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Abstract

In this paper, the endomorphism monoid of Pn , the complement of a path Pn with n vertices, is explored
explicitly. It is shown that End(Pn) is orthodox. Some enumerative problems concerning End(Pn) are
solved. In particular, the endomorphism spectrum and the endomorphism type of Pn are given.
c© 2007 Elsevier Ltd. All rights reserved.

1. Introduction and preliminaries

Endomorphism monoids of graphs are generalizations of automorphism groups of graphs.
In recent years much attention has been paid to endomorphism monoids of graphs and many
interesting results concerning graphs and their endomorphism monoids have been obtained.
The aim of this research is try to establish the relationship between graph theory and algebra
theory of semigroups and to apply the theory of semigroups to graph theory. Just as Petrich
and Reilly pointed out in [9], in the great range of special classes of semigroups, regular
semigroups take a central position from the point of view of the richness of their structural
“regularity”. So it is natural to ask for which graph G the endomorphism monoid of G is
regular (such an open question was raised by Marki in [8]). However, it seems difficult to
obtain a general answer to this question. So the strategy for solving this question is finding
various kinds of regularity conditions for various kinds of graphs. In [10], the connected bipartite
graphs whose endomorphism monoids are regular were explicitly found. The split graphs with
regular endomorphism monoids were studied in [6]. Graphs whose endomorphism monoids
are regular (orthodox) were obtained in [4] by means of lexicographic product of graphs with
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regular (orthodox) endomorphism monoids. In this paper, we present an infinite family of End-
orthodox (and of course End-regular) graphs, known as Pn , the complements of the paths Pn
with n vertices. We explore End(Pn) explicitly and give some enumerative problems concerning
End(Pn). In particular, we obtain the endomorphism spectra and the endomorphism types of Pn .

The graphs considered in this paper are finite undirected graphs without loops and multiple
edges. Let X be a graph. The vertex set of X is denoted by V (X) and the edge set of X is
denoted by E(X). The cardinality of the set V (X) is called the order of X . If two vertices x1 and
x2 are adjacent in graph X , the edge connecting x1 and x2 is denoted by {x1, x2} and we write
{x1, x2} ∈ E(X). A subgraph H is called an induced subgraph of X if for any a, b ∈ V (H),
{a, b} ∈ E(H) if and only if {a, b} ∈ E(X). A graph is called complete if for any a, b ∈ V (X),
{a, b} ∈ E(X). We denote by Kn a complete graph with n vertices. A clique of a graph X is the
maximal complete subgraph of X . The clique number of X , denoted by ω(X), is the maximal
order among the cliques of X . A graph is called a path graph with n vertices if its edges form
a path of length n − 1, denoted by Pn . The complement graph X of X is a graph such that
V (X) = V (X) and E(X) = (V × V ) \ E(X).

Let X and Y be graphs. A mapping f from V (X) to V (Y ) is called a homomorphism (from
X to Y ) if {x1, x2} ∈ E(X) implies { f (x1), f (x2)} ∈ E(Y ). A homomorphism f is called
a half-strong homomorphism if { f (a), f (b)} ∈ E(Y ) implies that there exist x1, x2 ∈ V (X)

with f (x1) = f (a) and f (x2) = f (b) such that {x1, x2} ∈ E(X). A homomorphism f is
called a locally strong homomorphism if { f (a), f (b)} ∈ E(Y ) implies that for every preimage
x1 ∈ V (X) of f (a) there exists a preimage x2 ∈ V (X) of f (b) such that {x1, x2} ∈ E(X)

and analogously for every preimage of f (b). A homomorphism f is called a quasi-strong
homomorphism if { f (a), f (b)} ∈ E(Y ) implies that there exists a preimage x1 ∈ V (X) of
f (a) which is adjacent to every preimage of f (b) and analogously for a preimage of f (b).
A homomorphism f is called a strong homomorphism if { f (a), f (b)} ∈ E(Y ) implies that
any preimage of f (a) is adjacent to any preimage of f (b). A homomorphism f is called
an isomorphism if f is bijective and f −1 is a homomorphism. A homomorphism (resp.
isomorphism) f from X to itself is called an endomorphism (resp. automorphism) of X (see [3]).
The sets of all endomorphisms, half-strong endomorphisms, locally strong endomorphisms,
quasi-strong endomorphisms, strong endomorphisms and automorphisms of X are denoted by
End(X), hEnd(X), lEnd(X), qEnd(X), sEnd(X) and Aut(X), respectively. Clearly, for any
graph X , we always have

Aut(X) ⊆ sEnd(X) ⊆ qEnd(X) ⊆ lEnd(X) ⊆ hEnd(X) ⊆ End(X).

It is well known that End(X) and sEnd X form monoids with respect to composition of
mappings and Aut X is a group. Recall from Proposition 2.1 [3] that hEnd X , lEnd X and qEnd X
do not form monoids in general. Various endomorphisms were investigated by many authors
(see [3] and its references). To pursue a more systematic treatment of different endomorphisms,
Böttcher and Knauer in [3] introduce the concepts of the endomorphism spectrum and the
endomorphism type of a graph. For a graph X , the 6-tuple

(|End X |, |hEnd X |, |lEnd X |, |qEnd X |, |sEnd X |, |Aut X |)

is called the endomorphism spectrum of X and is denoted by Endospec X , that is,

Endospec X = (|End X |, |hEnd X |, |lEnd X |, |qEnd X |, |sEnd X |, |Aut X |).

Associate with Endospec X a 5-tuple (s1, s2, s3, s4, s5) with si ∈ {0, 1}, i = 1, 2, 3, 4, 5, where
si = 0 indicates that the i th coordinate is equal to the (i + 1)th coordinate in Endospec X ; si = 1
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otherwise. The integer
∑5

i=1 si 2i−1 is called the endomorphism type of X and is denoted by
EndotypeX .

