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Abstract

We analyze, in the context of a simple toy model, for which renormalization schemes the CP-properties 
of bare Lagrangian and its finite part coincide. We show that this is the case for the minimal subtraction and 
on-shell schemes. The CP-properties of the theory can then be characterized by CP-odd basis invariants 
expressed in terms of renormalized masses and couplings. For the minimal subtraction scheme we further-
more show that in CP-conserving theories the CP-odd basis invariants are zero at any scale but are not 
renormalization group invariant in CP-violating ones.
© 2015 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Neutrino oscillations, i.e. the experimental evidence for leptonic flavor-mixing, have estab-
lished the existence of small but nonzero neutrino masses. Through a realization of the seesaw 
mechanism these can find a satisfying theoretical explanation which entails further interest-
ing phenomenological consequences. In particular CP-violating phases in the leptonic mixing 
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open the possibility to explain the baryon asymmetry of the universe through the leptogene-
sis scenario [1]. Analogous to the complex phase in the Cabibbo–Kobayashi–Maskawa matrix, 
CP-violating phases in the leptonic mixing may result from phases in vacuum expectation val-
ues of the Higgs fields or from complex Yukawa couplings. These phases will in general cause 
leptonic CP-violation. However, not all of the phases are necessarily physical as they may be 
rotated away by weak basis transformations. Such rotations of the weak basis are in fact part of 
general CP-transformations defined by the gauge sector of the theory. Therefore it is useful to 
discuss CP-violating phenomena in terms of basis invariant quantities.

The strength of CP-violation in a given model can be parametrized in terms of a few CP-odd 
flavor-basis invariants which vanish if CP is conserved. Originally they have been introduced 
in [2] to provide a convention-independent measure of CP-violation in the quark sector of the 
Standard Model. In [3–5] similar invariants have been constructed to parametrize CP-violation 
in the leptonic sector of the Standard Model supplemented by heavy Majorana neutrinos [6–9]. 
In a perturbative calculation CP-violation manifests itself at loop level. The loop contributions 
are in general divergent and must be renormalized. Thus, we have to distinguish between bare 
and renormalized quantities. After renormalization the original Lagrangian can be represented 
as a sum of a basic Lagrangian, which has the same form as the bare one but contains only the 
renormalized quantities, and counterterms. Analyzing the basic Lagrangian one can define the 
flavor-basis invariants characterizing its CP-properties. However, it is important to keep in mind 
that the CP-properties of the basic Lagrangian may differ from those of the bare one. For instance, 
even if the basic Lagrangian is CP-conserving the counterterms may contain CP-violation, such 
that the full theory is CP-violating.

In Section 2 we analyze for which renormalization schemes CP-properties of the bare and 
basic Lagrangians coincide. For such schemes the strength of CP-violation of the full theory can 
be characterized by the CP-odd flavor-basis invariants expressed in terms of the renormalized 
masses and couplings. In Section 3 we study properties of the these invariants under renormal-
ization group running. We find that in CP-conserving theories it is zero at any scale but is not 
renormalization group invariant in CP-violating ones. Finally, in Section 4 we summarize our 
results.

2. CP-properties of the bare and basic Lagrangian

To reduce the technical complications to a minimum here we use a simple toy model that 
has been used in [10–14] to study qualitative features of leptogenesis in the framework of non-
equilibrium quantum field theory. The action is given by S = ∫

d4xL and the Lagrangian of the 
model contains one complex and two real scalar fields:

L = 1

2
∂μψ0,i∂μψ0,i − 1

2
ψ0,iM

2
0,ijψ0,j + ∂μb̄∂μb − h0,i

2! ψ0,ibb − h∗
0,i

2! ψ0,i b̄b̄ , (1)

where i, j = 1, 2, the bar denotes complex conjugation and the subscript ‘0’ denotes the bare 
fields, couplings and mass parameters. The real and symmetric mass matrix M̂2

0 mixes the two 
generations of real scalar fields ψ0,i . The couplings h0 take arbitrary complex values and can 
induce CP-violation. Rephasing the complex field, we can always make one of the couplings real. 
On the other hand, the relative phase of the couplings is rephasing invariant. The renormalized 
fields, masses and couplings are related to the bare ones by

