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a b s t r a c t

YsxC is an essential P-loop GTPase, that binds to the 50S ribosomal subunit, and is required for the
proper assembly of the ribosome. The aim of this study was to characterize YsxC ribosome interac-
tions.

The stoichiometry of YsxC ribosome subunit complex was evaluated. We showed that YsxC binding
to the 50S ribosomal subunit is not affected by GTP, but in the presence of GDP the stoichiometry of
YsxC-ribosome is decreased. YsxC GTPase activity was stimulated upon 50S ribosomal subunit bind-
ing. In addition, it is shown for the first time that YsxC binds both 16S and 23S ribosomal RNAs.
� 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction assembly because dissociated ribosomal subunits accumulate in
Ribosomes are cellular organelles composed of approximately
60% ribosomal RNA (rRNA) and 40% protein that catalyze protein
synthesis in the cell. The bacterial 70S ribosome contains about
55 ribosomal proteins (depending on the species) and 3 ribosomal
RNAs, organized into two subunits: the small (30S) and large (50S)
ribosomal subunits. Formation of the ribosomal particle involves a
complex series of processes, i.e., synthesis, processing and modi-
fication of both rRNA [1,2] and ribosomal proteins [3,4], and
assembly of the components. Recently, by using quantitative mass
spectrometry, Chen and Williamson [5] were able to provide a
clear picture of in vivo 30S and 50S assembly. A variety of non-
ribosomal factors are involved in the ribosome biogenesis process.
Among them, several phosphate-binding loop (P-loop) GTPases
(YlqF/RbgA [6,7], CgtAE/ObgE [8,9], YphC [10] and YsxC [10,11])
have been suggested to be necessary for bacterial ribosome
cells depleted in these GTPases.
YsxC is an essential P-loop GTPase in in Escherichia coli [12,13],

Bacillus subtilis [14] and Staphylococcus aureus [11]. The protein
from B. subtilis [15,16] was crystallized as a single domain protein
of 22kDa. The protein undergoes conformational changes during
nucleotide binding [16]. YsxC associates primarily with the 50S
subunit of the ribosome [11,17] and, when expressed in E. coli,
co-purifies with the ribosomal fraction [17]. In this study, we thor-
oughly characterized YsxC association with the ribosome, by
examining the role of nucleotides, quantifying the number of
YsxC molecules bound to the ribosomal subunits, and investigating
YsxC binding to the ribosomal RNAs.

2. Materials and methods

2.1. Preparation of recombinant and wild-type YsxC proteins

Recombinant B. subtilis (His)6YsxC was cloned, expressed and
purified to homogeneity, as described [17], and stored in 50 mM
NaPO4 buffer, pH 8, containing 15% (v/v) glycerol and either
0.75 M NaCl or 0.5 M KCl.

Mutants in the P-loop motif were generated by the Quickchange
protocol (Stratagene) with the pET15b-ysxC [17] used as a tem-
plate, and the oligonucleotides indicated (Supplementary
Table 1). The constructs were confirmed by DNA sequencing
(Genome express). Standard genetic techniques were used [18].
Expressions were done at 18 �C. Purifications of the mutants were
the same as for the wild-type protein.
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2.2. Assay of GTPase activity

GTPase activity was followed by spectrophotometric recording
of NADH oxidation in the presence of a GTP-regenerating system,
at 37 �C. Enzyme (20 lg) was added to the assay medium
(50 mM NaPO4, pH 8.0, 0.15 M NaCl, 30 mM KCl, 4 mM phospho-
enolpyruvate, 0.4 mM NADH, 8 lg of pyruvate kinase, 4 lg of lac-
tate dehydrogenase, 2 mM MgCl2, and 1 mM GTP, 200 ll final
volume), as detailed [19]. GTP was regenerated from GDP by pyru-
vate kinase, with a concomitant production of pyruvate from phos-
phoenolpyruvate. Pyruvate was then converted to lactate by
lactate dehydrogenase, with, concomitantly, NADH oxidation to
NAD+, which was followed by the change in absorbance at
340 nm for 10 min (eNADH340nm = 6220 (mol�1 cm�1). The experi-
ments were performed with a Safas UVmc2 spectrophotometer.
Control experiments were systematically performed in the absence
of nucleotides (protein alone) or in the absence of proteins (nucleo-
tides alone) and the rates of NADH disappearance in all cases were
negligible. The activities were expressed as lmol GTP hydrolyzed/
min/mg protein.