There are 32 possibilities, that is, endotype 0 up to endotype 31. It is known that Endotype 0
describes unretractive graphs, endotype 0 up to 15 describe S-unretractive graphs, endotype 16
describes E − S-unretractive graphs which are not unretractive, endotype 31 describes graphs for
which all six sets are different (see [3] and its references).

Let f be an endomorphism of a graph X . A subgraph of X is called the endomorphic
image of X under f , denoted by I f , if V (I f ) = f (V (X)) and { f (a), f (b)} ∈ E(I f ) if and
only if there exist c ∈ f −1( f (a)) and d ∈ f −1( f (b)) such that {c, d} ∈ E(X). By ρ f we
denote the equivalence relation on V (X) induced by f , i.e., for a, b ∈ V (X), (a, b) ∈ ρ f
if and only if f (a) = f (b). Denote by [a]ρ f the equivalence class containing a ∈ V (X)

with respect to ρ f . The partition π of V (X) corresponding to ρ f is called the kernel of f .
By X/ρ f we denote the factor graph of X under ρ f , that is a graph with V (X/ρ f ) = V (X)/ρ f
and {[a]ρ f , [b]ρ f } ∈ E(X/ρ f ) if and only if there exist c ∈ [a]ρ f and d ∈ [b]ρ f such that
{c, d} ∈ E(X) (see [7]).

Let S be a semigroup. An element a of S is called regular if there exists x ∈ S such that
axa = a. Moreover, if xax = x , then x is called a inverse of a in S. Denote by V ( f ) the set of
all inverses of f ∈ S. An element e of S is called idempotent if e2

= e. Denote by Idpt(S) the set
of all idempotent elements of S. A semigroup S is called regular if all its elements are regular.
A regular semigroup S is called orthodox if Idpt(S) forms a semigroup under the operation of
S. A graph X is said to be End-regular (End-orthodox) if its endomorphism monoid End(X)

is regular (orthodox). Clearly, orthodox semigroups are regular; hence End-orthodox graphs are
End-regular.

We shall use the standard terminology and notation of semigroup theory as in [2] and of graph
theory as in [1,3]. The following results will be used in this paper.

Lemma 1.1 ([6]). Let X be a graph and f ∈ End(X). Then:

(1) f ∈ hEnd(X) if and only if I f is an induced subgraph of X.
(2) If f is regular, then f ∈ hEnd(X).

Lemma 1.2 ([7]). Let X be a graph and f ∈ End(X). Then f is regular if and only if there
exist g, h ∈ Idpt(End(X)) such that ρg = ρ f and Ih = I f .

2. End(Pn) is orthodox

In this section, we will investigate the endomorphisms of Pn (the complement of a path Pn)
and prove that End(Pn) is orthodox. We label the graph Pn by the numbers 1, 2, 3, . . . , n in a
counterclockwise manner; for example, see Fig. 1.

It is trivial that {i, j} ∈ E(Pn) if and only if 2 ≤ |i − j | ≤ n − 1 for any i, j ∈ {1, 2, . . . , n}.
Note that Pn can be viewed as a graph obtained by adding an edge {1, n} to Cn , where Cn is
a cycle with n vertices. Thus Pn looks like Cn , but the endomorphism monoids of Pn and Cn
are quite different. By K ∗

n we denote a graph obtained by deleting an edge from Kn , that is
K ∗

n = Kn − e, where e is any edge of Kn .
To prove that End(Pn) is orthodox, there are two cases to be considered, namely where

Pn has odd number of vertices or even number of vertices. We first consider the case for Pn
having odd number of vertices and suppose that n = 2m + 1 for some positive integer m. Let
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Fig. 1. Graphs P7 and P8.

S1 = {1, 3, 5, . . . , 2m + 1}. Then S1 is the only independent set with m + 1 vertices in P2m+1.
Clearly End(P3) is orthodox, so we may assume that m ≥ 2.

Lemma 2.1. (1) The induced subgraph of P2m+1 determined by S1, namely 〈S1〉, is the only
clique of order m + 1 in P2m+1.

(2) P2m+1 does not contain a subgraph isomorphic to K ∗

m+2.

Proof. (1) Since S1 is the only independent set with m + 1 vertices in P2m+1, the induced
subgraph 〈S1〉 of P2m+1 is the only clique of order m + 1 in P2m+1.

(2) Assume P2m+1 contains a subgraph isomorphic to K ∗

m+2. Then it contains more than one
clique of order m + 1, which contradicts (1).

Note that 〈S1〉 is isomorphic to Km+1, the complete graph of m + 1 vertices. We may identify
〈S1〉 with Km+1.

Lemma 2.2. Let f be an endomorphism of P2m+1. Then

(1) f (Km+1) = Km+1,
(2) if x1, x2 ∈ V (P2m+1) such that f (x1) = f (x2), then |x1 − x2| = 1,
(3) there are no three vertices x1, x2, x3 ∈ V (P2m+1) such that f (x1) = f (x2) = f (x3).

Proof. (1) Since any endomorphism f maps a clique to a clique of the same size and Km+1 is
the only clique of size m + 1 in P2m+1, we have f (Km+1) = Km+1.

(2) Note that {x1, x2} ∈ E(P2m+1) if and only if |x1 − x2| 6= 1. If f (x1) = f (x2), then
{x1, x2} 6∈ E(Pm+1) and so |x1 − x2| = 1.

(3) It follows immediately from (2).

Lemma 2.3. Let f ∈ End(P2m+1) and f (i) = f (i + 1) for some i ∈ {1, 2, . . . , 2m}.