ψ0,i = Z
1
2
ψ,ijψj ≈ ψi + 1

δZψ,ijψj , (2a)

2
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M2
0,ij = M2

ij + δM2
ij , (2b)

h0,i = Zh,ij hj ≈ hi + δZh,ij hj . (2c)

The matrix Zψ is a general real matrix which is relevant for the renormalization of mixing fields 
[15–18], and the matrix Zh is a general complex matrix. Rewritten in terms of the renormalized 
fields, masses and couplings the Lagrangian takes the form

L = 1

2
∂μψi∂μψi − 1

2
ψiM

2
ijψj + ∂μb̄∂μb − hi

2! ψibb − h∗
i

2! ψib̄b̄ + δL . (3)

The counterterms read

δL = 1

2
∂μψi�Zij ∂μψj − 1

2
ψi�M2

ijψj − �hi

2! ψibb − �h∗
i

2! ψib̄b̄ , (4)

where we have introduced

�Zij ≡ 1

2
δZψ,ij + 1

2
δZT

ψ,ij , (5a)

�M2
ij ≡ δM2

ij + 1

2
M2

ikδZψ,kj + 1

2
δZT

ψ,ikM
2
kj , (5b)

�hi ≡ δZh,ij hj + 1

2
δZT

ψ,ij hj . (5c)

Let us begin with the analysis of the basic Lagrangian. Generically CP-transformation turns a 
complex scalar field into its complex conjugate evaluated at x = (x0, −x) times an arbitrary 
phase:

(CP)b(x0,x)(CP)−1 = βb̄(x0,−x) , (6a)

(CP)b̄(x0,x)(CP)−1 = β∗b(x0,−x) . (6b)

The complete CP-transformation for the mixing scalar fields ψ is found by splitting the La-
grangian into kinetic part and rest. The kinetic part is taken to define CP and the complete 
CP-transformation therefore includes an internal (orthogonal) symmetry transformation Uij

which leaves this term invariant,2

(CP)ψi(x0,x)(CP)−1 = Uijψj (x0,−x) . (7)

The invariance properties of the remainder determine to which extent the Lagrangian violates 
CP. The internal symmetry transformation can be a flavor rotation or reflection,3

U =
(

c −s

s c

)
or U =

(
c s

s −c

)
, (8)

where we have introduced c ≡ cos(α) and s ≡ sin(α) to shorten the notation. A product of a 
flavor rotation and reflection is again a reflection. Comparing the CP-transformed action S =
(CP)S(CP)−1 with its original form we obtain the following conditions for CP-invariance:

UT
imM2

mnUnj = M2
ij , (9a)

β2UT
ik hk = h∗

i . (9b)

2 Similarly, in the electroweak theory of the SM, the ‘generalized’ CP-transformation would be defined as a generalized 
symmetry transformation which leaves the kinetic- and gauge-part of the Lagrangian invariant [19].

3 Note that we use the term ‘flavor’ throughout the paper to denote the generations of scalar fields of the toy-model.
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If for a given set of couplings and mass parameters we can find β and Uij such that conditions 
(9) are fulfilled then the Lagrangian is CP-invariant. In general, the mass matrix has nonzero 
off-diagonal elements. To simplify the analysis we perform a flavor rotation to the basis where 
it is diagonal, M2 = diag(M2

1 , M2
2 ). Assuming that M2

1 �= M2
2 , in this basis, the first condition 

is fulfilled only for rotations by α = 0, π and reflections about α/2 = 0, π/2, i.e. we have to 
consider only four choices of Uij . The second of conditions (9) is equivalent to the require-
ment that the matrix Hij ≡ hih

∗
j obeys UT

imHmnUnj = H ∗
ij . For α = 0, π rotations this implies 

H12 = H ∗
12. This equality holds if ImH12 = 0. For α = 0, π reflections the second condition 

implies H12 = −H ∗
12, which is fulfilled if ReH12 = 0. To analyze the special case of equal mass 

parameters, M2
1 = M2

2 , we need the transformation rules for ImH12 and ReH12. Under a flavor 
rotation:

ImH12 → ImH12 , (10a)

ReH12 → (c2 − s2)ReH12 + cs(H22 − H11) . (10b)

