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Multilocus sequence typing (MLST) has become the preferred method for genotyping many biological
species, and it is especially useful for analyzing haploid eukaryotes. MLST is rigorous, reproducible,
and informative, and MLST genotyping has been shown to identify major phylogenetic clades, molecular
groups, or subpopulations of a species, as well as individual strains or clones. MLST molecular types often
correlate with important phenotypes. Conventional MLST involves the extraction of genomic DNA and
the amplification by PCR of several conserved, unlinked gene sequences from a sample of isolates of
the taxon under investigation. In some cases, as few as three loci are sufficient to yield definitive results.
The amplicons are sequenced, aligned, and compared by phylogenetic methods to distinguish statistically
significant differences among individuals and clades. Although MLST is simpler, faster, and less expensive
than whole genome sequencing, it is more costly and time-consuming than less reliable genotyping
methods (e.g. amplified fragment length polymorphisms). Here, we describe a new MLST method that
uses next-generation sequencing, a multiplexing protocol, and appropriate analytical software to provide
accurate, rapid, and economical MLST genotyping of 96 or more isolates in single assay. We demonstrate
this methodology by genotyping isolates of the well-characterized, human pathogenic yeast Cryptococcus
neoformans.
� 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Efficient methods for estimating the genetic diversity among
microorganisms are essential for understanding their evolutionary
history, geographic distribution, and pathogenicity. In the past dec-
ades, numerous methods have been developed for typing bacteria
and fungi (Li et al., 2009; Vanhee et al., 2010). Some of these meth-
ods can characterize a large number of isolates at low cost, such as
pulsed-field gel electrophoresis (PFGE) (Schwartz and Cantor,
1984) and amplified fragment length polymorphism (AFLP) (Vos
et al., 1995). However, the results of these methods are laboratory
specific and usually are not comparable among laboratories.
Conversely, DNA sequencing results can be archived and shared
among laboratories, and therefore, these methods are widely used
in microbial studies today (Janbon et al., 2014; Li et al., 2009;
Litvintseva et al., 2006; Tavanti et al., 2005; Taylor and Fisher,
2003; Vanhee et al., 2010). Multilocus sequence typing (MLST) tar-
gets multiple genomic loci and is considered one of the most reli-
able and informative methods for molecular genotyping (Maiden
et al., 1998; Schwartz and Cantor, 1984). MLST has been applied
to many pathogenic microorganisms, and there is increasing inter-
est in the variation among isolates and within microbial popula-
tions, especially in studies of microbial evolution, pathogenesis,
ecology, and microbiomes (Byrnes et al., 2009; Chen et al., 2013;
Litvintseva and Mitchell, 2012; Meyer et al., 2009). Moreover,
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online MLST databases have been constructed for several bacterial
and fungal species to facilitate molecular epidemiological studies
and surveillance (Chan et al., 2001). MLST genotyping is a superb
approach to delineate species and strains, but the current method-
ology is costly, time-consuming, and laborious.

To accelerate automation and expand the versatility of the cur-
rent MLST method, we developed a high-throughput next-genera-
tion sequencing approach, NGMLST, and an automated software
program for data analyses, MLSTEZ. We adapted multiplex PCR,
which may save more than 75% of the PCR work (calculated based
on using seven MLST loci). For next-generation sequencing, we
employed the Pacific Biosciences (PacBio) circular consensus
sequencing (CCS) technology, which is capable of generating rela-
tively inexpensive, single-molecule consensus reads of 1–2 kbp in
length. Unlike the usual PacBio read, a CCS read is an error-
corrected consensus read generated from the consensus alignment
of single-molecule circular sequencing (Eid et al., 2009). Therefore,
the accuracy of a CCS read is correlated with the number of
sequencing passes of the template molecule (Travers et al.,
2010). With the benefit of these higher quality reads, our software,
MLSTEZ, can automatically identify the barcodes and primers used
in the PCR, correct sequencing errors, generate the MLST profile for
each isolate, and predict potentially heterozygous loci.

Cryptococcus neoformans is a well-characterized, opportunistic
human fungal pathogen, and it is responsible for approximately
600,000 annual deaths worldwide (Park et al., 2009). In this study,
we targeted the nine MLST loci that are commonly used to geno-
type isolates of the C. neoformans/Cryptococcus gattii species com-
plex. As controls, we selected 28 clinical and environmental
haploid strains with known MLST genotypes that represented each
major subpopulation or molecular type of the species complex, as
well as six previously described diploid hybrid strains (Litvintseva
et al., 2006; Simwami et al., 2011; Stephen et al., 2002; Sun et al.,
2012; Xu et al., 2009). We pooled the amplicons of these 34 isolates
with those of another 62 wild type C. neoformans isolates and
sequenced them in one PacBio SMRT Cell. The NGMLST method
and MLSTEZ software produced high quality, unambiguous MLST
profiles of all 96 isolates, and the sequences of the reference strains
were identical to their genotypes, which were previously deter-
mined by the conventional MLST method. The MLSTEZ successfully
detected heterozygous loci in the hybrid strains and identified the
sequences of each allele.
2. Materials and methods

2.1. Strains of C. neoformans

As reference controls, we selected conventionally MLST-geno-
typed strains of C. neoformans var. grubii (Cng), C. neoformans var.
neoformans (molecular type VNIV), and C. gattii. Distinct genetic
Table 1
Nine pairs of MLST locus specific primer sequences and corresponding primer concentrati

Locus Upper primer Lower primer

SOD1 50-GGCACAACTCCACCGATCA 50-CTTACATGACAC
LAC1 50-AACATGTTCCCTGGACCTGTG 50-ACGTGGATCTCG
MPD1 50-TGCCCTGGATCCTAATGCTCT 50-ACCCAGACTGCC
TEF1 50-AATCGTCAAGGAGACCAACG 50-CGTCACCAGACT
CAP59 50-CTCTACGTCGAGCAAGTCAAG 50-TCCGCTGCACAA
PLB1 50-CTTCAGGCGGAGAGAGGTTT 50-GATTTGGCGTTG
GPD1 50-ATGGTCGTCAAGGTTGGAAT 50-GTATTCGGCACC
IGS1 50-GGGACCAGTGCATTGCATGA 50-ATCCTTTGCAGA
URA5 50-ATGTCTTCCCAAGCCCTCGAC 50-TTAAGACCTCTG

a The production lengths are based on the H99 genome, and the primer lengths are n
subpopulations of these recognized species and varieties were also
considered when we selected control strains. For example, we
included all three molecular types of Cng (VNI, VNB and VNII)
(Litvintseva et al., 2006) and the four molecular types of C. gattii
(VGI, VGII, VGIII, and VGIV). The number of strains for each molec-
ular type are as follows (Table S1): 11 strains of C. neoformans var.
grubii (five VNI strains, three VNB strains, three VNII strains); three
strains of C. neoformans var. neoformans (VNIV); 14 strains of the
sibling species, C. gattii (four VGI strains, three VGII strains, five
VGIII strains, two VGIV strains); and six hybrid strains (three VNIII,
two VGII/VGIII, one VNB/VNII). The other 62 isolates were wild
type clinical and environmental isolates of C. neoformans collected
from Brazil and Botswana.