(1) If i is even, then f (i) = f (i + 1), f (i + 2) = f (i + 3), . . . , f (2m) = f (2m + 1).
(2) If i is odd, then f (i + 1) = f (i), f (i − 1) = f (i − 2), . . . , f (2) = f (1).

Proof. (1) If f (i) = f (i + 1) and i is even, then by Lemma 2.2 either f (i + 2) = f (i + 3) or
[i +2]ρ f = {i +2}. If [i +2]ρ f = {i +2}, since i +2 is adjacent to all vertices in S1 \{i +1, i +3},
we thus have that f (i +2) is adjacent to all vertices in f (S1) \ { f (i +1), f (i +3)}. On the other
hand, {i, i + 2} ∈ E(P2m+1) implies that { f (i + 1), f (i + 2)} = { f (i), f (i + 2)} ∈ E(P2m+1).
Hence the induced subgraph of P2m+1 determined by f (S1) ∪ { f (i + 2)} is isomorphic to either
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Km+2 or K ∗

m+2. Both cases will yield a contradiction. Thus we must have f (i + 2) = f (i + 3).
With a similar argument, we may show that f (i + 4) = f (i + 5), · · ·, f (2m) = f (2m + 1).

(2) It is the dual of (1).

Lemma 2.4. Let f ∈ End(P2m+1). Then I f is an induced subgraph of P2m+1.

Proof. Let f ∈ End(P2m+1). To prove that I f is an induced subgraph of P2m+1, let a, b ∈ V (I f )

with {a, b} ∈ E(P2m+1). We need to show that there exist c ∈ f −1(a) and d ∈ f −1(b) such that
{c, d} ∈ E(P2m+1).

If both of a and b are odd, since f (S1) = S1, there exist two odd numbers c and d such that
c ∈ f −1(a), d ∈ f −1(b) and {c, d} ∈ E(P2m+1).

If both of a and b are even, then both of f −1(a) and f −1(b) contain only one even number.
Let c = f −1(a) and d = f −1(b). Then {c, d} ∈ E(P2m+1).

If exactly one of a and b is even, without loss of generality, suppose a is even and b is
odd. Then |a − b| ≥ 3 and | f −1(a)| = 1 and so c = f −1(a) is even. If | f −1(b)| = 1 and
|c − f −1(b)| = 1, then a = f (c) is adjacent to at least m vertices in f (S1) and so f (P2m+1)

contains a subgraph which is isomorphic to K ∗

m+2; this is a contradiction. Hence we must have
|c − f −1(b)| ≥ 2 and so {c, f −1(b)} ∈ E(P2m+1). If | f −1(b)| ≥ 2; since f (S1) = S1, there is
an even number d ∈ f −1(b) and therefore {c, d} ∈ E(P2m+1).

For any f ∈ End(P2m+1), let S f = {i ∈ V (P2m+1)||[i]ρ f | = 1}. We have

Lemma 2.5. Let f ∈ End(P2m+1). Then

(1) S f ( f (S f )) is not empty and forms an interval of V (P2m+1). In particular, the even numbers
that appeared in f (P2m+1) are consecutive even numbers in V (P2m+1).

(2) Let i ( j ) be the least (greatest) number in S f . Then i and j are odd. If this is the case, the
partition on V (P2m+1) induced by ρ f is

{1, 2}, . . . , {i − 2, i − 1}, {i}, {i + 1}, . . . , { j}, { j + 1, j + 2}, . . . , {2m, 2m + 1}.

(3) Let i0 ( j0) be the least (greatest) number in f (S f ). Then i0 and j0 are odd. If this is the case,
V (I f ) = {1, 3, . . . , i0 − 2, i0, i0 + 1, . . . , j0, j0 + 1, . . . , 2m + 1}.

Proof. (1) and (2) follow from Lemma 2.3 immediately. Note that f (S1) = S1. For any
a ∈ V (I f ) with a being even, | f −1(a)| = 1 and so f −1(a) contains only an even number.
Now (3) follows from (1), (2) and Lemma 2.4 directly.

Proposition 2.6. End(P2m+1) (m ≥ 2) is regular.

Proof. To prove that End(P2m+1) is regular, let f ∈ End(P2m+1). We only need to show that
there exist two idempotent endomorphisms g and h such that ρg = ρ f and Ih = I f .

Without loss of generality, suppose that V (P2m+1)/ρ f = {[1]ρ f , [3]ρ f , . . . , [2m +

1]ρ f , [2i1]ρ f , [2i2]ρ f , . . . , [2in]ρ f } for some n and i1, i2, . . . , in . Then by Lemmas 2.3 and 2.5
[2i1]ρ f , [2i2]ρ f , . . . , [2in]ρ f are singleton and i1, i2, . . . , in are consecutive numbers. Without
loss of generality, we may suppose that i1 < i2 < · · · < in . Also by Lemmas 2.3 and 2.5 we
have

[k]ρ f =

{k, k + 1} if k ∈ {1, 3, . . . , 2i1 − 3},

{k} if k ∈ {2i1 − 1, 2i1, . . . , 2in + 1},

{k − 1, k} if k ∈ {2in + 3, 2in + 5, . . . , 2m + 1}.



1178 H. Hou et al. / European Journal of Combinatorics 29 (2008) 1173–1185

Define a mapping g from V (P2m+1) to itself by

g(x) =

{
2k + 1 if x ∈ [2k + 1]ρ f , k ∈ {0, 1, . . . , m},

x if x ∈ [2 j]ρ f , j ∈ {i1, i2, . . . , in}.