Evidently, ImH12 is an invariant, while ReH12 can be made zero through a rotation by the angle

α = 1

2
arctan

2ReH12

H11 − H22
. (11)

If the mass matrix is proportional to unity, then we can always rotate to the basis where ReH12
vanishes. Therefore, the Lagrangian is also CP-invariant in this case. Summarizing the above, 
the basic Lagrangian (3) is CP-invariant if either ImH12 = 0, ReH12 = 0 in the basis where the 
mass matrix is diagonal, or the mass matrix is proportional to unity. Let us now consider

J ≡ Im Tr(HM3HT M) . (12)

As can readily be verified, J is invariant under the flavor transformations and, using (9) in a 
general basis, that it is CP-odd. In the basis, in which the mass matrix is diagonal it takes the 
form

J = 2 ImH12ReH12M1M2(M
2
2 − M2

1 ) . (13)

Evidently, it vanishes if the theory is CP-conserving. In other words, J in (12), is a basis-in-
dependent measure of CP-violation in the basic Lagrangian for the model under consideration. 
CP-violating observables, such as CP-violating parameters for the decays of ψi , are expected to 
be proportional to J such that they vanish if J = 0.

In order that the full renormalized Lagrangian be CP-invariant, the sum of the renormal-
ized masses and couplings and the corresponding counterterms must satisfy conditions similar 
to (9):

UT
im(M2

mn + �M2
mn)Unj = (M2

ij + �M2
ij ) , (14a)

β2UT
ik (hk + �hk) = (hi + �hi)

∗ . (14b)

The requirement of CP-invariance of the kinetic term induces an additional condition,

UT
im�ZmnUnj = �Zij . (15)

If (9) are fulfilled, then the resulting additional conditions for CP-invariance of the full theory 
read:
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UT
im�ZmnUnj = �Zij , (16a)

UT
im�M2

mnUnj = �M2
ij , (16b)

UT
im �Hmn Unj = �H ∗

ij , (16c)

where �Hij ≡ hi�h∗
j + �hih

∗
j + �hi�h∗

j . As before, we work in the flavor basis in which the 

mass matrix M2
ij is diagonal. The first and the second of the conditions (16) are trivially fulfilled 

for α = 0, π rotations. Condition (16c) is then fulfilled if Im�H12 = 0. For α = 0, π reflections 
the first and second conditions are fulfilled only if both �Z and �M2 are also diagonal in the 
chosen basis. If this is the case the last condition then demands Re�H12 = 0. As explained 
above, if M2 is proportional to unity then we rotate to the basis where ReH12 = 0. The full 
theory is CP-conserving if �Z and �M2 are diagonal and Re�H12 = 0 in this basis.

Let us summarize for which �Z, �M2 and �H the conditions of CP-invariance of the full 
theory reduce to those for the basic Lagrangian. The first solution, ImH12 = 0, is sufficient for 
any choice of �Z and �M2, provided that Im�H12 = 0. The second solution, ReH12 = 0 in 
the basis where M2

ij is diagonal, exists only if �Z and �M2 are also diagonal in this basis, or 
become diagonal in this basis for ReH12 = 0, and if Re�H12 = 0 in this basis. Finally, the third 
solution, M2 ∝ 1, is sufficient provided that �Z and �M2 are diagonal in the basis in which 
ReH12 = 0 and Re�H12 = 0 in this basis.

If the couplings and mass parameters in (12) are numerically equal for two different choices 
of �Z, �M2 and �H , i.e. for two different renormalization schemes, then the values of J
are also equal. However, it is important to keep in mind that they correspond to two different 
bare Lagrangians and therefore we deal with two physically inequivalent theories. Consider for 
example the self-energy. The renormalized self-energy, 	ij , is related to the unrenormalized one, 
	0,ij , by

	ij (p
2) = 	0,ij (p

2) − p2�Zij + �M2
ij . (17)

In quantum field theory the self-energy contributes to physical observables. In particular, it shifts 
the pole masses and generates the self-energy CP-violating parameters [11]. The divergent parts 
of the counterterms are fixed by the requirement that they cancel the divergent part of the self-
energy. At the same time the finite part is restricted only by the requirement that the perturbative 
expansion must converge and differs in different renormalization schemes. Thus the explicit form 
of the self-energy is also different in different renormalization schemes. Therefore, if we would 
keep the couplings and mass parameters constant but change the renormalization scheme, the 
resulting values of the pole masses and CP-violating parameters would also change.