2.3. Ribosome purification and preparation of 30S and 50S subunits

Ribosomes from B. subtilis (strain 168) were prepared following
the detailed protocol of Fechter et al. [20] and separated on a
5–20% sucrose gradient into 30S and 50S subunits, as described
[17]. 30S and 50S subunits fractions were stored at �80 �C (final
concentration: 12 lM).

2.4. Binding of YsxC to ribosome

A filtration-based binding assay was used [21]. YsxC was incu-
bated with 0.2 lM ribosome in 80 ll of 30 mM Tris–HCl, pH 7.5,
10 mM Mg acetate, 60 mM NH4Cl, 60 mM KCl, 2.5 mM dithiothre-
itol (DTT) at 30 �C for 10 min. The mixture was applied onto
Centricon YM-100 (Millipore) which was centrifuged for 5 min at
3000g to retain the ribosome-bound YsxC, and washed twice with
100 ll of the same buffer. 40 ll of buffer was applied onto the filter
for 1 min and the ribosome-bound YsxC was collected from the
inverted filter by centrifugation (3000g for 1 min). The recovered
YsxC was detected by Western blotting using an India™
HisProbe-HRP (Pierce) and quantified. Control experiments with-
out ribosomes were done.

2.5. In vitro synthesis of 5S, 16S, and 23S RNA

5S, 16S, and 23S DNAs were amplified from B. subtilis genomic
DNA by PCR using the primers depicted in Supplementary
Table 2. The cloning into the pET21 vector (Novagen) of the ampli-
fied products (116, 1470, and 2926 bp for 5S, 16S, and 23S DNA,
respectively) were done according established methods [18]. All
constructs were checked by sequencing.

In vitro transcription reactions were realized using the
RiboMAX™ Large scale RNA Production Systems kit (Promega).
DNA templates were linearized by EcoRI (5S DNA) or XhoI, (16S
and 23S RNA), prior to in vitro transcription at 37 �C for 4 h. In vitro
transcripts were further purified using the MEGAclear™ kit
(Ambion). The quality of in vitro transcripts was examined by
denaturing gel electrophoresis (1% agarose for 16S and 23S RNA)
or 6% acrylamide gel electrophoresis for 5S RNA). RNA concentra-
tion was determined by absorbance at 260 nm.

2.6. 50-end rRNA biotinylation

rRNAs were dephosphorylated by calf intestine phosphatase
(CIP, 0.01 unit/pmole of 50 end of RNA) at 37 �C for 1 h. CIP was
removed by phenol extraction. After ethanol precipitation, RNAs
were phosphorylated at 37 �C for 1 h by T4 polynucleotide kinase
using UTP-biotin (10 units polynucleotide kinase/100 pmol RNA,
25 pmol Biotin-11-UTP (Fermentas)). Biotinylated 16S and 23S
rRNAs were further purified using the MEGAclear™ kit (Ambion).
5S rRNA was purified by ammonium acetate precipitation.

2.7. rRNA blot overlay assay

rRNA blot overlay assays were performed following the protocol
described by Palaniyandi et al. [22]. In brief, after YsxC migration
on a 14% SDS–PAGE and electrotransfer to nitrocellulose, the mem-
branes were washed three times 10 min and incubated in binding
buffer (50 mM Tris–HCl, pH 8.0, 150 mM KCl, 0.5 mM DTT, 1 mM
EDTA, 10 lg/ml E. coli tRNA) in the presence of biotinylated rRNA
at 4 �C for 16 h. The blots were washed three times with binding
buffer at room temperature, 5 min per wash. Biotin-labeled RNA
was detected using the Biotin Chromogenic Detection Kit
(Fermentas).

2.8. Thermal shift assay (TSA)

The assay used a real-time PCR machine (CFX Manager), the
iCycler iQ Real-Time Detection System (Bio-Rad), which monitors
fluorescence changes of sypro orange dye (excitation/emission:
490/575 nm) as it interacts with the protein undergoing thermal
unfolding, in thin-walled 96-well PCR plates. Each well (25 ll) con-
tained 2 lg protein and 2 ll of the fluorescent Sypro orange dye
solution (Molecular Probes, 500� in DMSO, diluted 5 times in
water), in 50 mM NaPO4, pH8.0, 0.15 M NaCl and was heated from
20 to 100 �C in 0.2 �C steps.