Then g ∈ End(P2m+1) and ρ f = ρg . If x ∈ [2k + 1]ρ f for k ∈ {0, 1, . . . , m}, then g2(x) =

g(2k + 1) = 2k + 1 = g(x). If x ∈ [2 j]ρ f for j ∈ {i1, i2, . . . , in}, then g2(x) = g(x) = x .
Hence g2

= g and g is an idempotent endomorphism.
By Lemma 2.5 we know the even vertices in V (I f ) must be consecutive even numbers;

without loss of generality, suppose that they are 2 j1, 2 j2, . . . , 2 jn with j1 < j2 < · · · < jn .
Define a mapping h from V (P2m+1) to itself by

h(x) =


x if x ∈ V (I f ),

x − 1 if x ∈ V (P2m+1) \ V (I f ) and x < 2 j1,
x + 1 if x ∈ V (P2m+1) \ V (I f ) and x > 2 jn .

Then h ∈ End(P2m+1) and Ih = I f . If x ∈ V (I f ), then h2(x) = h(x) = x . If x ∈

V (P2m+1)\V (I f ) and x < 2 j1, then h2(x) = h(x−1) = x−1 = h(x). If x ∈ V (P2m+1)\V (I f )

and x > 2 jn , then h2(x) = h(x + 1) = x + 1 = h(x). Hence h2
= h and h is an idempotent

endomorphism.

The next lemma describes the idempotent endomorphisms of P2m+1.

Lemma 2.7. Element f ∈ End(P2m+1) is idempotent if and only if

f =

(
1 2 · · · i − 1 i
1 1 · · · i − 1 i − 1

) (
j j + 1 · · · 2m 2m + 1

j + 1 j + 1 · · · 2m + 1 2m + 1

)
for some i, j with 1 ≤ i < j ≤ 2m + 1, where i ( j) must be even whenever i > 1 ( j < 2m + 1),
i + 2 ≤ j whenever i > 1 and j < 2m + 1.

Proof. Note that f (S1) = S1 and f is idempotent if and only if f (x) = x for all x ∈ V (I f ).
The assertion follows immediately from Lemma 2.3 and the proof of Proposition 2.6.

Theorem 2.8. End(P2m+1) is orthodox.

Proof. By Proposition 2.6, we only need to show that the composition of any two idempotent
endomorphisms is also an idempotent endomorphism.

Let

f =

(
1 2 · · · i − 1 i
1 1 · · · i − 1 i − 1

) (
j j + 1 · · · 2m 2m + 1

j + 1 j + 1 · · · 2m + 1 2m + 1

)
and

g =

(
1 2 · · · s − 1 s
1 1 · · · s − 1 s − 1

) (
t t + 1 · · · 2m 2m + 1

t + 1 t + 1 · · · 2m + 1 2m + 1

)
be two idempotent endomorphisms of P2m+1. Without loss of generality, we may assume that
i, s > 1 and j, t < 2m + 1. Then i, j, s and t are even numbers. If i < s < j < t , then

f g =

(
1 2 · · · s − 1 s
1 1 · · · s − 1 s − 1

) (
j j + 1 · · · 2m 2m + 1

j + 1 j + 1 · · · 2m + 1 2m + 1

)
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is also an idempotent endomorphism. If i < j < s < t , then

f g =

(
1 2 · · · s − 3 s − 2
1 1 · · · s − 3 s − 3

) (
s s + 1 · · · 2m 2m + 1

s + 1 s + 1 · · · 2m + 1 2m + 1

)
is also an idempotent endomorphism. Similarly we can show that f g is an idempotent
endomorphism for the other cases.

Next we consider the case for Pn having even number of vertices and suppose that n = 2m
for some positive integer m. It is clear that End(K2) is orthodox, so we may assume that m ≥ 2.

Lemma 2.9. (1) ω(P2m) = m. In particular, the cliques of P2m of order m are of the form
〈1, 3, . . . , 2k − 1, 2(k + 1), 2(k + 2), . . . , 2m〉 where 0 ≤ k ≤ m (k = 0 means that the
clique is 〈2, 4, . . . , 2m〉, k = m means that the clique is 〈1, 3, . . . , 2m − 1〉).

(2) Any two adjacent vertices in V (P2m) \ V (K ) are not both adjacent to m − 1 vertices in K
for any clique K of order m.

Proof. (1) Note that P2m has no independent set which contains more than m vertices and the
sets {1, 3, . . . , 2k − 1, 2(k + 1), 2(k + 2), . . . , 2m}, k = 0, 1, . . . , m, are the only independent
sets which contains m vertices. The assertion follows immediately.

(2) Let K be a clique of order m in P2m . If K contains both of 1 and 2m, then there are
only two vertices in V (P2m) \ V (K ) which are adjacent to m − 1 vertices in K ; they are two
consecutive numbers and they are not adjacent. If K contains exactly one of 1 and 2m, then there
is only one vertex in V (P2m) \ V (K ) which is adjacent to m − 1 vertices of K .

Lemma 2.10. Let f ∈ End(P2m) and x1, x2 ∈ V (P2m) be such that f (x1) = f (x2). Then
|x1 − x2| = 1. Moreover, if x1 < x2, then x1 is odd.

Proof. The first assertion is obvious.
Suppose that there exists a vertex 2k in V (P2m) such that f (2k) = f (2k + 1). Assume

without loss of generality that k is minimal among the numbers with such a property. Consider
the following cases:

(1) If k = 1, then since the subgraph of P2m induced by A = {2, 4, . . . , 2m} is a clique
isomorphic to Km and {1, 3} ∈ E(P2m), we have that f (1) is adjacent to every vertex in f (A).
Hence the subgraph of P2m induced by { f (1), f (2), f (4), . . . , f (2m)} is isomorphic to Km+1,
which is a contradiction.