We use dimensional regularization. For the model considered here the one-loop unrenormal-
ized self-energy is given by [11],

	0,ij (p
2) = −ReHij

16π2
B0(p

2) , (18)

where

B0(p
2) = � − ln

|p2|
μ2

+ iπθ(p2) (19)

is the usual two-point function [20,21] and � ≡ ε−1 − γ + 4π + 2 contains the divergent contri-
bution. We will also need the three-point functions. At one loop level they read:
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i
ψibb(p
2) = h∗

0,i + h0,i

16π2

∑
j

h∗2
0,jC0(p

2,0,M2
j ) , (20a)

i
ψi b̄b̄(p
2) = h0,i + h∗

0,i

16π2

∑
j

h0,jC0(p
2,0,M2

j ) , (20b)

where

C0(M
2
i ,0,M2

j ) = 1

M2
i

[
Li2

(
1 + M2

i

M2
j

)
− π2

6

]
, (21)

is a complex-valued function and we have taken into account that b is massless. Since C0 is 
finite, the three-point functions are finite as well. Note also that the three-point functions (20a)
and (20b) are different in the presence of CP-violation.

Let us now consider the two most commonly used renormalization schemes, the MS and OS 
schemes. In both cases we define the counterterms in the basis where the matrix of the mass 
parameters is diagonal. In the MS scheme one introduces only those counterterms, which are 
required to cancel the divergencies:

�Zij = 0 , (22a)

�M2
ij = ReHij

16π2
�, (22b)

�Hij = 0 . (22c)

Since �Hij = 0 in this scheme, ImH12 = 0 is sufficient for CP-invariance of the full the-
ory. Furthermore, if ReH12 = 0 then the counterterm (22b) is diagonal and the theory is also 
CP-conserving in this case. For M2 ∝ 1 the form of the counterterms remains the same and the 
analysis is completely analogous. In the OS scheme the renormalized self-energy is required to 
satisfy the following conditions:

	ii(p
2 = M2

i ) = 0 (i = 1,2) , (23a)

	ij (p
2 = M2

i ) = 	ij (p
2 = M2

j ) = 0 (i �= j) , (23b)

d

dp2
	ij (p

2 = M2
i ) = 0 (i = 1,2) . (23c)

Since the three-point functions (20a) and (20b) are in general different, it is impossible to choose 
�hi such that i
ψibb(M

2
i ) = h∗

i and i
ψi b̄b̄(M
2
i ) = hi simultaneously. For this reason we choose 

it such that it renormalizes their CP-symmetric combination,

i
∗
ψibb(M

2
i ) + i
ψi b̄b̄(M

2
i ) = 2hi . (24)

The resulting counterterms read:

�Zij = ReHij

16π2

ln(M2
i /M2

j )

M2
i − M2

j

, (25a)

�M2
ij = ReHij

16π2

[
� − M2

i ln(M2
j /μ2) − M2

j ln(M2
i /μ2)

M2
i − M2

j

]
, (25b)

�Hij = − 1

16π2

∑
n

[
HinH

∗
nj ReC0(M

2
j ,0,M2

n) + H ∗
inHnj ReC0(M

2
i ,0,M2

n)
]
. (25c)
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Since Im�H12 = 0 for ImH12 = 0, this condition is sufficient for CP-invariance of the full 
theory. If ReH12 = 0 then both �Z and �M2 = 0 are diagonal. Furthermore, in this case 
Re�H12 = 0 and therefore the theory is CP-conserving. For M2 ∝ 1 we obtain, taking the limit 
M2

j = M2
i = M2 in (25a) and (25b),

�Zij = ReHij

16π2

1

M2
, (26a)

�M2
ij = ReHij

16π2

(
� − ln(M2/μ2) + 1

)
. (26b)

Since the flavor properties of (26) are determined by flavor properties of the overall factor ReHij , 
we can always rotate to the basis where ReH12 = 0. In this basis both �Z and �M are diagonal 
and, as before, Re�H12 = 0. Therefore, the theory is again CP-conserving. In other words, for 
the MS and OS renormalization schemes the definition (12) which characterizes CP-properties of 
the basic Lagrangian can be used as a basis-invariant measure of CP-violation in the full theory.