3. Results and discussion

3.1. The stoichiometry of YsxC-ribosome

We had shown by sucrose density gradient that YsxC associated
mainly with the free 50S ribosomal subunit in the absence of
exogenous nucleotides [17]. However, the amount of bound YsxC
had not been quantified previously. To better characterize
YsxC-ribosome associations, the stoichiometry of the complex
was evaluated, using a filtration-based binding assay [21].

The number of YsxC molecules bound per 70S, 50S or 30S particle
was determined at different YsxC-particle ratios in the binding assay
(up to 10-fold YsxC excess) in buffer 1 (Fig. 1a) (30 mM Tris–HCl,
pH 7.5, 10 mM Mg acetate, 60 mM NH4Cl, 60 mM KCl, 2.5 mM
DTT). Control experiments without ribosomes were done to
check that there was no non-specific interaction between
YsxC and the filter membrane (Fig. 1a). The stoichiometry of the
YsxC-50S complex was determined to be 1 and a high excess of
YsxC did not significantly affect this ratio (see Table 1 and Ref.
[23] for establishing the amount of recovered protein and
ribosome). By contrast, there was no YsxC binding to 30S, and a
faint binding to 70S ribosome (perhaps due to partial ribosome
dissociation) (Fig. 1a).

We also investigated a buffer we used in a former study (buffer
2: 10 mM Tris–HCl, pH 7.4, 10 mM Mg acetate, 30 mM KCl, [17]),
and the buffer used by Nakano et al. [21], (buffer 3: 10 mM Tris–
HCl, pH 7.4, 8.2 mM Mg acetate, 50 mM NH4Cl, 1 mM DTT,
0.3 mM EDTA), for measuring YlqF binding to the 50S subunit by
the same filtering technique (Fig. 1b and 1c and Table 1). The ionic
strength of buffer 2 was lower than that of buffer 1, resulting in
more YsxC binding to all ribosomal particles (Table 1). YsxC had
a strong tendency to stick to the ribosomal subunits in buffer 3:
the more YsxC we added, the more binding we observed
(Fig. 1c). As the ionic strengths of buffers 1 and 3 were comparable,
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Fig. 1. Binding of YsxC to 70S ribosome or each subunit in three different buffers. A
filtering technique was used. YsxC in the range of 0–2 lM was incubated in the
presence (0.2 lM) or absence of ribosome at 30 �C for 10 min in different buffers, (a)
buffer 1: 30 mM Tris–HCl, pH 7.5, 10 mM Mg acetate, 60 mM NH4Cl, 60 mM KCl,
2.5 mM DTT, (b) buffer 2: 10 mM Tris–HCl, pH 7.4, 10 mM Mg acetate, 30 mM KCl
[17], (c) buffer 3: 10 mM Tris–HCl, pH 7.4, 8.2 mM Mg acetate, 50 mM NH4Cl, 1 mM
DTT, 0.3 mM EDTA [21]. The mixture was applied to a Centricon YM-100 filter
(Millipore). After centrifugation and washing of the filter, ribosome-bound YsxC
was recovered from the inverted filter by centrifugation. Binding to ribosome was
analyzed by Western blotting.

Table 1
Influence of the buffer composition on the stoichiometry of the YsxC bound per
particle. The number of YsxC molecules bound per ribosome was estimated by
analysis of in vitro binding of a 5-fold excess of YsxC to the 50S subunit. YsxC (1 lM)
was preincubated with 0.2 lM ribosomal particle at 30 �C for 10 min, applied to
Microcon 100 (Millipore), and centrifuged. The 50S-bound YsxC complex was
recovered by centrifugation of the inverted column. To establish the stoichiometry,
we first measured the absorbance of the recovered ribosome-YsxC at 260 nm with a
nanodrop apparatus. The absorbance of a 0.2 lM 30S, 50S, and 70S ribosome solution
at 260 nm for a path length of 1 cm is 2.9, 5.8, and 8.7, respectively [23] and the one of
a 0.2 lM YsxC solution is 0.007 at 260 nm. YsxC absorbance being negligible,
ribosome concentration can be determined by measuring the absorbance at 260 nm.
Then, each concentration of YsxC was determined by separate quantitative Westerns
using known amounts of YsxC to generate standard curves and the amount was
analyzed by Western blotting. The experiments were done in triplicate and the mean
value ± the standard deviation is indicated.