(2) If k > 1, then f (2k − 1) 6= f (2k) and [2k − 1]ρ f = {2k − 1} by the minimality.
(2a) Assume f (2k − 2) = f (2k − 3). Then f ({2k − 1} ∪ {2, 4, . . . , 2m}) ∼= Km+1, which is

impossible.
(2b) Assume f (2k − 2) 6= f (2k − 3).
(i) If k = 2, then f (1) and f (3) are not in f (A) and each is adjacent to at least m − 1 vertices

in f (A), which contradicts Lemma 2.9.
(ii) If k ≥ 3, then f (2k − 3) 6= f (2k − 4) by the minimality. Take the clique B of order m in

P2m not containing 2k − 3 and 2k − 4. Then f (2k − 1) and f (2k − 3) are not in f (B) and both
adjacent to at least m − 1 vertices of f (B). This contradiction completes the proof.

Lemma 2.11. Let f ∈ End(P2m).

(1) If [2i]ρ f = {2i} and f (2i + 1) = f (2i + 2), then f (2i + 3) = f (2i + 4), f (2i + 5) =

f (2i + 6), . . . , f (2m − 1) = f (2m).
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(2) If f (2i + 1) = f (2i + 2) and [2i + 3]ρ f = {2i + 3}, then f (2i − 1) = f (2i),
f (2i − 3) = f (2i − 2), . . . , f (1) = f (2).

Proof. We only need to prove (1). Let A = {2, 4, . . . , 2m}. Suppose that there exists a vertex
2k +1 with 2i +3 ≤ 2k +1 < 2m such that [2k +1]ρ f = {2k +1} and f (2 j +1) = f (2 j +2) for
j = i, i + 1, . . . , k − 1. In this case, f (2k + 1) is adjacent to every vertex in f (A) \ { f (2k + 2)}.
Now ω(P2m) = m implies that the subgraph of P2m induced by f (A)∪{ f (2k+1)} is isomorphic
to K ∗

m+1.
By Lemma 2.10, if [2s]ρ f = {2s} for some s, then [2s − 1]ρ f = {2s − 1}. We claim that

[t]ρ f = {t} for t = 1, 2, . . . , 2i −1. Otherwise, there exists j < i such that [2 j −1]ρ f = {2 j −1}

and f (2 j − 3) = f (2 j − 2). Hence the subgraph of P2m induced by f (A) ∪ { f (2 j − 1)} is
isomorphic to K ∗

m+1. Thus f (2 j − 1) and f (2k + 1) are adjacent to m − 1 vertices of f (A).
Note that {2k + 1, 2 j − 1} ∈ E(P2m). This is a contradiction to Lemma 2.9(2). Now [1]ρ f = {1}

implies that the subgraph of P2m induced by f (A) ∪ { f (1)} is isomorphic to K ∗

m+1. This yields
a contradiction to Lemma 2.9(2). Therefore (1) holds.

Lemma 2.12. Let f ∈ End(P2m). Then I f is an induced subgraph of P2m .

Proof. Let f ∈ End(P2m) and suppose that I f is not an induced subgraph of P2m . Then there
exist two vertices a, b ∈ I f with {a, b} ∈ E(P2m) such that {x, y} 6∈ E(P2m) for any x ∈ f −1(a)

and y ∈ f −1(b). In this case, it is easy to see that | f −1(a)| = 1 and | f −1(b)| = 1. Let
f −1(a) = {c} and f −1(b) = {d}. Then |c − d| = 1. Without loss of generality, we may suppose
that c < d .

If c is odd, let A = {1, 3, 5, . . . , c, d + 2, d + 4, . . . , 2m}. Then the subgraph of P2m induced
by A is a clique of order m which is isomorphic to Km and d is adjacent to every vertex of A\{c}.
Thus f (d) is adjacent to every vertex of f (A) \ { f (c)} and so the subgraph of P2m induced by
f (A)∪{b} is isomorphic to Km+1 since { f (c), f (d)} = {a, b} ∈ E(P2m). This is a contradiction
to ω(P2m) = m.

If c is even, then by Lemma 2.10, [c − 1]ρ f , [c]ρ f , [d]ρ f and [d + 1]ρ f are singleton. Let
B = {1, 3, . . . , c−3, c, d+1, d+3, . . . , 2m}. Then the subgraph of P2m induced by B is a clique
of order m which is isomorphic to Km and d is adjacent to every vertex of B\{c, d+1}. Thus f (d)

is adjacent to every vertex of f (B)\{ f (c), f (d+1)}. Note that { f (c), f (d)} = {a, b} ∈ E(P2m)

and ω(P2m) = m. We obtain that the subgraph of P2m induced by f (B) ∪ { f (d)} is isomorphic
to K ∗

m+1. Since c − 1 is adjacent to every vertex of B \ {c}, f (c − 1) is adjacent to every vertex
of f (B) \ { f (c)}. Therefore we conclude that f (c − 1) and f (d) are adjacent to exactly m − 1
vertices of the clique f (B). This is a contradiction to Lemma 2.9(2) since {c − 1, d} ∈ E(P2m).
Consequently, I f is an induced subgraph of P2m .

Lemma 2.13. Let f ∈ End(P2m) and S f = {i ∈ P2m ||[i]ρ f | = 1}. If S f is not empty, then both
of S f and f (S f ) consist of consecutive numbers of V (P2m).

Proof. Let f ∈ End(P2m). Then by Lemmas 1.1 and 2.12 f is a half-strong endomorphism. That
S f consists of consecutive numbers of V (P2m) follows directly from Lemma 2.11. Let i, i + 1 ∈

S f . Since {i, i + 1} 6∈ E(P2m), we have { f (i), f (i + 1)} 6∈ E(P2m). So | f (i) − f (i + 1)| = 1,
that is, f (i) and f (i + 1) are two consecutive numbers. Observe that f is an isomorphism from
the subgraph 〈S f 〉 to the subgraph 〈 f (S f )〉. Therefore f (S f ) consists of consecutive numbers.