For illustrational purposes let us present a simple example where the full theory is 
CP-violating even though basic Lagrangian is CP-conserving. We choose

�Zij = 0 , (27a)

�M2
ij = ReHij

16π2
� + �M2

ij , (27b)

where, in the basis in which the mass matrix is diagonal, ReH12 = 0 and �M2
ij is a finite matrix 

with nonzero off-diagonal elements. For this choice J = 0 but the condition (16a) is violated and 
therefore the full theory is expected to be CP-violating. To convince ourselves that this is indeed 
the case we can shift �M2

ij to the mass term of the basic Lagrangian. This transformation does 
not change the bare Lagrangian and therefore we deal with physically the same theory. After 
the transformation we have MS counterterms and finite Lagrangian with a non-diagonal mass 
matrix. In the basis where the new mass matrix is diagonal ReH12 is no longer zero and therefore 
J �= 0, as expected.

Above we have studied the conditions under which the full theory is CP-invariant provided 
that the basic Lagrangian is CP-invariant. However, one should keep in mind that there is also the 
possibility of exact cancellation such that the full theory is CP-conserving even though both the 
basic Lagrangian and counterterms are CP-violating. For instance, for the choice of counterterms 
made in (27) this would be the case if the matrix of the mass parameters in the basic Lagrangian 
has the form M2

ij = M2δij − �M2
ij . In such a case perturbation theory at finite loop-order can 

result in CP-violating quantities and also J �= 0 even though the full theory is CP-conserving.

3. Renormalization group running

Because the renormalization group running does not change the bare Lagrangian, the 
CP-properties of the full theory are RG-invariant. On the other hand, it is not obvious that 
the running does not modify the CP-properties of the counterterms and, consequently, also the 
CP-properties of the basic Lagrangian.

In this section we derive renormalization group equations (RGE’s) for the parameters of the 
theory and verify that they preserve the CP-properties of the basic Lagrangian. In D = 4 − 2ε

dimensions
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L = 1

2
∂μψ0,i∂μψ0,i − 1

2
ψ0,iM

2
0,ijψ0,j + ∂μb̄∂μb − με h0,i

2! ψ0,ibb − με
h∗

0,i

2! ψ0,i b̄b̄ .

(28)

We work within the minimal subtraction scheme in which the counterterms are given by (22)
with � = ε−1 (because the theory parameters in a given renormalization scheme can always be 
mapped to the parameters in the minimal subtraction scheme results of this section generalize to 
other schemes as well).

The renormalization group equations follow from the requirement that

μ
d

dμ
(M2

0,ij ) = μ
d

dμ
(M2

ij + δM2
ij ) = 0 , (29a)

μ
d

dμ
(μεh0,i ) = μ

d

dμ
(μεZh,ij hj ) = 0 , (29b)

where δM2
ij and Zh,ij are the mass and coupling counterterms introduced above and which have 

to be determined by solving (22). Relations (5) are fulfilled in particular for δZψ = δZh = 0. 
This solution is not unique and others are possible which lead to different variants of the RGE’s 
which are related by flavor rotations. Solving for μ dM2/dμ and μ dH/dμ and taking the limit 
ε → 0 we obtain the RG-equations for masses and couplings:

dM2
ij

dt
= ReHij , (30a)

dHij

dt
= 0 , (30b)

where t ≡ ln(μ2/μ2
0)/(16π2). They have the explicit solutions Hij(t) = Hij (0) and

M2
ij (t) = M2

ij (0) + ReHij · t . (31)

