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Abstract

Fuzzy clustering algorithms like the popular fuzzy c-means algorithm (FCM) are

frequently used to automatically divide up the data space into fuzzy granules. When the

fuzzy clusters are used to derive membership functions for a fuzzy rule-based system,

then the corresponding fuzzy sets should fulfill some requirements like boundedness of

support or unimodality. Problems may also arise in the case, when the fuzzy partition

induced by the clusters is intended as a basis for local function approximation. In this

case, a local model (function) is assigned to each cluster. Taking the fuzziness of the

partition into account, continuous transitions between the single local models can be

obtained easily. However, unless the overlapping of the clusters is very small, the local

models tend to mix and no local model is actually valid.

By rewarding crisp membership degrees, we modify the objective function used in

fuzzy clustering and obtain different membership functions that better suit these pur-

poses. We show that the modification can be interpreted as standard FCM using dis-

tances to the Voronoi cell of the cluster rather than using distances to the cluster

prototypes. In consequence, the resulting partitions of the modified algorithm are much

closer to those of the crisp original methods. The membership functions can be gen-

eralized to a fuzzified minimum function. We give some bounds on the approximation

quality of this fuzzification.

We apply this modified fuzzy clustering approach to building fuzzy models of the

Takagi–Sugeno (TS) type automatically from data.

� 2002 Elsevier Science Inc. All rights reserved.

International Journal of Approximate Reasoning 32 (2003) 85–102

www.elsevier.com/locate/ijar

qThis work was supported by the Deutsche Forschungsgemeinschaft (DFG) under grant Kl 648/

1-1.
*
Corresponding author. Tel.: +49-1709414096; fax: +49-49218071843.

E-mail address: frank.hoeppner@ieee.org (F. H€ooppner).

0888-613X/02/$ - see front matter � 2002 Elsevier Science Inc. All rights reserved.

PII: S0888 -613X(02)00078 -6

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81111465?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Keywords: Fuzzy minimum function; Fuzzy clustering; Fuzzy regression; k-Means;

Voronoi diagram; Takagi–Sugeno model

1. Introduction

When building fuzzy systems automatically from data, we are in need of

procedures that automatically divide up the input space in fuzzy granules.

These granules are the building blocks for the fuzzy rules. When modeling an
input–output relationship, the membership functions of these rules play the

same role as basis functions in conventional function approximation tasks. To

keep interpretability we usually require that the fuzzy sets are specified in local

regions, that is, the membership functions have bounded support or decay

rapidly. If this requirement is not fulfilled, many rules must be applied and

aggregated simultaneously, such that the final result becomes more difficult to

grasp – one is not allowed to interpret a fuzzy system rule by rule any longer. A

second requirement is that the fuzzy sets of the primitive linguistic values
should be simple and unimodal. It would be counterintuitive if the membership

of the linguistic term ‘‘young’’, which is high for ‘‘17 years’’, would be higher

for ‘‘23 years’’ than for ‘‘21 years’’.

To gain such fuzzy granules clustering algorithms can be used. Especially

fuzzy clustering algorithms seem well suited, because they provide the user

with a fuzzy membership function which could be used directly for the lin-

guistic terms. Unfortunately, the family of the fuzzy c-means (FCM) cluster-

ing algorithms [1] and derivatives produce membership functions that do
not fulfill the above-mentioned requirements [10]. Fig. 1(c) shows an example

for FCM membership functions for a partition of the real line with cluster

representatives c1 ¼ 1, c2 ¼ 3 and c3 ¼ 8. We can observe that the support of

the membership functions is unbounded for all clusters, in particular for the

cluster whose center is located at c2 ¼ 3. While for c1 ¼ 1 and c3 ¼ 8 one allows

even in the context of fuzzy systems for an unbounded support if x < 1 and

x > 8, respectively, but at least the membership function for c2 ¼ 3 should

be defined locally. Furthermore, we can observe that the membership degree
for the cluster at c1 ¼ 1 increases near 5, the FCM membership functions are

not unimodal. These undesired properties can be reduced by tuning a para-

meter of the FCM algorithm, the so-called fuzzifier, however, then we also

decrease the fuzziness of the partition and finally end up with crisp indi-

cator functions as shown in Fig. 1(a). The problem of unimodality can be

solved by using possibilistic memberships [4], but the possibilistic c-means

is not a partitional but a mode-seeking algorithm. In [10] the objective

function has been completely abandoned to allow user-defined membership
functions, thereby also loosing the partitional property. For further litera-
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ture about different aspects of interpretability in fuzzy systems, see for instance

[2].