Lemma 2.14. Let f ∈ End(P2m).
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(1) If S f is not empty, let i ( j) be the least (greatest) number in S f . Then i is odd and j is even.
If this is the case, the partition on V (P2m) induced by ρ f is

{1, 2}, . . . , {i − 2, i − 1}, {i}, {i + 1}, . . . , { j}, { j + 1, j + 2}, . . . , {2m − 1, 2m}.

(2) Let i0 ( j0) be the least (greatest) number in f (S f ). Then i0 is odd and j0 is even. Moreover,
V (I f ) = {1, 3, . . . , i0 − 2, i0, i0 + 1, . . . , j0, j0 + 2, j0 + 4, . . . , 2m}.

(3) If S f is empty, then the partition on V (P2m) induced by ρ f is

{1, 2}, {3, 4}, . . . , {2m − 1, 2m}

and I f is a clique of order m.

Proof. Observe that |V (P2m) \ S f | is even and the cliques of f (P2m) are of order m.
(1) It follows from Lemma 2.11 immediately.
(2) If S f is not empty, then by Lemmas 2.11 and 2.13, the subgraph of P2m induced by

f (V (P2m) \ S f ) is a clique of order |V (P2m) \ S f |/2 and {i1, i2} ∈ E(P2m) for any vertex
i1 ∈ f (S f ) and any vertex i2 ∈ f (V (P2m) \ S f ). Hence i0 − 1, j0 + 1 6∈ f (V (P2m) \ S f )

whenever i0 − 1 ≥ 1 and j0 + 1 ≤ 2m.
Suppose that i0 is even. Then j0 is odd and | f (V (P2m) \ S f )| =

i0−2
2 +

2m− j0−1
2 <

2m+i0− j0−1
2 . It follows that ω( f (P2m)) <

2m+i0− j0−1
2 +

j0−i0+1
2 = m. This is a contradiction.

Therefore i0 is odd and j0 is even. In this case, the clique f (V (P2m) \ S f ) = {1, 3, . . . , i0 −

2} ∪ { j0 + 2, j0 + 4, . . . , 2m}, where f (V (P2m) \ S f ) = { j0 + 2, j0 + 4, . . . , 2m} if i0 = 1 and
f (V (P2m) \ S f ) = {1, 3, . . . , i0 − 2} if j0 = 2m. Otherwise, without loss of generality, suppose
there exists 2k ∈ {1, 2, . . . , i0 − 2} such that 2k ∈ V (I f ) or 2r + 1 ∈ { j0 + 3, j0 + 4, . . . , 2m}

such that 2r + 1 ∈ V (I f ), then | f (V (P2m) \ S f )| <
2m+i0− j0−1

2 = |V (P2m) \ S f |/2. This is
also a contradiction.

(3) If S f is empty, then every ρ f -class contains two consecutive numbers and |I f | = m; thus
I f is a clique of order m since ω(I f ) = ω(P2m) = m.

Proposition 2.15. End(P2m) is regular.

Proof. Let f ∈ End(P2m). We only need to show that there exist idempotent endomorphisms
g and h such that ρg = ρ f and Ih = I f . To this end, without loss of generality, suppose
V (P2m)/ρ f = {[k1]ρ f , . . . , [kr ]ρ f , [ j1]ρ f , . . . , [ js]ρ f , [kr+1]ρ f , . . . , [kt ]ρ f }, where ku is odd,
k1 < · · · < kr < j1 < · · · < js < kr+1 < · · · < kt and [ku]ρ f = {ku, ku + 1}, [ jv]ρ f = { jv} for
u ∈ {1, 2, . . . , t}, v ∈ {1, 2, . . . , s}. Define a mapping g from V (P2m) to itself by

g(x) =


ku if x ∈ [ku]ρ f , u ∈ {1, . . . , r},

jv if x ∈ [ jv]ρ f , v ∈ {1, . . . , s},
ku + 1 if x ∈ [ku]ρ f , u ∈ {r + 1, . . . , t}.

Then it is easy to see that g ∈ End(P2m), g2
= g and ρg = ρ f . With the same notation as in

Lemma 2.14, let V (I f ) = f (S f )∪{1, 3, . . . , i0−2}∪{ j0+2, j0+4, . . . , 2m}. Define a mapping
h from V (P2m) to itself by

h(x) =

x if x ∈ V (I f ),

x − 1 if x = 2k ∈ {2, . . . , i0 − 1},

x + 1 if x = 2k + 1 ∈ { j0 + 1, . . . , 2m − 1}.

Then it is easy to see that h ∈ End(P2m), h2
= h and Ih = I f .
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The following lemma describes the idempotents in End(P2m).

Lemma 2.16. Element f ∈ End(P2m) is idempotent if and only if

f =

(
1 2 · · · i − 1 i
1 1 · · · i − 1 i − 1

) (
j j + 1 · · · 2m − 1 2m

j + 1 j + 1 · · · 2m 2m

)
for some i, j with 1 ≤ i < j ≤ 2m. If i 6= 1 and j 6= 2m, then i is even, j is odd.

Proof. Note that an endomorphism f of P2m is an idempotent if and only if f (x) = x for all
x ∈ V (I f ). This follows from Lemmas 2.11 and 2.14.

Theorem 2.17. End(P2m) is orthodox.

Proof. The proof follows the same lines as the proof for Theorem 2.8.

Now combining Theorems 2.8 and 2.17, we have

Theorem 2.18. End(Pn) is orthodox.

3. EndospecPn and EndotypePn

In this section, we will give some enumerative results on End(Pn) and determine EndospecPn
and EndotypePn for n ≥ 4.

Let S be a semigroup. Green’s relations L,R and D on S are defined by

a L b ⇔ S1a = S1b,

a R b ⇔ aS1
= bS1,

D = L ∨R.

The next lemma characterizes Green’s relations on the endomorphism monoid of a graph which
is due to Fan [5].