Let us assume for a moment that at t = 0 the basic Lagrangian is CP-invariant. As has been 
discussed above there are three possibilities. First, this is the case if ImH12 = 0. Since Hij is 
scale-independent ImH12 remains zero and therefore the basic Lagrangian remains CP-invariant. 
The second possibility is ReH12 = 0. In this case the mass matrix remains diagonal at any scale. 
Since Hij is sale-independent the condition ReH12 = 0 is fulfilled for any t and the basic La-
grangian remains CP-invariant. Third, if M2

ij = M2δij at t = 0 then we can rotate to the basis 

where ReH12 = 0 without changing the matrix of mass parameters. In the new basis M2
ij (t) is 

diagonal (though no longer proportional to unity for t �= 0) and ReH12 = 0. Therefore, the basic 
Lagrangian remains CP-conserving at any scale. This implies that renormalization group run-
ning does not change CP-properties of the basic Lagrangian. For the basis-invariant measure of 
CP-violation we find to leading order in the couplings

J (t) ≈ J (0)

[
1 + M2

2 (0)H11 + M2
1 (0)H22

2M2
1 (0)M2

2 (0)
· t

]
, (32)

where we have assumed that the mass matrix M2
ij is diagonal at t = 0. This expression reflects 

that if J = 0 at t = 0 then it remains zero at any scale. On the other hand, from (32) it follows 
that the CP-odd basis invariants are not renormalization group invariant in CP-violating theories.

To conclude this section let us note that the mass matrix (31) can be diagonalized by a fi-
nite flavor transformation, M2 → UT M2U , which also transforms the couplings, H → UT HU . 
This is referred to as ‘run and diagonalize’ approach. On the other hand, one could pursue the 
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‘diagonalize and run’ approach by requiring that as t → t + dt the mass matrix is brought to 
the diagonal form by an infinitesimally small flavor transformation, such that it remains diagonal 
at any scale. Combined with (30a) this requirement gives dα/dt = ReH12/(M

2
2 − M2

1 ) for the 
derivative of the rotation angle, where M and H now denote the masses and couplings in the new 
basis. This gives for the derivatives of the latter

dM2
ij

dt
= δij · ReHij , (33a)

dHij

dt
= ReH12

M2
2 − M2

1

( −2ReH12 H11 − H22
H11 − H22 2ReH12

)
. (33b)

An alternative derivation of (33) is presented in Appendix A. Note that because (30) and (33) are 
equivalent by construction they give (in the basis where the mass matrix is diagonal) the same 
results for the masses and couplings and therefore the same result for the scale-dependence of 
the CP-odd basis-invariant, see (32).

4. Summary

To summarize, we have analyzed for which renormalization schemes CP-properties of the 
bare and basic Lagrangians coincide. Since for the same couplings and mass parameters of the 
basic Lagrangian, which determine the value of the CP-odd flavor invariant J , we can choose 
different renormalization schemes and therefore different counterterms (which would imply that 
the corresponding bare theories differ), the latter can induce CP-violation even if J = 0. How-
ever, for the two most commonly used schemes, the MS and OS schemes, the condition J = 0 is 
sufficient to ensure that the full theory is CP-conserving.

Because renormalization group running leaves the bare Lagrangian invariant it also does not 
change its CP-properties. Therefore if the theory is CP-conserving at the initial scale it remains 
CP-conserving at other scales. Furthermore, we have found that (at least for the considered here 
toy model) renormalization group running also does not change CP-properties of the basic La-
grangian and of the counterterms. Thus if J is zero at the initial scale it remains zero at other 
scales. On the other hands if the theory is CP-violating then J depends on the scale. In other 
words, it is flavor-basis invariant but not RG invariant.

Appendix A. Diagonalize and run approach

In this appendix we pursue an alternative derivation of the renormalization group equations 
that is based on a parametrization of the renormalization prescription which differs slightly from 
that of equation (2). This prescription simplifies the computation of RGE’s which automatically 
keep the mass matrix diagonal. We then analyze the CP-properties in terms of the CP-odd basis-
invariant evaluated in the mass-diagonal basis.