2.2. MLST target loci and primer design

As routinely employed for genotyping strains of C. neoformans
and C. gattii, the following nine MLST loci were used to analyze the
genetic diversity of the strains: CAP59, GPD1, IGS1, LAC1, PLB1,
SOD1, URA5, TEF1 and MPD1 (Colom et al., 2012; Litvintseva et al.,
2006, 2011; MacDougall et al., 2007; Meyer et al., 2009). The
locus-specific primers are listed in Table 1. A 20-bp universal primer
(50-CTGGAGCACGAGGACACTGA) was added at the 50 end of each
locus-specific primer (Fig. 1). Each barcode primer included a 5-bp
padding sequence (GGTAG) at the 50 end, followed by the 16-bp bar-
code sequence as suggested by PacBio (http://www.smrtcommunity.
com/servlet/servlet.FileDownload?file=00P7000000W067VEAR),
and a 20-bp universal primer was added to the 30 end. The sequences
of the 96 barcode primers used in our study are listed in Table S2.

2.3. NGMLST library preparation

Genomic DNA was isolated from each yeast strain using a Mas-
terPure yeast DNA purification kit (Epicentre Biotechnologies,
Madison, WI) according to the manufacturer’s instructions. MLST
loci of interest were amplified by two rounds of PCRs to prepare
the library. The first PCR was used to amplify the target loci and
then the unique barcodes for labeling the amplicons from each iso-
late were added in the second PCR.

For the first round, each multiplex PCR mixture contained
12.5 lL 2� Master Mix (QIAGEN Multiplex PCR Plus Kit, cat #
206152), approximately 2.5 ng genomic DNA, and nine primer
pairs at the optimized concentration for each pair (Table 1). The
PCR was conducted with the following thermocycling conditions:
initial denaturation at 95 �C for 5 min, followed by 35 cycles of
30 s at 95 �C, 1.5 min at 58 �C, and 1.5 min at 72 �C, and finally,
10 min at 68 �C for extension.

These multiplexed products were then diluted 1:50 and used as
templates for the second round of PCR, which were carried out in
volumes of 25 lL that contained LongAmp Taq DNA Polymerase
(New England BioLabs Inc., catalog # M0323L), 1 lL of diluted
ons and product lengths.

Concentration (lM) Product lengtha

CGCAGGCA 0.3 668
GGAGGA 0.3 816
GCTGTCGTC 0.8 1008
TGACGAAC 0.4 811
GTGATACCC 0.3 564
GTTTCAGT 0.3 635
AGCCTCA 0.4 561
CGACTTGA 0.1 845
AACACCGTACTC 0.4 733

ot counted into products.
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Fig. 1. Two rounds of PCRs are employed in NGMLST. In the first PCR round, each
primer consists of a locus-specific sequence (blue, see Table 1) and a 20-bp
universal primer sequence (purple, 50-GCTGTCAACGATACGCTACG). The diluted PCR
product is used as template for the second PCR round. The barcode primers consist
of three parts: (i) a 20-bp universal sequence (purple), which amplifies the
template; (ii) a 16-bp barcode sequence (orange) that identifies the amplicons from
each different isolate; (iii) and a 5-bp padding sequence (green) to provide
equivalent binding affinities for adding the PacBio sequencing adapters. Because
multiplex PCRs were used in the first PCR round, primer pairs for each of the nine
loci are added to the PCR mix at the same time. In the second PCR round, the various
barcode primers are used to identify each isolates. The final products of each isolate
would have the same sequence structure on both ends, flanking different target
locus sequences in the middle, which are shown with different colors. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 2. The workflow for NGMLST with estimated time for each step (A) and
flowchart of the analysis pipeline used in MLSTEZ (B).
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multiplex PCR product, and 2 lL 10 lM barcode primer. The PCR
was performed with the following cycling conditions: initial dena-
turation at 94 �C for 30 s followed by 35 cycles of 30 s at 94 �C, 30 s
at 50 �C, and 60 s at 65 �C, and lastly, 10 min at 65 �C for extension.

The amplicons of the 96 strains were visualized on a 1.4% TAE
agarose gel, and their concentrations were estimated. The ampli-
cons were pooled into four groups of 24 strains based on having
similar concentrations of DNA. Each pool of 24 amplicons was puri-
fied utilizing the QIAquick PCR Purification Kit (Qiagen, catalog #
28106), the DNA concentration of each pool was determined using
a Nanodrop ND-1000 Spectrophotometer, and portions of the four
purified pools containing equal concentration of DNA were
combined.

2.4. PacBio sequencing

SMRT Cell sequencing libraries were prepared using Pacific Bio-
sciences DNA Template Prep Kit 2.0 (catalog # 001-540-835)
according to the 3-kb or 10-kb template preparation and sequenc-
ing protocol provided by Pacific Biosciences. Instead of using mag-
netic beads, the amplicons were loaded by diffusion at a
concentration of 300 pM. The PacBio RS II platform was used for
sequencing the amplicons. One SMRT Cell was used to sequence
all 96 pooled isolates. The sequencing run used 1 � 180 min movie
with P4-C2 chemistry.
2.5. Data analysis

Primary analysis was performed using the PacBio SMRT Analysis
version 2.1 program, and the filtering parameters were as follows:
minimum polymerase read quality of 0.75; minimum read length
of 50 bp; and minimum subread length of 50 bp. Circular consensus
sequencing (CCS) reads with less than four full passes were also fil-
tered in further analysis. We used MLSTEZ to generate all the con-
sensus sequences of each locus and searched for heterozygous
loci. The analysis steps were outlined as flowchart in Fig. 2B. This
software used the Smith–Waterman algorithm to identify each bar-
code and specific MLST locus in the reads. Then, the first quartile
(Q1) and third quartile (Q3) of each MLST locus length among all
sequenced isolates were calculated. The interquartile range (IQR)
was calculated as Q3 � Q1. Reads with length less than Q1 � 1.5 ⁄

IQR or larger than Q3 + 1.5 ⁄ IQR of the specific locus were consid-
ered to be outliers and removed from the dataset. Then, all the reads
were ranked by their sequencing scores. In this study, a minimum
of three and a maximum of 10 reads of each locus were aligned
using MUSCLE to generate the consensus sequence (Edgar, 2004).
To detect heterozygosity, all the reads identified at each locus were
aligned, and variation scores were calculated based on the number
of variant sites among the sequences. A locus with two groups of
reads that had significantly different variant scores (p < 0.001)
was considered heterozygous. Consensus sequences of the two
alleles were generated separately by different groups of reads.
The following software parameters were used: barcode_length =
16; min_readnum = 3; max_readnum = 10; flanking_length = 5;
match_score = 2; mismatch_score = �1; gap_score = �1; max_mis-
match = 3. The entire analysis was performed on an iMac computer
with 3.4G Intel Core i7, 16GB 1333MHz DDR3, and Mac OS X 10.9.2.