In this paper, we investigate alternative approaches to influence the fuzziness

of the final partition. We consider a ‘‘reward’’ term for membership degrees

near 0 and 1 in order to force a more crisp assignment in Section 3. If we

choose an (in some sense) maximal reward, we arrive at fuzzy membership

functions which are identical to those that we would obtain by using a (scaled)

distance to the Voronoi cell that represents the cluster instead of the Euclidean
distance to the clusters center, as we will see in Section 4. Furthermore, the

membership functions – as a whole – can be interpreted as a fuzzified minimum

Fig. 1. Different kinds of membership functions: (a) indicator functions of crisp partition; (b) in-

tuitively fuzzified partitions of (a); (c) FCM membership functions ðm ¼ 2:0Þ.
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function [7], for which we give an estimation of the error we make when sub-

stituting a crisp minimum function by its fuzzy version (Section 5).

2. Objective function-based fuzzy clustering

In this section, we briefly review the fuzzy c-means [1] and related algo-

rithms, for a thorough overview of objective function-based fuzzy clustering

see [9], for instance. Let us denote the membership degree of data object

xj 2 X ; j 2 f1; . . . ; ng, to cluster pi 2 P ; i 2 f1; . . . ; cg, by ui;j 2 ½0; 1�. Denoting

the distance of a data object xj to a cluster determined by the prototype pi by
dðxj; piÞ, we minimize the objective function

JmðP ;U ;X Þ ¼
Xn
j¼1

Xc
i¼1

umi;jd
2ðxj; piÞ; ð1Þ

where the so-called ‘‘fuzzifier’’ m is chosen in advance and influences the

fuzziness of the final partition (crisp as m ! 1 and totally fuzzy as m ! 1;

common values for m are within 1.5 and 4, 2 is most frequently used). The

objective function is minimized iteratively subject to the constraints

816 j6 n :
Xc
i¼1

ui;j ¼ 1; 816 i6 c :
Xn
j¼1

ui;j > 0: ð2Þ

In every iteration step, minimization with respect to ui;j and pi is done sepa-

rately. The necessary conditions for a minimum yield update equations for

both half-steps. Independent of the choice of the distance function and the

prototypes, the membership update equation is

ui;j ¼
1Pc

k¼1

d2ðxj;piÞ
d2ðxj;pkÞ

� � 1
m�1

: ð3Þ

In the most simple case of FCM, where the prototypes – to be interpreted as

cluster centers – are vectors of the same dimension as the data vectors and the

distance function is the Euclidean distance dE, we obtain

pi ¼
Pn

j¼1 u
m
i;jxjPn

j¼1 u
m
i;j

: ð4Þ

Fig. 2(a) shows an example for an FCM clustering with c ¼ 7. The membership

degrees are indicated by contour lines, the maximum over all membership

degrees is depicted.
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The Gustafson–Kessel algorithm (GK) [5] is an extension of FCM, where a

cluster prototype contains in addition to the cluster center pi a symmetric,

positive definite matrix Ai. The distance is defined by

d2ðxj; ðpi;AiÞÞ ¼ ðxj � piÞTAiðxj � piÞ:
In order to avoid the trivial solution Ai  0, it is required that detðAiÞ ¼ 1

holds. The resulting update equation for the matrix Ai turns out to be the

Fig. 2. Effect of modification on the resulting partition: (a) FCM partition; (b) Voronoi-like par-

tition.

F. H€ooppner, F. Klawonn / Internat. J. Approx. Reason. 32 (2003) 85–102 89



(fuzzy) covariance matrix of the corresponding cluster, normalized w.r.t. the

constraint detðAiÞ ¼ 1 (for details see [5]).
In this paper, we also utilize the fuzzy c-regression models (FCRMs) algo-

rithm [6], which uses polynomials as cluster prototypes. With real functions

R ! R the cluster models are characterized by the coefficients of the polyno-

mial, that is, the prototypes are elements of Rqþ1, where q is the degree of the

polynomials. The Euclidean distance dE of FCM is replaced by the residual

error jy � hðxÞj of a data object ðx; yÞ (consisting of input value x and output

value y) to the polynomial h. For simplicity, we consider extended data objects

x̂x which have an additional component x̂x0  1. Then, the distance function can
be written as

d2ððxj; yjÞ; piÞ ¼ yj
�

� pTi x̂xj
�2
:

For multiple inputs x̂xj has to be extended further, for instance for xj ¼ ða; bÞ
we have x̂xj ¼ ð1; a; b; ab; a2; b2Þ such that all coefficients of the polynomial can

be represented by an element of pi. The coefficients pi are obtained in the same

fashion as the cluster centers of FCM before, we only have to replace the

prototype update equation according to the modified distance function [6]

pi ¼
Xn
j¼1

umi;jðx̂xjx̂xTj Þ
 !�1 Xn

j¼1

umi;jyjx̂xj

 !
: ð5Þ

3. Rewarding crisp memberships in fuzzy clustering

Some properties of the membership functions defined by (3) are undesired –

at least in some application areas, as we have seen in Section 1. Let us consider
the question how to reward more crisp membership degrees. We would like to

avoid those small peaks of high membership degrees (cf. Fig. 1(c)) and are

interested in broad areas of (nearly) crisp membership degrees and only narrow

regions where the membership degree changes from 0 to 1 or vice versa (cf. Fig.

1(b)). Let us choose a couple of parameters aj 2 RP 0, 16 j6 n, and consider

the following modified objective function:

J ¼
Xn
j¼1

Xc
i¼1

u2i;jd
2ðxj; piÞ �

Xn
i¼1

aj
Xc
j¼1

ui;j

�
� 1

2

�2

: ð6Þ

The first term is identical to the standard objective function for fuzzy clustering
with m ¼ 2. Let us therefore examine the second term. If a data object xj is
clearly assigned to one prototype pi, then we have ui;j ¼ 1 and uk;j ¼ 0 for all

other k 6¼ i. For all these cases, the second term evaluates to �aj=4. If the
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membership degrees become more fuzzy, the second term increases. Since we

seek to minimize (6), this modification rewards crisp membership degrees.
Since there are no additional occurrences of pi in the second term, the

prototype update step remains the same as with the corresponding fuzzy

clustering algorithm (FCM, GK, FCRM, etc.).

Lemma 1. The necessary condition for a minimum of (6) yields the following
membership update equation:

ui;j ¼
1Pc

k¼1

d2ðxj;piÞ�aj
d2ðxj;pkÞ�aj

: ð7Þ

Proof. Let us consider (6) for a single data object xj. We apply Lagrange

multipliers k to satisfy the constraint
Pc

i¼1 ui;j ¼ 1 for xj (cf. (2)). We have

F ¼
Xc
i¼1

u2i;jd
2ðxj; piÞ �

Xc
i¼1

aj ui;j

�
� 1

2

�2

þ k
Xc
i¼1

ui;j

 
� 1

!
:

Setting the gradient to zero yields

oF
ok

¼
Xc
i¼1

ui;j � 1 ¼ 0;

oF
ouk;j

¼ 2uk;jd2ðxj; pkÞ � 2aj uk;j

�
� 1

2

�
þ k:

Note that we have fixed m ¼ 2 in (6) to obtain an analytical solution. From

oF =ouk;j we obtain

uk;j ¼
�aj � k

2d2ðxj; pkÞ � 2aj
:

Using oF =ok, we haveXc
i¼1

�aj � k
2d2ðxj; piÞ � 2aj

¼ 1 () k ¼ � 1Pc
i¼1 2d

2ðxj; piÞ � 2aj
� aj:

Substituting k in the previous equation yields (7). �

Obviously, we immediately run into some problems when choosing

aj > kxj � pik for some 16 i6 c. Then, the distance value d2
i;j � aj becomes

negative and the same is true for the membership degrees (di;j ¼ dðxj; piÞ).
Therefore, we have to require explicitly the constraint 06 ui;j 6 1. From the

Kuhn–Tucker conditions we obtain a simple solution as long as only a single

prototype has a distance smaller than aj to xj, in this case we obtain the
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minimum by setting ui;j ¼ 1. However, things are getting more complicated if

multiple negative terms di;j � aj occur.
If we want to avoid the problem of negative memberships, we could also

heuristically adapt the reward aj such that d2
i;j � aj always remains positive. The

maximal reward we can give is then

min d2
�;j ¼ minfd2

i;j j i 2 f1; . . . ; cgg � g

and thus

ui;j ¼
1Pc

k¼1

d2i;j�min d2�;j
d2k;j�min d2�;j

: ð8Þ

Without an g > 0 we find always an i such that d2ðxj; piÞ �min2
�;j ¼ 0 and

therefore ui;j ¼ 1. In other words, for g ¼ 0 we obtain a crisp partition, the

algorithm reduces in this case to (crisp) c-means (also known as ISODATA).