To this end we use the minimal general parametrization of the counterterms [17,18]:

ψ0,i = (UZ
1
2 )ijψj , (A.1a)

M2
0,ij = UT

m,ik(M
2
kl + δM2

kl)Um,lj , (A.1b)

h0,i = μεZh,ij hj , (A.1c)

where by means of polar decomposition we represent Z
1
2
ψ = UZ

1
2 with U and Z

1
2 being real 

orthogonal and symmetric matrices respectively. In (A.1) we also require that the matrix Um is 
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real and orthogonal and that the mass-matrix and δM2 satisfies [M2, δM2] = 0. Thereby (A.1b)
represents a minimal parametrization of a general transformation of a diagonalizable mass ma-
trix [17]. With U ≈ 1 − δU , Um ≈ 1 − δUm, Z = 1 + δZ and Zh = 1 + δZh, we obtain

ψ0,i ≈ ψi + 1

2
δZijψj − δUijψj , (A.2a)

M2
0,ij ≈ M2

ij + δM2
ij + [δUm,M2]ij , (A.2b)

h0,i ≈ με(hi + δZh,ij hj ) , (A.2c)

where δU and δUm are real anti-symmetric matrices. Instead of (A.2c) we can also write H0 ≈
μ2ε(H +δH), which defines δH ≡ δZhH +HδZ

†
h. These expressions are to be compared to (2). 

In this parametrization equations (29) take the form

μ
d

dμ
(M2

ij + δM2
ij + [δUm,M2]ij ) = 0 , (A.3a)

μ
d

dμ
(μεZ

ij
h hj ) = 0 . (A.3b)

Inserting relations (A.2) into the bare Lagrangian (1) and comparing with (3) and (4) reveals 
the relations to �M2, �h and �Z, modifying (5):

�Zij = δZij , (A.4a)

�M2
ij = δM2

ij + 1

2
M2

ikδZkj + 1

2
δZikM

2
kj + [δU + δUm,M2]ij , (A.4b)

�hi = με(δZh,ij + 1

2
δZij + δUij )hj . (A.4c)

Deriving RGE’s involves solving relations (A.4) for δM2, δZh, δZ (and δU , δUm) such that 
we can express the bare parameters (A.2) in terms of renormalized ones and μ. To compute the 
renormalization group we choose MS-scheme counterterms as in the main text. As in (22), we use 
�Z = δZ = 0 and �h = 0, but �M2 = ReH/(16π2ε). Different RGE’s are obtained by making 
different additional assumptions for δU and δUm. Choosing δU = 0, we obtain from (A.4b):

δM2
ij + [δUm,M2]ij = �M2

ij , (A.5)

which has nonzero off-diagonal elements and which we can insert in (A.3a) without solving for 
δUm itself. Similarly, from (A.4c) we get δZh = 0 and therefore Zh = 1 in (A.3b). This leads 
again to the result obtained in (30) and (31). The mass-matrix acquires off-diagonals during 
RG-evolution unless ReH12 = 0. The anomalous dimension of the fields,

γij ≡ μdδZψ,ij /dμ, (A.6)

is given by γij = 0.
A second possibility to solve (A.4) consists in choosing δUm = 0. In this case the requirement 

[M2, δM2] = 0 is fulfilled (assuming a diagonal basic mass matrix M2) only if δM2 is diagonal. 
From (A.3a) it then follows that a diagonal mass matrix will always stay diagonal under RG-
evolution with this choice. As can be inferred from (A.4b) the off-diagonals of �M2 have to be 
absorbed into δU in this case. Since δU is anti-symmetric, in the basis where M2 is diagonal 
[δU, M2] is symmetric with vanishing diagonals and

[δU,M2]12 = [δU,M2]21 = δU12(M
2
2 − M2

1 ) . (A.7)
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It follows with (A.4b) that

δM2
ij = δij �M2

ii , (A.8a)

δU12 = − δU21 = �M2
12

M2
2 − M2

1

, (A.8b)

where we used MS-scheme counterterms δZ = �Z = 0 again. Furthermore, with �h = 0, we 
get δZh = −δU and therefore

δH = −[δU,H ] = −δU12

( −2ReH12 H11 − H22
H11 − H22 2ReH12

)
, (A.9)

where we used the definition of δH , (A.4b) and the fact that δU is anti-symmetric. Using these 
relations in (A.3), solving these systematically neglecting higher orders in the couplings, and 
taking the limit ε → 0 we get:

μ
dM2

ij

dμ
= δij

Hij

8π2
, (A.10a)

μ
dHij

dμ
= ReH12

8π2(M2
2 − M2

1 )

( −2ReH12 H11 − H22
H11 − H22 2ReH12

)
. (A.10b)