Lemma 3.1 ([5]). Let X be a graph. If f and g are regular endomorphisms of X, then

(1) f L g if and only if ρ f = ρg;
(2) f R g if and only if I f = Ig;
(3) f D g if and only if I f is isomorphic to Ig .

Applying Lemma 3.1 to Pn , we have the following more explicit characterization of Green’s
relations on End(Pn).

Lemma 3.2. Let f, g ∈ End(Pn). Then

(1) f L g if and only if S f = Sg;
(2) f R g if and only if f (S f ) = g(Sg);
(3) f D g if and only if |V (I f )| = |V (Ig)|.

Proof. (1) Let f, g ∈ End(Pn). Then by Lemma 2.5(2) and Lemma 2.14(1), (3) ρ f = ρg if and
only if S f = Sg . Now it follows from Lemma 3.1(1) immediately.

(2) Let f, g ∈ End(Pn). Then by Lemma 2.5(3) and Lemma 2.14(2) I f = Ig if and only if
f (S f ) = g(Sg). Now it follows from Lemma 3.1(2) immediately.



H. Hou et al. / European Journal of Combinatorics 29 (2008) 1173–1185 1183

(3) By Lemma 3.1, we only need to prove I f is isomorphic to Ig if and only if |V (I f )| =

|V (Ig)|. The direct part is obvious.
Conversely, if |V (I f )| = |V (Ig)|, then by Lemmas 2.5 and 2.14 | f (S f )| = |g(Sg)|. By

Lemma 2.5(1) and Lemma 2.13 suppose that f (S f ) = {i, i + 1, . . . , i + t} and g(Sg) =

{ j, j +1, . . . , j + t} for some nonnegative integers i , j and t . Define a mapping h from V (I f ) to
V (Ig) such that h(i + k) = j + k for any 0 ≤ k ≤ t ; for any x ∈ V (I f ) \ f (S f ), h(x) = p(x),
where p is any bijective from V (I f ) \ f (S f ) to V (Ig) \ g(Sg)). It is a routine matter to verify
that h is an isomorphism from I f to Ig . Hence I f ∼= Ig .

Let f ∈ End(Pn) and t = |V (I f )|. Denote by Dt the D-class containing f . In the following,
we first consider the case of n = 2m + 1 with m ≥ 2 and give the order of End(Pn), the
endomorphism spectrum and endomorphism type of P2m+1.

Lemma 3.3. |End(P2m+1)| = 2
∑m

i=1 i i ! + (m + 1)(m + 1)!

Proof. It is clear that End(P2m+1) has m + 1 D-classes: Dm+1, Dm+2, . . . , D2m+1. First let
f ∈ Dm+1. Then |S f | = 1 and S f contains only an odd number. Thus by Lemma 3.2 there are
m + 1 L-classes in Dm+1. Note that f (S1) = S1. f (S f ) contains only an odd number. On the
other hand, f |S1\S f , the restriction of f to S1 \ S f , is a bijection from S1 \ S f to S1 \ f (S f ).
Hence there are (m + 1)! elements in every L-class and therefore there are (m + 1)(m + 1)!

elements in Dm+1. Secondly, for i = 2, . . . , m, let f ∈ Dm+i . Then |S f | = 2i − 1 and S f
consists of 2i −1 consecutive numbers which both start and end with an odd number. Since there
are m − i + 2 such subsets of V (P2m+1), by Lemma 3.2 there are m − i + 2 L-classes in Dm+i .
As in the case for Dm+1, f |S1\S f is a bijection from S1 \ S f to S1 \ f (S f ). Observe that f can
map S f to f (S f ) in two ways and there are m − i +2 possibilities for f (S f ) in V (I f ). There are
2(m−i +2)(m−i +1)! elements in every L-class and therefore there are 2(m−i +2)(m−i +2)!

elements in Dm+i . Finally, let f ∈ D2m+1. Then |S f | = 2m + 1 and so f is an automorphism of
P2m+1. Clearly, D2m+1 = Aut(P2m+1) and D2m+1 has two elements. Summing up, we form the
following table:

D |D/L| |L| |D|

Dm+1 m + 1 (m + 1)! (m + 1)(m + 1)!

Dm+2 m 2m! 2mm!

· · · · · · · · · · · ·

Dm+i m − i + 2 2(m − i + 2)! 2(m − i + 2)(m − i + 2)!

· · · · · · · · · · · ·

D2m 2 2 · 2! 2 · 2 · 2!

D2m+1 1 2 2

Consequently |End(P2m+1)| = 2
∑m

i=1 i i ! + (m + 1)(m + 1)!.

Lemma 3.4. End(P2m+1) = hEnd(P2m+1).

Proof. It follows from Lemma 1.1 and Proposition 2.6.

Lemma 3.5. Aut(P2m+1) = lEnd(P2m+1).

Proof. Let f ∈ lEnd(P2m+1) and suppose that f 6∈ Aut(P2m+1). Then S f 6= V (P2m+1) and
f (i) = f (i + 1) for some 1 ≤ i < 2m + 1. Since |P2m+1| = 2m + 1 is odd, without loss of
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generality, there exists t ≥ 1 such that [t]ρ f = {t} and [t + 1]ρ f = {t + 1, t + 2}. It is clear that
{ f (t), f (t+1)} ∈ I f , f −1( f (t)) = {t}, f −1( f (t+1)) = {t+1, t+2} and {t+1, t} 6∈ E(P2m+1).
Hence f 6∈ lEnd(P2m+1). Thus we have Aut(P2m+1) = lEnd(P2m+1).

Theorem 3.6. Endospec(P2m+1) = (2
∑m

i=1 i i ! + (m + 1)(m + 1)!, 2
∑m

i=1 i i ! + (m + 1)(m +

1)!, 2, 2, 2, 2).