Buffer YsxC bound per particle

70S 50S 30S

Buffer 1 0.3 ± 0.2 1 ± 0.3 0
Buffer 2 2 ± 0.6 3 ± 1 1 ± 0.3
Buffer 3 4 ± 0.7 8 ± 2 4 ± 1

Buffer 1 (this study): 30 mM Tris–HCl, pH 7.5, 10 mM Mg acetate, 60 mM NH4Cl,
60 mM KCl, 2.5 mM DTT. Buffer 2 [17]: 10 mM Tris–HCl, pH 7.4, 10 mM Mg acetate,
30 mM KCl. Buffer 3 [21]: 10 mM Tris–HCl, pH 7.4, 8.2 mM Mg acetate, 50 mM
NH4Cl, 1 mM DTT, 0.3 mM EDTA.
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we presumed that KCl might protect YsxC against denaturation,
thus preventing YsxC to ‘‘stick’’ to the 50S particle. Association of
another GTPase (the CgtAC protein from Caulobacter crescentus)
with the 50S ribosomal particle was also shown to be dependent
on both the salt concentration and the magnesium counter ion
used in the assay [24].

In order to investigate KCl putative role to protect YsxC against
denaturation, thermal shift assay (TSA) experiments were per-
formed in the presence of increasing concentrations of NaCl or
KCl (Fig. 2). The melting temperature (Tm) of YsxC in the presence
of 0.15 M (final concentration) NaCl was 40.8 �C. When KCl was
used instead of NaCl, the observed Tm was 53.7 �C (Table 2), indi-
cating that KCl has a more stabilizing effect on YsxC than NaCl at
this concentration. This protective effect of KCl is consistent with
its intracellular concentration found in bacteria: 200 mM in
E. coli [25] and 400 mM in B. subtilis [26]. The stabilizing effect of
these two salts further increased as the salt concentration raised
(Fig. 2 and Table 2). Higher concentrations of either KCl or NaCl
(from 0.25 M onwards) turned out to be equally beneficial for the
protein stability. In preliminary experiments, we noticed that we
did not obtain TSA curves of satisfactory quality when the protein
was prepared and stored in a 0.15 M NaCl buffer. Consequently, the
protein was subsequently stored at �80 �C in phosphate buffer
either in the presence of 0.75 M NaCl, or 0.5 M KCl, and was diluted
just before the experiments allowing us to obtain reproducible
data for the denaturation curves. Upon dilution of YsxC at a final
concentration of either 0.15 M NaCl or KCl, the protein was found
to be stable at 4 �C for at least 1 week, as checked by thermal
denaturation curves (data not shown).

YsxC is a so-called HAS (Hydrophobic Amino acid Substituted
for catalytic glutamine)-GTPase [27], because a hydrophobic amino
acid (Y 79) is found instead of a catalytic glutamine otherwise pre-
sent in many GTPases (e.g. Q61 in Ras) [28]. Interactions with
potassium have been reported to enhance the GTPase activity of
some of these GTPases, such as EngA [19,29], YqeH [30], RbgA
[31], and MnmE [32,33]. However, we were unable to measure
any increase in the GTPase activity of YsxC in the presence of KCl
concentration up to 400 mM. Potassium displays a stabilizing
effect on YsxC, but has no effect on the GTPase activity of the
protein.

3.2. Influence of exogenous nucleotides on the YsxC-50S subunit
binding

Whereas most GTPases bind to the ribosome in their active
GTP-bound state, YsxC is able to interact with the 50S subunit in
its nucleotide-free state [17]. Only a few exceptions including
Era, which associates with the 30S ribosomal subunit, and HflX,
which binds to the 50S ribosomal subunit, are known to be able
to interact with the ribosome in the absence of nucleotide [34,35].
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Fig. 2. YsxC thermal shift assays (TSA). (a) Example thermal shift data of YsxC showing the raw data curve alongside the negative first derivative curve. Protein melting
profiles were monitored (see Section 2). The assay includes the presence of sypro orange dye, the fluorescence of which is exacerbated upon binding to hydrophobic patches
of unfolded protein. As the temperature gradually increases, and above a certain threshold, YsxC starts to unfold and exposes its hydrophobic regions, resulting in dye binding
and an increased fluorescence signal of the dye. At higher temperature, the protein is completely unfolded and begins to aggregate, protein aggregates accumulate and clump
together. The dye is quenched, resulting in a decrease in fluorescence. The melting temperature of the protein (Tm) is obtained at the midpoint of the melting curve (figure (a)
on the left). This value corresponds to the minimum of the negative derivative curve of the thermal denaturation data (figure (b) on the right). The melting temperature is an
indicator of protein stability and can be used to optimize conditions that minimize protein denaturation. (b) Influence of increasing concentrations of NaCl (0.15–0.75 M) on
YsxC melting temperature. (c) Influence of increasing concentrations of KCl (0.15–0.75 M) on YsxC melting temperature.