2.6. Software

The algorithm was written in Python, version 2.7.6. PyQt4
(http://www.riverbankcomputing.com/software/pyqt/download)
and Qt Designer (http://qt-project.org/doc/qt-4.8/designer-man-
ual.html) were used to create the graphic user interface (GUI)
(Fig. 3). Mac and Windows versions of the GUI software were
tested on computers with Mac OS X10.9 and Windows 7 operating
systems, respectively.
3. Results

3.1. Development of multiplex PCR and resultant data production

To evaluate the multiplex PCR protocol for NGMLST, we
selected the nine consensus, unlinked MLST loci adopted for geno-
typing isolates of C. neoformans and C. gattii: CAP59, GPD1, IGS1,
LAC1, PLB1, SOD1, URA5, TEF1 and MPD1 (Colom et al., 2012;
Litvintseva et al., 2011, 2006; MacDougall et al., 2007; Meyer
et al., 2009). Of these loci, MPD1 was used only for isolates of C. gat-
tii. To enable simultaneous amplification of the other eight loci
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Fig. 3. Graphic user interface of MLSTEZ under Mac OS X system. The interface
consists of four parts: toolbox bar (top), list of analyses panel (mid-left), analysis
result panel (mid-right), and running status panel (bottom).
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from most isolates of C. neoformans and C. gattii, we designed new
pairs of primers that were specific for five loci (IGS1, TEF1, LAC1,
SOD1, and URA5), which targeted the same regions used in previous
studies, and we used previously designed primers for CAP59, GPD1,
PLB1, and MPD1 (Table 1). In addition, all nine MLST locus-specific
primers were modified to include a universal primer sequence at
the 50 end (Fig. 1), which was needed to facilitate the addition of
barcodes in the subsequent step (Fig. 2A). The nine pairs of
locus-specific primers were admixed with the optimized concen-
trations (Table 1), and all the loci were amplified simultaneously.
Although some strains and/or species differed in the efficiency
with which they were amplified (Table 3), all the loci were success-
fully amplified in most tested isolates (Fig. 4).

The barcode primers for the second PCR round consisted of
three parts (Fig. 1). The padding sequence was used to ensure that
each product had equal efficiency to ligate to the sequencing adap-
ter. The barcode sequence was unique to each isolate and was used
to separate the amplicons from different isolates by MSLTEZ. The
Fig. 4. Two rounds of PCR products of isolates H99 (VNI molecular type), R265
(VGII), and JEC21 (VNIV) are shown on 1.4% TAE agarose gel. R1 and R2 stand for the
first and second PCR round, respectively. The expected PCR product sizes are shown
in Table 1. The bands from top to bottom are PCR products of MPD1, IGS1, LAC1,
TEF1, URA5, SOD1, PLB1, CAP59 and GPD1. Some bands are overlapped because of
similar product lengths. The gel image indicates that the MPD1 (top band) locus was
amplified with greater efficiency from R265 than H99 and JEC21. The primer pairs
of other loci also reveal different amplification efficiencies among isolates from
different molecular groups (Table 2).
amplicons of the first PCR round were amplified by the same uni-
versal primer that we had added into the barcode primer.

To test the accuracy of the PacBio sequencing platform for
NGMLST, we selected 28 diverse reference strains that represented
the eight major haploid molecular types of C. neoformans and
C. gattii and six hybrids, which are very difficult to genotype using
the conventional MLST protocol (Table S1). In addition, DNA from
62 wild type isolates of C. neoformans were also added to the test
mixtures. We pooled all the barcoded amplicons of 96 isolates
and sequenced them in one PacBio SMRT Cell. Four full passes
yielded 37,906 CCS reads with an average CCS read length of
730 bp. As expected, more than 80% of the reads ranged between
600 and 1100 bp (Fig. 5A).
3.2. Data processing

The first step of the analysis pipeline to generate the MLST pro-
file for each isolate is to identify the unique barcode sequence
added during the second round of amplification. MLSTEZ success-
fully identified barcode sequences on 32,932 of 37,906 (86.9%)
CCS reads. The average number of reads obtained for each isolate
was 343.0 (Fig. 5B). Subsequently, the barcode-called amplicons
were separated by the locus-specific primer sequences. Due to
the low sequencing qualities of some reads, primer sequences
Fig. 5. Length distribution of CCS reads generated from 96 isolates (A). More than
80% of the reads have sequence lengths between 600 and 1100 bp. Normal
distribution is shown for the read count of the 96 isolates (B). Distribution of read
counts for isolates. The average read count of each isolate is 343, and minimal and
maximal read counts are 34 and 829, respectively.
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could not be identified on 1641 of 32,932 (5.0%) CCS reads. These
reads were then removed from further analysis.

We obtained CCS reads from 818 of 864 (94.7%) alleles. The fail-
ure to obtain the sequences of certain loci in some isolates could
probably be explained by the sequence diversity between the iso-
lates and the primer sequences, which resulted in low amplifica-
tion efficiencies of some primer in certain molecular type isolates
(Table 2). This result was verified by electrophoretic gel images
(data not shown), and the data from missing loci were then
sequenced manually using Sanger technology.

3.3. Verification of NGMLST data

Both conventional MLST and NGMLST genotyping require
sequence data of very high quality. Compared with other next gen-
eration sequencing platforms, such as Roche 454, Illumina HiSeq,
or Ion Torrent, PacBio has the advantage providing reads of longer
length, but the analysis of PacBio reads requires dealing with a rel-
atively high error rate prior to consensus sequence determination
(Koren et al., 2012; Quail et al., 2012). Therefore, we needed to ver-
ify that PacBio was able to generate high quality NGMLST profiles
that were comparable to data obtained by conventional MLST. The
34 reference strains tested here included a total of 306 alleles, and
206 of these alleles were previously sequenced by Sanger method.
Thus, the sequences of these alleles were compared with the corre-
sponding sequences produced by NGMLST and MLSTEZ.

