.

Random excursions variant (state x)

X = −9 0.768922 SUCCESS
X = −8 0.991818 SUCCESS
X = −7 0.995606 SUCCESS
X = −6 0.93796 SUCCESS
X = −5 0.899918 SUCCESS
X = −4 0.604545 SUCCESS
X = −3 0.908091 SUCCESS
X = −2 0.845471 SUCCESS
X = −1 0.811656 SUCCESS
X = 1 0.047061 SUCCESS
X = 2 0.037975 SUCCESS
X = 3 0.393918 SUCCESS
X = 4 0.892534 SUCCESS
X = 5 0.55579 SUCCESS
X = 6 0.314482 SUCCESS
X = 7 0.161842 SUCCESS
X = 8 0.139774 SUCCESS
X = 9 0.191832 SUCCESS

Table A.3
DIEHARD test suite for the 32-bit proposed nonlinear PRNG.

Test name Average value Result

Entropy 7.999989 SUCCESS
Chi-square 127.4750 SUCCESS
SCC −0.000262 SUCCESS
Birthday spacing 0.767240 SUCCESS
Overlapping permutation 0.959594 SUCCESS
Binary rank 3131 0.818691 SUCCESS
Binary rank 3232 0.477434 SUCCESS
Binary rank 68 0.363018 SUCCESS
Bitstream 0.629145 SUCCESS
OPSO 0.7334 SUCCESS
OQSO 0.40855 SUCCESS
DNA 0.5137 SUCCESS
Count the ones 01 0.745979 SUCCESS
Count the ones 02 0.589339 SUCCESS
Parking lot 0.319941 SUCCESS
Minimum distance 0.769923 SUCCESS
3DS spheres 0.124393 SUCCESS
Squeeze 0.068958 SUCCESS
Overlapping sum 0.852160 SUCCESS
Runs 0.822144 SUCCESS
Craps 0.41525 SUCCESS

Table A.4
Max grade of ENT test suite.

Test name Average value Result

Entropy 7.999989 SUCCESS
Chi-square 127.4750 SUCCESS
SCC −0.000262 SUCCESS

To evaluate the second term in the right hand side of above formulas we can write the equation in the following form:

0 = α2y cos2(N arctan
√
x) − sin2(N arctan

√
x)

=
(−1)N

(1 + x)N

α2y

 [
N
2 ]−

k=0

CN
2k(−1)Nxk

2

− x

[
N−1
2 ]−

k=0

CN
2k+1(−1)Nxk

2
 ,

=
constant
(1 + x)N

N∏
k=1

(x − xk),
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where xk are the roots of Eq. (A.1) and they are given by the formula (A.2). Therefore, we have:

∂

∂β−1
ln


N∏

k=1

(β−1
+ xk)


=

∂

∂β−1
ln[(1 − β−1)N(α2y cos2(N arctan


−β−1) − sin2(N arctan


−β−1))]

= −
Nβ

β − 1
+

βN(1 + α2y)A


1
β



A


1
β

2
β2y +


B


1
β

2 .

In deriving of above formulas we have used the following identities

cos(N arctan
√
x) =

A(−x)

(1 + x)
N
2
, sin(N arctan

√
x) =

√
x

B(−x)

(1 + x)
N
2
,

1 + α2y
1 + βy

=
1 + α2y

B


1
β


αA


1
β

 + β


αA


1
β


B


1
β

  y
 .

Hence to get the final result we have to choose the parameter α as:

α =

B


1
β


A


1
β

 .
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