Table 2
Thermal stability of YsxC in the presence of increasing concentrations of KCl and NaCl.
Tm values were displayed by the software (iCycler iQ Real-Time Detection System,
Bio-Rad) from the raw data curves and the negative derivative curves. All TSA
experiments were done in quadruplicate, in 50 mM NaPO4, pH8.

KCl (final concentration) 0.15 M 0.25 M 0.5 M 0.75 M
Tm (�C) 53.7 ± 0.3 55 ± 0.7 57.1 ± 0.3 59.3 ± 0.08

NaCl (final
concentration)

0.15 M 0.25 M 0.5 M 0.75 M

Tm (�C) 40.8 ± 0.2 55.8 ± 0.6 57.6 ± 0.07 59.3 ± 0.15
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The effect of the absence or the presence in the binding buffer of
excess (200 lM) GDP, GTP, or guanylyl-imidodiphosphate
(GMPPNP) (a non-hydrolysable GTP analog) on the stoichiometry
of YsxC-50S ribosomal subunit complex in buffer 1 was evaluated,
using the same filtration-based binding assay (see Section 2). The
stoichiometry of 1 mol YsxC/mole 50S ribosomal subunit was
independent of the absence or the presence of GTP or GMPPNP in
the binding buffer (Fig. 3). However, GDP-YsxC had a reduced bind-
ing ability to 50S particle, since the ratio of bound YsxC/50S parti-
cle never exceeded 0.5 (Fig. 3).
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Fig. 3. Binding of YsxC to the 50S ribosomal subunit, as influenced by addition of
nucleotides or by YsxC GTPase activity. (a) Influence of exogenous nucleotides on
the binding of YsxC bound to the 50S particle. YsxC (1 lM) was preincubated with
0.2 lM ribosomal 50S particle at 30 �C for 10 min, in the absence or presence of
either 200 lM GTP, GMPPNP, or GDP in buffer 1 (30 mM Tris–HCl, pH 7.5,
10 mM Mg acetate, 60 mM NH4Cl, 60 mM KCl, 2.5 mM DTT), applied to Microcon
100 (Millipore), and centrifuged. Nucleotides (200 lM, final concentration) were
added in the washing and elution buffers. The 50S-bound YsxC complexes were
recovered by centrifugation of the inverted column. Binding to ribosome was
analyzed by Western blotting. Control experiments without ribosomes (1 lM
YsxC + 200 lM GTP and 1 lM YsxC + 200 lM GDP) are shown. (b) Binding of an
GTPase inactive mutant of YsxC to the 50S particle. YsxC or YsxC-S37A were
preincubated with 0.2 lM ribosomal 50S particle at 30 �C for 10 min in buffer 1 and
binding to the 50S subunit was analyzed by filtering experiment, as explained
above. Control experiments without ribosome (1 lM YsxC and 1 lM YsxC-S37A)
are shown.
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We reported in an earlier study [17] that YsxC binding to the
50S ribosomal subunit of B. subtilis was stronger in the presence
of the non-hydrolysable GTP analogue GMPPNP.

In that study, another technique had been used, as YsxC-50S
complex had been layered on a sucrose gradient and centrifuged
at 200000g for 190 min. This lapse of time might allow YsxC to
slowly hydrolyse GTP into GDP, resulting in a possible dissociation
of YsxC from the 50S particle during the ultracentrifugation step,
consistent with the presence of YsxC throughout many of the early
fractions [17].

3.3. Ribosome binding of a Walker A mutant of YsxC

YsxC mutants that targeted conserved residues within the
Walker A (YsxC-K36A, YsxC-S37A) or the conserved Asp of the
DXXG motif (YsxC-D75A) were created. These mutations are sup-
posed to alter YsxC GTPase activity. We were unable to obtain sol-
uble proteins for the YsxC-K36A and YsxC-D75A mutants, whereas
YsxC-S37A mutant was obtained in a soluble form.