We obtained on average 37.8 CCS reads for each allele of the 34
isolates. However, due to the low efficiency of several primers in
isolates of certain molecular types, 22 of 206 alleles did not have
more than three reads, which was our minimal requirement to
generate a consensus. The newly generated NGMLST profiles were
compared with 184 MLST alleles previously obtained by Sanger
sequencing. The result demonstrated that 172 alleles were 100%
identical between the two protocols, and the other 12 alleles only
had very limited mismatches (63 SNP per sequence). Thus, the
sequencing accuracy has surpassed 99.98%. Using the phylogenetic
analysis, the other 62 isolates were identified as 1 VNI, 3 VNB, 18
VGI, 15 VGII, 1 VGIII, 22 VGIV and 2 VN/VG hybrids. This result
clearly confirmed the high quality of MLST profiles generated by
NGMLST, which is also a more rapid and less expensive alternative
to the conventional method.

3.4. Identification of hybrids and allelic sequences

We assessed utility of NGMLST for simultaneous sequencing
and differentiating alleles in the diploid hybrid strains by including
six hybrid C. neoformans strains: three VNIII (VNI + VNIV) hybrids,
two VGII/VGIII hybrids, and one VNII/VNB hybrid. The heterozy-
gous locus discovery function of MLSTEZ was used to analyze the
Table 2
Primer efficiencies in multiplex PCR of different molecular type isolates. Increased
number of ‘‘+’’ stands for higher efficiency of the primers. Primers with ‘‘+++’’ have
very high efficiency in all test isolates. Primers ‘‘++’’ work well in most isolates, and
enough read coverage (P3) for loci to be obtained. Primers with ‘‘+’’ work
inconsistently among the isolates, and they may occasionally not be able to yield
sufficient reads. The primers labeled ‘‘�’’ rarely worked with the corresponding
molecular types among the isolates tested.

IGS1 TEF1 GPD1 LAC1 PLB1 MPD1 CAP59 SOD1 URA5

VNI +++ +++ +++ +++ +++ + + +++ +++
VNB +++ ++ +++ ++ +++ � + +++ +++
VNII +++ +++ +++ ++ +++ + + +++ +++
VNIV ++ +++ +++ � +++ + +++ +++ +++
VGI ++ +++ +++ +++ ++ � +++ ++ +++
VGII � +++ � +++ + +++ +++ +++ +++
VGIII ++ +++ +++ +++ � +++ +++ +++ +++
VGIV ++ +++ +++ +++ + + +++ +++ +++
sequencing data. A minimal of five reads were required for analysis
for the heterozygous locus analysis. As expected, multiple hetero-
zygous loci were reported by the software for each hybrid (Table 3).
Phylogenetic analysis of the recovered alleles showed that the
compositions of most heterozygous loci of the hybrids were consis-
tent with previous studies (Fig. 6). A few loci from some haploid
isolates were erroneously reported as having a heterozygous locus.
Additional analysis revealed that these false positive results were
caused by reads of low quality and quantity.
4. Discussion

In studies of molecular epidemiology, pathogenicity, and phy-
logenetics, MLST has become the standard method of genotyping
many fungi, including strains of the C. neoformans/C. gattii species
complex. Furthermore, it also widely used in genotyping other fun-
gal species such as Candida (Jackson et al., 2009), Aspergillus (Bain
et al., 2007), and Pseudallescheria (Bernhardt et al., 2013). Although
whole genome sequence typing (WGST) is becoming more accessi-
ble, especially for organisms with small genomes, such as bacteria
and viruses, it is not yet practical for genotyping numerous isolates
of eukaryotic species. MLST will not soon become obsolete because
it provides an economical and efficient method of screening wild
type isolates, assigning them to established clades, subpopulations,
or phenotypic groups, and determining whether they warrant
more extensive analysis or WGST. However, compared to less
reproducible and more subjective methods of rapid genotyping,
such as generating amplified fragment length polymorphisms,
MLST has the disadvantages of being more time consuming as well
as costly due to the use of Sanger sequencing. To resolve these
issues, we have developed a new high-throughput method of MLST
genotyping that generates CCS PacBio next-generation sequencing
reads, NGMLST, and a novel multifunctional software program,
MLSTEZ, which provides simplified and automated analysis of
NGMLST data. The average time required for processing DNA from
96 isolates was 7 h. Previously, 2–4 weeks were required to obtain
sequence data from the same number of strains using conventional
MLST.

To interface with NGMLST, we developed the multifaceted soft-
ware program, MLSTEZ, which is available on the Internet at no
cost (https://sourceforge.net/projects/mlstez/). The program is
fully automated and requires a general sequencing format file
(FASTQ and FASTA) as input, which means that NGMLST will sup-
port all sequencing platforms that can generate full-length bar-
coded amplicons. Because a sequence assembly feature is not
included in the program, fragmented amplicons must first be
assembled before analysis by MLSTEZ. MLSTEZ can perform bar-
code and primer identification, recognize consensus sequences,
and predict heterozygous loci. All the results that are generated
by the software can be easily exported as sequence files, graphs,
or tables. In addition, the MLSTEZ output sequence files can be
used directly for phylogenetic analyses, which significantly
reduces the time required for many follow-up studies. With the
multiprocessing features of MLSTEZ, the analyses of data from
Table 3
Heterozygous loci of the hybrids predicted by MLSTEZ. ‘Yes’ indicates the identifi-
cation of two alleles, ‘No’ indicates that only one allele was identified, and the loci
without insufficient reads (<5) for analysis are labeled ‘NA’.

Strain CAP59 GPD1 IGS1 LAC1 MPD1 PLB1 SOD1 TEF1 URA5

Cng9 NA Yes No No No No Yes No Yes
ZG287 No Yes No Yes NA Yes Yes Yes Yes
CBS132 No Yes No NA No No Yes No Yes
NC34-21 No Yes No Yes NA Yes Yes Yes Yes
EJB34 No No NA Yes Yes NA Yes Yes Yes
EJB41 No No No Yes No NA Yes No No

https://sourceforge.net/projects/mlstez/


Fig. 6. Phylogeny of the SOD1 locus among isolates with different molecular types
and both alleles of six hybrids visualized by the neighbor-joining dendrogram.
Different species and molecular groups of the isolates are color-coded (blue, C.
neoformans var. grubii; red, C. gatii; green, C. neoformans var. neoformans). All the
sequences were generated using MLSTEZ based on NGMLST sequencing result. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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one PacBio SMRT Cell can be completed within an hour on a mod-
ern desktop computer. Thus, the rate-determining step of this pro-
tocol is the time required for PacBio sequencing.