The anomalous dimension of the fields may be obtained from (A.2a) and (A.8b):

δZψ,ij = δZij − 2δUij = − ReHij

8π2(M2
j − M2

i )ε
, i �= j . (A.11)

This results in

γij = ReH12

4π2(M2
2 − M2

1 )

(
0 1

−1 0

)
. (A.12)

It describes how the fields corresponding to the eigenvalues of the mass-matrix change their 
identity as the scale changes since these behave under RG-running as μdψi/dμ = − 1

2γijψj .
For M2

2 = M2
1 it is apparent from (A.7) and (A.4b) that there is in general no solution to the 

counter-term relations with diagonal δM2. Therefore this case must be treated separately. We 
may rotate to the basis in which ReH12 = 0. In this basis the solutions for the counter-terms are 
then given by (δZ = �Z = 0):

δM2
ij = δij �M2

ii , (A.13)

δU12 = − δU21 = 0 , (A.14)

δZh = 0 . (A.15)

Using these relations in (A.3), solving for the derivatives of the renormalized quantities and 
finally taking the limit ε → 0 yields

μ
dM2

ij

dμ
= δij

Hij

8π2
, (A.16a)

μ
dHij

dμ
= 0 . (A.16b)

In fact we did not have to choose δUm = 0 above. If we solve (A.4b) for δM2 and use the 
requirement [M2, δM2] = 0, we find that δU ′ ≡ δU + δUm is fixed in terms of basic quantities 
and the counterterms �M2 and �Z. Equations (A.4) therefore become
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�Zij = δZij ,

�M2
ij = δM2

ij + 1

2
M2

ikδZkj + 1

2
δZikM

2
kj + [δU ′,M2]ij ,

�hi = (δZ′
h,ij + 1

2
δZij + δU ′

ij )hj ,

where we introduced δZ′
h = δZh − δUm. We know from the previous considerations that, once 

we choose the counterterms �Z, �M2 and �h using the MS-scheme renormalization condi-
tions, δZ, δM2, δZ′

h and δU ′ are completely fixed by these equations. The quantity δUm can 
however be varied freely as long as δZh and δU are varied simultaneously so as to compensate 
the change. The (anti-symmetric) changes in the matrices δUm, δZh and δU affect the mass-
matrix, couplings and bare fields respectively. One can show from the requirement that the bare 
quantities stay invariant that this anti-symmetric matrix which depends on a single parameter 
transforms the basic quantities as a rotation which can for instance be used to diagonalize M2. In 
this representation the choice of basis used in arguments above appears as a degree of freedom in 
the renormalization prescription which leaves the counterterms unchanged. With respect to the 
RG-running derived above we can therefore equivalently use a prescription in which the mass 
matrix develops off-diagonals, such as that given in (2), to fix the finite parts of the counterterms 
and diagonalize it afterwards (run-and-diagonalize approach).

Let us now study the evolution of the CP-odd basis-invariant under RGE-evolution. Since the 
mass-matrix stays diagonal in this scheme we may use (13). Differentiating with respect to μ we 
find:

μ
d

dμ
J = 2 Imβ12ReH12M1M2(M

2
2 − M2

1 )

+ 2 ImH12Reβ12M1M2(M
2
2 − M2

1 )

− 2 ImH12ReH12M1M2(γ
2
m,22 − γ 2

m,11) + . . . , (A.18)

where β ≡ μdH/dμ, γm ≡ −μdM2/dμ and the ellipses indicate terms proportional to the 
derivatives of M1 and M2, which have the same CP-properties as J itself. We first consider 
the case M2

2 �= M2
1 . Since β ∝ ReH , Imβ12 = 0 and the first term vanishes identically. The sec-

ond and third term vanish if either ImH12 = 0 or Reβ12 = 0, which, according to (A.10b), is the 
case if it was the case for μ = μ0. Therefore, J remains zero if it has been zero initially. For 
M2

2 (μ0) = M2
1 (μ0) we work in the basis in which ReH12 = 0. According to (A.16b), the first 

two terms vanish. Since ReH12 stays zero, the last term vanishes as well and J = 0, even though 
the eigenvalues of M evolve under RG-running.
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