YsxC-S37A binding to the 50S ribosomal subunit was performed
with no added exogenous nucleotide and measured by the filtering
technique, as described in Section 2. This mutation had no effect on
the protein ability to bind to 50S particles (Fig. 3b).

The fact that the protein, following the mutation of a conserved
residue in the Walker A motif is still able to bind the 50S ribosomal
particle corroborates the independence of YsxC-ribosome interac-
tion on the presence of exogenous nucleotides.

3.4. GTP-hydrolyzing activity of YsxC is stimulated by the 50S
ribosomal particle

The intrinsic GTPase activity of YsxC is very low
(0.004 lmol min�1 mg�1, or 0.09 mmol min�1 mmol�1), but in the
same range as the one of Era from E. coli (0.01–0.02 mmol min�1

mmol�1 [36]), CpgA from B. subtilis (0.05 mmol min�1 mmol�1

[37]), or ras p21 (0.005–0.006 mmol min�1 mmol�1, [38]). When
1 lM 50S particles was added, YsxC activity raised by a 3.7- to
9-fold factor (0.33–0.83 mmol min�1 mmol�1). The stimulation of
YsxC GTPase activity is in the same order of magnitude than the
stimulation observed for HflX upon binding to the 50S (8-fold
increase for the hydrolysis of GTP [35]) but lower than that
observed for 70S-bound CpgA (50-fold [37]). By contrast, no
enhancement in YsxC activity could be detected in the presence
of 30S particles.

As expected, the Walker A mutant (S37A) displayed no measur-
able GTPase activity, either in the presence or in the absence of 50S
particles. This is consistent with the fact that mutation of the
equivalent residue in other GTPases has been found to significantly
alter the hydrolytic activity [39]. The lack of GTPase activity in
YsxC Walker A mutant strongly supports the conclusion that the
measured activity detected in the wild-type YsxC preparation is
indeed borne by this protein and not due to some contaminant(s),
YsxC-S37A mutant being purified to the same degree of homogene-
ity than the wild-type enzyme (Supplementary Fig. 1).

3.5. YsxC binds 16S and 23S rRNAs

To examine whether YsxC associates with the rRNA, YsxC,
bound to a nitrocellulose membrane, was incubated in binding
buffer containing biotinylated ribosomal RNAs. After an extensive
wash of the membrane, the presence of bound rRNA was detected
by specific biotin chromogenic detection. The results revealed that
YsxC wild-type is able to bind to both the 16S and 23S rRNA, but
not to the 5S RNA (Fig. 4). The Walker A YsxC mutant behaves simi-
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Fig. 4. YsxC or YsxC-S37A was electrotransferred to a nitrocellulose membrane,
washed three times with binding buffer containing yeast tRNA to avoid unspecific
binding (10 min per wash) and incubated with biotin-labeled RNA transcripts, as
described in Section 2. Biotin-labeled RNA was detected using the biotin
chromogenic detection kit from Fermentas.
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larly as the wild-type protein (Fig. 4). Again, YsxC shows similari-
ties with Hflx, since this protein binds both the 16S and 23S
rRNA [35] while it specifically associates with the 50S ribosomal
particles [35,40]. Another GTPase, Obg/CgtA, that binds to the
50S subunit [24,41] and to the 30S subunit [8], has also been
reported to bind both the 16S and 23S rRNA [8].

The binding of YsxC to 23S rRNA is consistent with the interac-
tion of the protein with the 50S ribosomal subunit. The protein
probably has motives or domains that are responsible for this bind-
ing. The fact that YsxC is also able to bind the 16S RNA can suggest
that the protein recognizes secondary structures in naked 23S or
16S rRNA rather than a specific sequence, although YsxC associates
also with the small ribosomal subunit under non-stringent condi-
tions (Fig. 1b). YsxC interaction with ribosomal RNA strongly sup-
ports a role for this protein in the assembly of both ribosomal
subunits. Earlier YsxC depletion experiments resulting in the accu-
mulation of ribosomal large subunit intermediates sedimenting
slightly slower than 45S [10] are also in favor of YsxC requirement
for 50S ribosome assembly.
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