Recently, a NGS genotyping method (HiMLST) was proposed by
Boers et al. (2012) for typing four different bacterial species using
454 pyrophosphate sequencing. The comparisons among conven-
tional MLST, HiMLST and NGMLST are shown in Table 4. The major
advantages in our MGMLST approach are: (i) the employment of
multiplex PCR greatly reduces the amount of labor; (ii) the cost
of PacBio CCS sequencing is only about 20% of Roche 454 sequenc-
ing; (iii) PacBio greatly extends the maximum read length of target
loci or genes from 500-bp to 2-kb without requiring fragmentation
into shorter sequences; (iv) the NGMLST workflow was optimized
to reduce unnecessary steps; (v) MLSTEZ can be easily imple-
mented and does not require technical expertise or a background
in bioinformatics; and (vi) for analysis of hybrid isolates, unlike
most programs, MLSTEZ can detect heterozygous loci and sequence
their alleles.

PacBio CCS reads have an error rate of 2.5% with �1.5 kb inser-
tion size (Jiao et al., 2013), which is considerably higher than other
platforms. However, because these errors occur randomly and are
not biased toward homopolymeric regions (Carneiro et al., 2012),
accuracy approaching 100% can be achieved by increasing the level
of coverage or number of reads. Our software routinely employs
multiple PacBio CCS reads to generate consensus sequences, and
accuracy can surpass 99.98%, which is sufficient for genotyping.
In preliminary experiments, we determined that more than three
Table 4
Comparisons between conventional MLST, HiMLST and NGMLST based on 96 isolates with

Conventional MLST

Number of PCRs 768
Number of PCR product purifications 768
Sanger sequencing reaction 1536 (768 � 2)
Automate data analysis tool None
Estimated experimental time >1 week
Estimated data analysis time >10 h (manually)
Estimated cost per isolate $70.56 (bi-directional)

a Tested with 8 threads on iMac (Mac OS X 10.9.2) on 3.4G Intel Core i7, 16GB 1333M
reads were required to generate an accurate consensus sequence.
However, our tests showed that including more than 10 reads
per locus did not significantly improve the quality. On the contrary,
exceeding 10 reads per allele tended to overfill the program with
low quality reads, which sometimes reduced the accuracy. There-
fore, to generate optimal consensus sequences, only the top 10
scored reads were used. We also observed that a small proportion
of the reads were longer or shorter than expected. Most of the
shorter reads were leftover adaptor and incomplete PCR products,
and the longer reads represent concatemers generated by ligation
during preparation of the PacBio library. To resolve this issue, we
added a length filter in our analysis pipeline (Fig. 2B) to ensure that
only sequencing reads within the correct length range would be
used for generating the consensus sequences.

For this evaluation of NGMLST and MLSTEZ, we targeted the
nine unlinked loci that are routinely used to genotype isolates of
the C. neoformans/C. gattii species complex. Five of the primer pairs
were identical to those used in previous studies but with different
annealing PCR temperatures (Colom et al., 2012; Litvintseva et al.,
2011, 2006; MacDougall et al., 2007; Meyer et al., 2009). After
adjusting and standardizing the PCR conditions, these primers
worked well in the thermocycling parameters for multiplexing.
The primer pairs of the other four loci were developed specifically
for this study, but they targeted the same regions used in previous
reports. Under these optimized conditions, the primer pairs ampli-
fied the previously established cryptococcal MLST loci. Preliminary
results with reference strains confirmed that the primers used here
(Table S1) accurately genotyped both species and the molecular
types of C. neoformans and C. gattii in addition to the hybrid strains.
The use of species-specific primers could further improve the
results. For example, we used the same protocol to genotype 96
isolates of C. neoformans var. grubii with eight pairs of primers
(without MPD1), and 762 of 768 (99.2%) alleles had more than
three filtered reads to generate consensus (data not shown).

Although we have only demonstrated the application of
NGMLST to C. neoformans and C. gattii, this approach can be used
for any MLST investigation. Most MLST analyses performed by con-
ventional MLST could be readily adapted to this method. In our
study, we found that the primers previously used under different
PCR conditions (Litvintseva et al., 2006) worked reasonably well
in a single multiplex PCR system using the same conditions. Sev-
eral caveats are suggested for successfully replacing conventional
MLST with NGMLST: (i) NGMLST can accommodate amplicoms
up to 2 kbp in length; however, the maximal difference in length
among the amplicons cannot exceed 500 bp to avoid affecting
the yield of sequencing reads; (ii) the concentration of locus-spe-
cific primers needs to be optimized to obtain equal amounts of
each product; and (iii) considering the quality and amount of data
that are generated with the current protocol, the numbers of target
MLST loci and tested isolates need to be balanced. We suggest ana-
lyzing no more than 11 loci for 96 isolates at one time. Multiple
groups of multiplex PCRs could then be employed to accommodate
different PCR conditions and/or the need for a large number of loci
required by species with low amounts of genetic variation.
8 target loci.

HiMLST NGMLST

864 (768 + 96) 192 (96 + 96)
More than 96 4
None None
None MLSTEZ
>30 h 7 h
>10 h (manually) �1 h (automatically)a

$42.23 (1/4 plate) $8.83 (1 SMRT Cell)

Hz DDR3.
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Our results show that NGMLST and MLSTEZ not only work well
on the haploid strains but also can be used to detect and analyze
hybrid strains, which are difficult to MLST genotype using conven-
tional Sanger sequencing. Among our six control hybrid strains,
most were detected by more than three heterozygous loci. Unfor-
tunately, some haploid strains were erroneously identified with
heterozygous loci; these results were caused by low coverage or
reads of poor quality. Therefore, we strongly recommend repeating
the analysis on putative hybrids. In addition, MLST only targets a
limited number of genomic loci, and aneuploid strains are very
common in some fungal species (Kwon-Chung and Chang, 2012;
Selmecki et al., 2009). It remains difficult to determine the ploidy
of test strains even when multiple loci have been identified to be
heterozygous. Other methods to determine aneuploidy, such as
analysis of the cells by fluorescent-activated cell sorting (FACS)
could help to confirm MLST data and ploidy.

This investigation evaluated a novel NGMLST method of geno-
typing, which has proven to be rapid and relatively inexpensive,
as well as amenable to the high-throughput analyses of large sam-
ples. Coupled with the automated multifunctional software, MLS-
TEZ, high quality MLST profiles can be acquired with very simple
operations in a short period of time. The approach demonstrated
here was evaluated with the heterobasidiomycetous human path-
ogen, Cryptococcus, but it can be applied to many other fungal or
other eukaryotic taxa, including haploid, diploid, and hybrid
organisms.

Conflict of interest

None of the authors have a conflict of interest.