The choice of g influences the fuzziness of the partition, similar to the fuzzifier

m with FCM. Fig. 1(b) shows different partitions for g ranging from 0.01 to
0.2.

Surprisingly, besides the different shape of the membership functions, the

resulting algorithm performs very similar to conventional FCM in terms of

resulting cluster centers. The modified version seems slightly less sensitive to

noise and outliers, as we will see in the next section. Fig. 2 compares the results

of FCM and our modification for an example dataset. The maximum over all

membership degrees is indicated by contour lines.

4. Memberships induced by Voronoi distance

With FCM the Euclidean distance between cluster centroids plays a central

role in the definition of the membership functions. The idea is to ‘‘represent’’

each cluster by a single data instance – the prototype – and to use the distance

between prototype and data objects as the distance between cluster and data

object. Then, the relative distances (cf. (3)) define the degree of membership to
a cluster, e.g., if the distance between xj and p1 is half the distance to p2, the
membership degree u1;j is twice as large as u2;j. If we consider crisp membership

degrees things are different, the membership degree does not depend on the

ratio of distances, but the distances serve as threshold values. If the distance to

p1 is smaller than to p2 – no matter how much smaller – we always have

uj;1 ¼ 1.

Let us consider (8) again and assume that pi is closest to xj. No matter if xj is
far away from pi (but all other pk are even further away) or xj is very close to pi,
the numerator of the distance ratio is always constant g. Inside a region in

which all data points are closest to pi, the distance to cluster i is considered to
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be constant g. The membership degrees uk;j are therefore determined by the

denominator, that is, mainly by d2
Eðxj; pkÞ. Therefore, the membership degrees

obtained by (8) are no longer defined by a ratio of distances, but the maximum

reward ðmin d2
�;jÞ has the flavor of a threshold value.

Let us consider a crisp partition, which is induced by cluster centroids. The

resulting partition is usually referred to as the Voronoi diagram. The Euclidean

distance of a data object xj to the hyperplane that separates the clusters pi and
ps is given by jðxj � hsÞTnsj, where hs is a point on the hyperplane, e.g.,

hs ¼ ðps þ piÞ=2, and ns is the normal vector ns ¼ bs � ðpi � psÞ with

bs ¼ 1=ðkpi � pskÞ for s 6¼ i. How can we define the distance of a data object xj
to the Voronoi cell of cluster i rather than to a separating hyperplane? If we do

not take absolute values, we obtain directed distances ðxj � hsÞTns, which be-

come positive if xj lies on the same side as the cluster center and negative if xj
lies on the opposite side. Taking the absolute value of the minimum over all the

directed distances yields the distance to the border of the cell (see also [7] for the

case of rectangles in shell clustering). If xj lies within the Voronoi cell of cluster

i, then the distance to the cell is zero. We can formalize this special case easily

by setting bs ¼ 1 and defining:

dV ðxj; piÞ ¼ min
16 s6 c

ðx
				 � hsÞTns

				:
In Fig. 3, xj is closest to the separating line between p1 and p2, therefore this

distance serves as the distance to the Voronoi cell of p1. The graph of dV for the

four clusters of Fig. 3 is shown in Fig. 4.

If we do not scale the normal vectors ns to unit length, but assume bs ¼ 1 for

all s, we preserve the shape of dV (position of hyperplanes does not change),

only the gradient of the different hyperplanes varies. The following lemma

Fig. 3. Voronoi cell of centroid p1.
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establishes a connection between the scaled Voronoi distance and the approach
discussed in the previous section.