Proof. It follows immediately from Lemmas 3.3–3.5.

Corollary 3.7. Endotype(P2m+1) = 2.

Proof. By Theorem 3.6, |hEnd(P2m+1)| 6= 2 when m ≥ 2 and so hEnd(P2m+1) 6= lEnd(P2m+1).
Now the assertion follows from the definition of endomorphism type and Lemmas 3.4 and 3.5.

Next we consider the case of n = 2m with m ≥ 2.

Lemma 3.8. |End(P2m)| = 2
∑m

i=1 i i ! + (m + 1)!

Proof. It is clear that End(P2m) has m + 1 D-classes: Dm, Dm+1, . . . , D2m . First let f ∈ Dm .
Then S f is empty and by Lemma 2.14(3) and 3.2 there is only one L-class in Dm . In this case,
I f is a clique of order m and so there are m! elements in L f such that their images are I f . By
Lemma 2.9(1) there are m + 1 cliques in P2m and thus there are m + 1 possibilities of I f in P2m .
Hence there are (m + 1)! elements in L f and therefore Dm has (m + 1)! elements. Secondly, for
i = 1, . . . , m − 1, let f ∈ Dm+i . Then |S f | = 2i and S f consists of 2i consecutive numbers
which start with an odd number and end with an even number. Since there are m − i + 1 such
subsets of V (P2m), by Lemma 3.2 there are m − i +1 L-classes in Dm+i . By Lemma 2.14(1) the
restriction of f to V (P2m/ρ f ) \ {[s]ρ f |s ∈ S f } is a bijection from V (P2m/ρ f ) \ {[s]ρ f |s ∈ S f }

to V (I f ) \ f (S f ). Observe that there are two ways to map S f to f (S f ) and there are m − i + 1
possibilities for f (S f ) in V (I f ). Hence there are 2(m − i + 1)(m − i)! elements in every L-
class and therefore Dm+i has 2(m − i + 1)(m − i + 1)! elements. Finally, let f ∈ D2m . Then
|S f | = 2m and so f is an automorphism of P2m . Clearly, D2m = Aut(P2m) and D2m has two
elements. Summing up, we form the following table:

D |D/L| |L| |D|

Dm 1 (m + 1)! (m + 1)!

Dm+1 m 2m(m − 1)! 2mm!

· · · · · · · · · · · ·

Dm+i m − i + 1 2(m − i + 1)(m − i)! 2(m − i + 1)(m − i + 1)!

· · · · · · · · · · · ·

D2m−1 2 2 · 2! 2 · 2 · 2!

D2m 1 2 2

Consequently, |End(P2m)| = 2
∑m

i=1 i i ! + (m + 1)!.

Lemma 3.9. End(P2m) = hEnd(P2m).

Proof. It follows from Lemma 1.1 and Proposition 2.15.

Lemma 3.10. lEnd(P2m) = qEnd(P2m) = Dm ∪ D2m .
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Proof. Clearly qEnd(P2m) ⊆ lEnd(P2m). Let f ∈ End(P2m) be such that f 6∈ D2m and
f 6∈ Dm . Then S f is not empty and S f 6= V (P2m). As in the proof for Lemma 3.5, we may
show that f 6∈ lEnd(P2m). Hence lEnd(P2m) ⊆ Dm ∪ D2m .

Let f ∈ Dm . Then for each i ∈ V (P2m), |[i]ρ f | = 2. Now for a, b ∈ I f with a 6= b (note
that I f is a clique), there are two numbers i, j ∈ V (P2m) such that f −1(a) = {i − 1, i} and
f −1(b) = { j, j + 1}. It is clear that i − 1 is adjacent to both j and j + 1 and j + 1 is adjacent
to both i − 1 and i . This implies that f ∈ qEnd(P2m). If f ∈ D2m , then f is an automorphism
of P2m and so f ∈ qEnd(P2m). We have proved that Dm ∪ D2m ⊆ qEnd(P2m). Consequently
lEnd(P2m) = qEnd(P2m) = Dm ∪ D2m .

Lemma 3.11. sEnd(P2m) = Aut(P2m).

Proof. It is clear that Aut(P2m) ⊆ sEnd(P2m). Let f be a strong endomorphism but not an
automorphism. Then there are i, j ∈ V (P2m) such that f (i) = f ( j) and so |i − j | = 1 by
Lemma 2.10. Without loss of generality, suppose that i < j < 2m (note that m ≥ 2). Clearly,
{ f (i), f ( j + 1)} ∈ E(I f ) and { j, j + 1} 6∈ E(P2m). This implies that f 6∈ sEnd(P2m), a
contradiction. Therefore sEnd(P2m) ⊆ Aut(P2m) and sEnd(P2m) = Aut(P2m).

Theorem 3.12. Endospec(P2m) = (2
∑m

i=1 i i ! + (m + 1)!, 2
∑m

i=1 i i ! + (m + 1)!, (m + 1)! +

2, (m + 1)! + 2, 2, 2).

Proof. From the proof for Lemma 3.8, we have |Dm ∪ D2m | = (m + 1)! + 2 and |Aut(P2m)| =

|D2m | = 2. Now the assertion follows from Lemmas 3.8–3.11.

Corollary 3.13. Endotype(P2m) = 10.

Proof. By Theorem 3.12, it is easy to see that End(P2m) = hEnd(P2m) 6= lEnd(P2m) =

qEnd(P2m) 6= sEnd(P2m) = Aut(P2m) whenever m ≥ 2. Thus Endotype(P2m) = 10.

Recall that a graph X is S-unretractive if sEnd(X) = Aut(X) (see [3]).

Corollary 3.14. For any positive integer n, Pn is S-unretractive.

Proof. It follows from Lemmas 3.5 and 3.11.
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