Data accessibility

The source code and pre-compiled GUI applications for
Macintosh and Windows PC of MLSTEZ are freely available on
https://sourceforge.net/projects/mlstez/files/. The GUI application
is only available for Macintosh OS X 10.6+ and Windows XP and
later version. The manual of the application is available on
https://sourceforge.net/p/mlstez/wiki/Manual/. MLSTEZ is under
active development. Bug reports and suggestions from users will
be helpful for the improvements of the software in future version.

Acknowledgments

The authors thank to Sun Sheng (Duke University Medical
Center), Matthew Fisher (Imperial College London), Tom Harrison
(St George’s, University of London), Vinicius Ponzio (Federal
University of São Paulo), Arnaldo L. Colombo (Federal University of
São Paulo) and Annemarie Brouwer (Radboud University Nijmegen)
for providing isolates for the study. The authors also thank to Josh
Granek (Duke University Medical Center), Olivier Fedrigo and
Graham Alexander (Duke Center for Genomic and Computational
Biology) for discussion and sample sequencing. This work was
supported by Public Health Service Grants AI73896 and AI93257
(JRP).

Appendix A. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.fgb.2015.01.005.

References

Bain, J.M., Tavanti, A., Davidson, A.D., Jacobsen, M.D., Shaw, D., Gow, N.A.R., Odds,
F.C., 2007. Multilocus sequence typing of the pathogenic fungus Aspergillus
fumigatus. J. Clin. Microbiol. 45, 1469–1477. http://dx.doi.org/10.1128/
JCM.00064-07.

Bernhardt, A., Sedlacek, L., Wagner, S., Schwarz, C., Würstl, B., Tintelnot, K., 2013.
Multilocus sequence typing of Scedosporium apiospermum and Pseudallescheria
boydii isolates from cystic fibrosis patients. J. Cyst. Fibros. 12, 592–598. http://
dx.doi.org/10.1016/j.jcf.2013.05.007.

Boers, S.A., van der Reijden, W.A., Jansen, R., 2012. High-throughput multilocus
sequence typing: bringing molecular typing to the next level. PLoS ONE 7,
e39630. http://dx.doi.org/10.1371/journal.pone.0039630.

Byrnes, E.J., Bildfell, R.J., Frank, S.A., Mitchell, T.G., Marr, K.A., Heitman, J., 2009.
Molecular evidence that the range of the Vancouver Island outbreak of
Cryptococcus gattii infection has expanded into the Pacific Northwest in the
United States. J. Infect. Dis. 199, 1081–1086. http://dx.doi.org/10.1086/597306.

Carneiro, M.O., Russ, C., Ross, M.G., Gabriel, S.B., Nusbaum, C., DePristo, M.A., 2012.
Pacific biosciences sequencing technology for genotyping and variation
discovery in human data. BMC Genom. 13, 375. http://dx.doi.org/10.1038/
nbt.1754.

Chan, M.S., Maiden, M.C., Spratt, B.G., 2001. Database-driven multi locus sequence
typing (MLST) of bacterial pathogens. Bioinformatics 17, 1077–1083.

Chen, Y., Toffaletti, D.L., Tenor, J.L., Litvintseva, A.P., Fang, C., Mitchell, T.G.,
McDonald, T.R., Nielsen, K., Boulware, D.R., Bicanic, T., Perfect, J.R., 2013. The
Cryptococcus neoformans transcriptome at the site of human meningitis. MBio 5,
e01087-13. http://dx.doi.org/10.1128/mBio.01087-13.

Colom, M.F., Hagen, F., Gonzalez, A., Mellado, A., Morera, N., Linares, C., García, D.F.,
Peñataro, J.S., Boekhout, T., Sánchez, M., 2012. Ceratonia siliqua (carob) trees as
natural habitat and source of infection by Cryptococcus gattii in the
Mediterranean environment. Med. Mycol. 50, 67–73. http://dx.doi.org/
10.3109/13693786.2011.574239.

Edgar, R.C., 2004. MUSCLE: multiple sequence alignment with high accuracy and
high throughput. Nucleic Acids Res. 32, 1792–1797. http://dx.doi.org/10.1093/
nar/gkh340.

Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., Peluso, P., Rank, D., Baybayan, P.,
Bettman, B., Bibillo, A., Bjornson, K., Chaudhuri, B., Christians, F., Cicero, R., Clark,
S., Dalal, R., Dewinter, A., Dixon, J., Foquet, M., Gaertner, A., Hardenbol, P.,
Heiner, C., Hester, K., Holden, D., Kearns, G., Kong, X., Kuse, R., Lacroix, Y., Lin, S.,
Lundquist, P., Ma, C., Marks, P., Maxham, M., Murphy, D., Park, I., Pham, T.,
Phillips, M., Roy, J., Sebra, R., Shen, G., Sorenson, J., Tomaney, A., Travers, K.,
Trulson, M., Vieceli, J., Wegener, J., Wu, D., Yang, A., Zaccarin, D., Zhao, P., Zhong,
F., Korlach, J., Turner, S., 2009. Real-time DNA sequencing from single
polymerase molecules. Science 323, 133–138. http://dx.doi.org/10.1126/
science.1162986.

Jackson, A.P., Gamble, J.A., Yeomans, T., Moran, G.P., Saunders, D., Harris, D., Aslett,
M., Barrell, J.F., Butler, G., Citiulo, F., Coleman, D.C., de Groot, P.W.J., Goodwin,
T.J., Quail, M.A., McQuillan, J., Munro, C.A., Pain, A., Poulter, R.T., Rajandream, M.-
A., Renauld, H., Spiering, M.J., Tivey, A., Gow, N.A.R., Barrell, B., Sullivan, D.J.,
Berriman, M., 2009. Comparative genomics of the fungal pathogens Candida
dubliniensis and Candida albicans. Genome Res. 19, 2231–2244. http://
dx.doi.org/10.1101/gr.097501.109.

Janbon, G., Ormerod, K.L., Paulet, D., Byrnes, E.J., Yadav, V., Chatterjee, G., Mullapudi,
N., Hon, C.-C., Billmyre, R.B., Brunel, F., Bahn, Y.-S., Chen, W., Chen, Y., Chow,
E.W.L., Coppée, J.-Y., Floyd-Averette, A., Gaillardin, C., Gerik, K.J., Goldberg, J.,
Gonzalez-Hilarion, S., Gujja, S., Hamlin, J.L., Hsueh, Y.-P., Ianiri, G., Jones, S.,
Kodira, C.D., Kozubowski, L., Lam, W., Marra, M., Mesner, L.D., Mieczkowski, P.A.,
Moyrand, F., Nielsen, K., Proux, C., Rossignol, T., Schein, J.E., Sun, S.,
Wollschlaeger, C., Wood, I.A., Zeng, Q., Neuvéglise, C., Newlon, C.S., Perfect,
J.R., Lodge, J.K., Idnurm, A., Stajich, J.E., Kronstad, J.W., Sanyal, K., Heitman, J.,
Fraser, J.A., Cuomo, C.A., Dietrich, F.S., 2014. Analysis of the genome and
transcriptome of Cryptococcus neoformans var. grubii reveals complex RNA
expression and microevolution leading to virulence attenuation. PLoS Genet. 10,
e1004261. http://dx.doi.org/10.1371/journal.pgen.1004261.