Lemma 2. Given a Voronoi diagram induced by a set of distinct points
pi; 16 i6 c, and a point x. Using bs ¼ 1 for all 16 s6 c, the (scaled) distance
between x and the Voronoi cell of point pi is given by

dV ðx; piÞ ¼
1

2
d2
Eðx; piÞ

�
� min

16 s6 c
d2
Eðx; psÞ

�
: ð9Þ

Proof. Some simple transformations yield the following chain of equalities:

dV ðx; piÞ ¼ min
16 s6 c

x
�				 � ps þ pi

2

�T
ðpi � psÞ

				
¼ min

16 s6 c
xTðpi

				 � psÞ �
1

2
ðpTi pi � pTs psÞ

				
¼ 1

2
min

16 s6 c
xTx

				 � 2xTps þ pTs ps þ ðxTx� 2xTpi þ pTi piÞ
				

¼ 1

2
min

16 s6 c
kx

				 � psk2 � kx� pik2
				

¼ðHÞ 1

2
kx
�

� pik2 � min
16 s6 c

kx� psk2
�
:

In the above equation ðHÞ we have used the trivial fact that any dEðx; piÞ is

greater than or equal to min16 s6 c dEðx; psÞ. �

Thus, the lemma tells us, by using a maximum reward the resulting mem-

bership values are identical to those that we would obtain by using standard

Fig. 4. Distance to Voronoi cell.
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FCM membership functions and a (scaled) Voronoi cell distance instead of

Euclidean centroid distance.
By replacing the Euclidean distance with the Voronoi distance during

membership calculation, we obtain different membership functions which are

much closer to those of the original c-means (cf. Fig. 2(b)). In this sense we can

speak of a new c-means fuzzification.

Note that with FCM squared Euclidean distances are used to determine the

membership degrees, but if we use the maximum reward/Voronoi distance we

use Euclidean distances to the Voronoi cell, which are not squared. Therefore,

the modification might be less sensitive to noise and outliers.

5. Interpretation as fuzzified minimum function

In the previous sections, we have seen how the introduction of a reward term

leads us to a fuzzy partition which is more closely related to the results of the

crisp c-means (or a Voronoi partition) than the standard FCM partition. The

c-means algorithm minimizes the objective functionXn
j¼1

min
16 i6 c

kxj � pik2:

The crisp minimum function can be reformulated as

min
16 i6 c

kxj � pik2 ¼
Xc
i¼1

ui;jkxj � pik2 ð10Þ

using crisp membership degrees ui;j defined by ui;j ¼ 1 () i ¼ argminikxj � pik2
(0 otherwise). If the partition of the discussed algorithm can be interpreted as a

fuzzified Voronoi diagram, is it also possible to interpret the termPc
i¼1 u

2
i;jdV ðxj; piÞ as a fuzzified minimum function? We have faced the problem

of a fuzzified minimum function before in [7]. There, we considered the terms
di ¼ bi �min16 s6 k bs in a minimum term minðb1; b2; . . . ; bkÞ as the ‘‘distance of
argument i to the minimum’’ and used the standard FCM membership degrees

to assign a ‘‘degree of minimality’’ to each argument bi (a minimality degree is

within ½0; 1� and high values indicate that bi is close to the minimum of

b1; . . . ; bk). Note that this leads to the same equations as we have discussed in

the previous sections.

Regarding the approximation quality, we state the following theorem:

Theorem 1 (Fuzzified minimum function). Let f : RP 0 ! RP 0 be a strictly in-
creasing function with f ðxÞP x, let g 2 RP 0. Then for all d ¼ ðd1; . . . ; dkÞ 2 Rk,
Ds ¼ ðf ðds �minfd1; . . . ; dkgÞ þ gÞq; qP 1, the following inequality holds:
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Xk
s¼1

usds

					 �minfd1; d2; . . . ; dkg
					 < gqr þ gðk � r � 1Þ6 gðk � 1Þ;

where us ¼ 1=ð
Pk

i¼1
Ds
Di
Þ and r is the number of indices s for which ds has at least a

distance of 1� g from the minimum:

r ¼ jfsj16 s6 k; ds �minfd1; d2; . . . ; dkg > 1� ggj:

Proof. We have the following equality:

Xk
s¼1

ds
Ds
Pk

i¼1
1
Di

¼
Xk
s¼1

ds

Ds

Pk

i¼1

Qk

t¼1;t 6¼1
DtQk

i¼1
Di

¼
Xk
s¼1

ds
Qk

i¼1 Di

Ds
Pk

i¼1

Qk
t¼1;t 6¼1 Dt

¼
Xk
s¼1

ds
Qk

i¼1;i6¼s DiPk
i¼1

Qk
t¼1;t 6¼1 Dt

¼
Pk

s¼1 ds
Qk

i¼1;i6¼s DiPk
i¼1

Qk
t¼1;t 6¼1 Dt

: ð11Þ

Using the abbreviations M ¼ minfd1; d2; . . . ; dkg we estimate the approxima-

tion error as follows:Pk
s¼1 ds

Qk
i¼1;i6¼s DiPk

s¼1

Qk
i¼1;i6¼s Di

					 � M

					
¼

Pk
s¼1 ds

Qk
i¼1;i6¼s Di

� �
�M

Pk
s¼1

Qk
i¼1;i6¼s Di

� �
Pk

s¼1

Qk
i¼1;i6¼s Di

						
						