Jiao, X., Zheng, X., Ma, L., Kutty, G., Gogineni, E., Sun, Q., Sherman, B.T., Hu, X., Jones,
K., Raley, C., Tran, B., Munroe, D.J., Stephens, R., Liang, D., Imamichi, T., Kovacs,
J.A., Lempicki, R.A., Huang, D.W., 2013. A benchmark study on error assessment
and quality control of CCS reads derived from the PacBio RS. J. Data Min. Genom.
Proteom. 4. http://dx.doi.org/10.4172/2153-0602.1000136.

Koren, S., Schatz, M.C., Walenz, B.P., Martin, J., Howard, J.T., Ganapathy, G., Wang, Z.,
Rasko, D.A., McCombie, W.R., Jarvis, E.D., Phillippy, A.M., 2012. Hybrid error
correction and de novo assembly of single-molecule sequencing reads. Nat.
Biotechnol. 30, 693–700. http://dx.doi.org/10.1038/nbt.2280.

Kwon-Chung, K.J., Chang, Y.C., 2012. Aneuploidy and drug resistance in pathogenic
fungi. PLoS Pathog. 8, e1003022. http://dx.doi.org/10.1371/journal.ppat.
1003022.

Li, W., Raoult, D., Fournier, P.-E., 2009. Bacterial strain typing in the genomic era.
FEMS Microbiol. Rev. 33, 892–916. http://dx.doi.org/10.1111/j.1574-
6976.2009.00182.x.

Litvintseva, A.P., Mitchell, T.G., 2012. Population genetic analyses reveal the African
origin and strain variation of Cryptococcus neoformans var. grubii. PLoS Pathog. 8,
e1002495. http://dx.doi.org/10.1371/journal.ppat.1002495.

Litvintseva, A.P., Thakur, R., Vilgalys, R., Mitchell, T.G., 2006. Multilocus sequence
typing reveals three genetic subpopulations of Cryptococcus neoformans var.
grubii (serotype A), including a unique population in Botswana. Genetics 172,
2223–2238. http://dx.doi.org/10.1534/genetics.105.046672.

Litvintseva, A.P., Carbone, I., Rossouw, J., Thakur, R., Govender, N.P., Mitchell, T.G.,
2011. Evidence that the human pathogenic fungus Cryptococcus neoformans var.
grubii may have evolved in Africa. PLoS ONE 6, e19688. http://dx.doi.org/
10.1371/journal.pone.0019688.

https://sourceforge.net/projects/mlstez/files/
https://sourceforge.net/p/mlstez/wiki/Manual/
http://dx.doi.org/10.1016/j.fgb.2015.01.005
http://dx.doi.org/10.1128/JCM.00064-07
http://dx.doi.org/10.1128/JCM.00064-07
http://dx.doi.org/10.1016/j.jcf.2013.05.007
http://dx.doi.org/10.1016/j.jcf.2013.05.007
http://dx.doi.org/10.1371/journal.pone.0039630
http://dx.doi.org/10.1086/597306
http://dx.doi.org/10.1038/nbt.1754
http://dx.doi.org/10.1038/nbt.1754
http://refhub.elsevier.com/S1087-1845(15)00008-0/h0030
http://refhub.elsevier.com/S1087-1845(15)00008-0/h0030
http://dx.doi.org/10.1128/mBio.01087-13
http://dx.doi.org/10.3109/13693786.2011.574239
http://dx.doi.org/10.3109/13693786.2011.574239
http://dx.doi.org/10.1093/nar/gkh340
http://dx.doi.org/10.1093/nar/gkh340
http://dx.doi.org/10.1126/science.1162986
http://dx.doi.org/10.1126/science.1162986
http://dx.doi.org/10.1101/gr.097501.109
http://dx.doi.org/10.1101/gr.097501.109
http://dx.doi.org/10.1371/journal.pgen.1004261
http://dx.doi.org/10.4172/2153-0602.1000136
http://dx.doi.org/10.1038/nbt.2280
http://dx.doi.org/10.1371/journal.ppat.1003022
http://dx.doi.org/10.1371/journal.ppat.1003022
http://dx.doi.org/10.1111/j.1574-6976.2009.00182.x
http://dx.doi.org/10.1111/j.1574-6976.2009.00182.x
http://dx.doi.org/10.1371/journal.ppat.1002495
http://dx.doi.org/10.1534/genetics.105.046672
http://dx.doi.org/10.1371/journal.pone.0019688
http://dx.doi.org/10.1371/journal.pone.0019688


Y. Chen et al. / Fungal Genetics and Biology 75 (2015) 64–71 71
MacDougall, L., Kidd, S.E., Galanis, E., Mak, S., Leslie, M.J., Cieslak, P.R., Kronstad, J.W.,
Morshed, M.G., Bartlett, K.H., 2007. Spread of Cryptococcus gattii in British
Columbia, Canada, and detection in the Pacific Northwest, USA. Emerg. Infect.
Dis. 13, 42–50. http://dx.doi.org/10.3201/eid1301.060827.

Maiden, M.C., Bygraves, J.A., Feil, E., Morelli, G., Russell, J.E., Urwin, R., Zhang, Q.,
Zhou, J., Zurth, K., Caugant, D.A., Feavers, I.M., Achtman, M., Spratt, B.G., 1998.
Multilocus sequence typing: a portable approach to the identification of clones
within populations of pathogenic microorganisms. Proc. Natl. Acad. Sci. U.S.A.
95, 3140–3145.

Meyer, W., Aanensen, D.M., Boekhout, T., Cogliati, M., Diaz, M.R., Esposto, M.C.,
Fisher, M., Gilgado, F., Hagen, F., Kaocharoen, S., Litvintseva, A.P., Mitchell, T.G.,
Simwami, S.P., Trilles, L., Viviani, M.A., Kwon-Chung, J., 2009. Consensus multi-
locus sequence typing scheme for Cryptococcus neoformans and Cryptococcus
gattii. Med. Mycol. 47, 561–570. http://dx.doi.org/10.1080/
13693780902953886.

Park, B.J., Wannemuehler, K.A., Marston, B.J., Govender, N., Pappas, P.G., Chiller, T.M.,
2009. Estimation of the current global burden of cryptococcal meningitis among
persons living with HIV/AIDS. AIDS 23, 525–530. http://dx.doi.org/10.1097/
QAD.0b013e328322ffac.

Quail, M.A.M., Smith, M.M., Coupland, P.P., Otto, T.D.T., Harris, S.R.S., Connor, T.R.T.,
Bertoni, A.A., Swerdlow, H.P.H., Gu, Y.Y., 2012. A tale of three next generation
sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and
Illumina MiSeq sequencers. BMC Genom. 13, 341. http://dx.doi.org/10.1186/
1471-2164-13-341.

Schwartz, D.C., Cantor, C.R., 1984. Separation of yeast chromosome-sized DNAs by
pulsed field gradient gel electrophoresis. Cell 37, 67–75.

Selmecki, A.M., Dulmage, K., Cowen, L.E., Anderson, J.B., Berman, J., 2009.
Acquisition of aneuploidy provides increased fitness during the evolution of
antifungal drug resistance. PLoS Genet. 5, e1000705. http://dx.doi.org/10.1371/
journal.pgen.1000705.
Simwami, S.P., Khayhan, K., Henk, D.A., Aanensen, D.M., Boekhout, T., Hagen, F.,
Brouwer, A.E., Harrison, T.S., Donnelly, C.A., Fisher, M.C., 2011. Low diversity
Cryptococcus neoformans variety grubii multilocus sequence types from Thailand
are consistent with an ancestral African origin. PLoS Pathog. 7, e1001343.
http://dx.doi.org/10.1371/journal.ppat.1001343.

Stephen, C., Lester, S., Black, W., Fyfe, M., Raverty, S., 2002. Multispecies outbreak of
cryptococcosis on southern Vancouver Island, British Columbia. Can. Vet. J. 43,
792–794.

Sun, S., Hsueh, Y.-P., Heitman, J., 2012. Gene conversion occurs within the mating-
type locus of Cryptococcus neoformans during sexual reproduction. PLoS Genet.
8, e1002810. http://dx.doi.org/10.1371/journal.pgen.1002810.

Tavanti, A., Davidson, A.D., Johnson, E.M., Maiden, M.C.J., Shaw, D.J., Gow, N.A.R.,
Odds, F.C., 2005. Multilocus sequence typing for differentiation of strains of
Candida tropicalis. J. Clin. Microbiol. 43, 5593–5600. http://dx.doi.org/10.1128/
JCM.43.11.5593-5600.2005.

Taylor, J.W., Fisher, M.C., 2003. Fungal multilocus sequence typing – it’s not just for
bacteria. Curr. Opin. Microbiol. 6, 351–356. http://dx.doi.org/10.1016/S1369-
5274(03)00088-2.

Travers, K.J., Chin, C.-S., Rank, D.R., Eid, J.S., Turner, S.W., 2010. A flexible and
efficient template format for circular consensus sequencing and SNP detection.
Nucleic Acids Res. 38, e159. http://dx.doi.org/10.1093/nar/gkq543.

Vanhee, L.M.E., Nelis, H.J., Coenye, T., 2010. What can be learned from genotyping of
fungi? Med. Mycol. 48 (Suppl. 1), S60–S69. http://dx.doi.org/10.3109/
13693786.2010.484816.

Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Frijters, A., Pot,
J., Peleman, J., Kuiper, M., 1995. AFLP: a new technique for DNA fingerprinting.
Nucleic Acids Res. 23, 4407–4414.

Xu, J.J., Yan, Z.Z., Guo, H.H., 2009. Divergence, hybridization, and recombination in
the mitochondrial genome of the human pathogenic yeast Cryptococcus gattii.
Mol. Ecol. 18, 2628–2642. http://dx.doi.org/10.1111/j.1365-294X.2009.04227.x.

http://dx.doi.org/10.3201/eid1301.060827
http://refhub.elsevier.com/S1087-1845(15)00008-0/h0105
http://refhub.elsevier.com/S1087-1845(15)00008-0/h0105
http://refhub.elsevier.com/S1087-1845(15)00008-0/h0105
http://refhub.elsevier.com/S1087-1845(15)00008-0/h0105
http://refhub.elsevier.com/S1087-1845(15)00008-0/h0105
http://dx.doi.org/10.1080/13693780902953886
http://dx.doi.org/10.1080/13693780902953886
http://dx.doi.org/10.1097/QAD.0b013e328322ffac
http://dx.doi.org/10.1097/QAD.0b013e328322ffac
http://dx.doi.org/10.1186/1471-2164-13-341
http://dx.doi.org/10.1186/1471-2164-13-341
http://refhub.elsevier.com/S1087-1845(15)00008-0/h0125
http://refhub.elsevier.com/S1087-1845(15)00008-0/h0125
http://dx.doi.org/10.1371/journal.pgen.1000705
http://dx.doi.org/10.1371/journal.pgen.1000705
http://dx.doi.org/10.1371/journal.ppat.1001343
http://refhub.elsevier.com/S1087-1845(15)00008-0/h0140
http://refhub.elsevier.com/S1087-1845(15)00008-0/h0140
http://refhub.elsevier.com/S1087-1845(15)00008-0/h0140
http://dx.doi.org/10.1371/journal.pgen.1002810
http://dx.doi.org/10.1128/JCM.43.11.5593-5600.2005
http://dx.doi.org/10.1128/JCM.43.11.5593-5600.2005
http://dx.doi.org/10.1016/S1369-5274(03)00088-2
http://dx.doi.org/10.1016/S1369-5274(03)00088-2
http://dx.doi.org/10.1093/nar/gkq543
http://dx.doi.org/10.3109/13693786.2010.484816
http://dx.doi.org/10.3109/13693786.2010.484816
http://refhub.elsevier.com/S1087-1845(15)00008-0/h0170
http://refhub.elsevier.com/S1087-1845(15)00008-0/h0170
http://refhub.elsevier.com/S1087-1845(15)00008-0/h0170
http://dx.doi.org/10.1111/j.1365-294X.2009.04227.x

	Next generation multilocus sequence typing (NGMLST) and the analytical software program MLSTEZ enable efficient, cost-effective, high-throughput, multilocus sequencing typing
	1 Introduction
	2 Materials and methods
	2.1 Strains of C. neoformans
	2.2 MLST target loci and primer design
	2.3 NGMLST library preparation
	2.4 PacBio sequencing
	2.5 Data analysis
	2.6 Software

	3 Results
	3.1 Development of multiplex PCR and resultant data production
	3.2 Data processing
	3.3 Verification of NGMLST data
	3.4 Identification of hybrids and allelic sequences

	4 Discussion
	Conflict of interest
	Data accessibility
	Acknowledgments
	Appendix A Supplementary material
	References