¼
Pk

s¼1ðds �MÞ
Qk

i¼1;i 6¼s DiPk
s¼1

Qk
i¼1;i6¼s Di

					
					H1

¼

Pk
s¼1ðds �MÞ

Qk
i¼1;i6¼s DiPk

s¼1

Qk
i¼1;i6¼s Di

					
					

H
2

6

gq
Pk

s¼2ðds �MÞ
Qk

i¼2;i6¼s DiPk
s¼1

Qk
i¼1;i6¼s Di

					
					H3

<

gq
Pk

s¼2ðds �MÞ
Qk

i¼2;i6¼s DiQk
i¼2 Di

					
					

¼ gq
Xk
s¼2

ðds �MÞ
Ds

					
					6 gq

Xk
s¼2

ðds �MÞ
Ds

				 				
H

4

<
gq
Xk
s¼2

ðds �MÞ
ðds �MÞðds �M þ gÞq�1

					
					

¼ gq
Xk
s¼2

1

ðds �M þ gÞq�1

					
					H5

6
gq
Xk
s¼2

1

gq�1

				 				 ¼ gðk � 1Þ:
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Remarks

If some ds; s 2 f2; 3; . . . ; kg, have reached a distance ds �M P 1� g from the

minimum, the estimation can be improved. 1 If we continue from the result
after H

3 we have ds �M < f ðds �MÞ þ g < ðf ðds �MÞ þ gÞq ¼ Ds and thus

may substitute ðds �MÞ by Ds. This leads us to an error below gqðk � 1Þ.
To summarize both estimations, if there are r values that have a distance of

at least ds > 1� g þM , we have an error smaller than gðk � r � 1Þ þ gqr. �

Although we deal only with non-negative distances in the context of clus-

tering, note that the fuzzified minimum function does also work with negative

terms. If there are negative arguments, the minimum will also be negative, and
subtracting the (negative) minimum from all other arguments yields a set of

non-negative arguments. Also note that the fuzzified minimum is once differ-

entiable for q > 1. Fig. 5 shows an example where we take the pointwise

minimum of three functions. The resulting fuzzified minimum is displayed for

two different values of g ¼ 0:1=0:2 (solid lines) using q ¼ 1:5. According to the

theorem, the error is bounded by 0:06=0:18 if the minimum is clearly separated

from the other values and 0:2=0:4 in general.

6. Combining clustering and regression

If we consider a fuzzy model using amongst others a rule ‘‘if x is approxi-

mately zero, then y ¼ 2xþ 1’’, we expect the resulting model to behave near
zero as it has been described. Again, many systems in the literature allow

massively overlapping premise fuzzy sets for higher-order TS models. In this

H
1 Without loss of generality we have assume that d1 is the minimum

and have ðd1 �MÞ ¼ 0.
H

2 From d1 ¼ M we can conclude D1 ¼ ðf ðd1 � d1Þ þ gÞq 6 gq.

H
3 We have dropped all summands in the denominatorPk

s¼1

Qk
i¼1;i 6¼s Di that contain D1. All summands are positive.

H
4 We drop one g in the denominator

Ds ¼ ðds �M þ gÞðds �M þ gÞq�1
which makes the term smaller.

H
5 Here we assume the worst case that all ds are minimal and thus

ds �M ¼ 0. (However, if this would actually be the case, we can

see from the equality H
1 that the approximation error is zero.) We

also obtain an equality if q ¼ 1.

1 This additional condition has not been mentioned in [7].
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case, the resulting function does not behave at all like one might expect from the
conclusion of the rule, but is composed out of polynomials of many different

rules. The fuzzy model will behave as desired only if the premise fuzzy set

‘‘approximately zero’’ has a large support of 1 near zero and thus there is only

one rule applicable. This leads us to trapezoidal or even crisp premise fuzzy

sets. Note that in case of crisp membership functions we have the classical case

of piecewise polynomial function approximation. Since the support of the local

polynomials is not fixed in advance, this is a non-trivial problem in the classical

case, too. With crisp premise memberships and linear functions in the con-
clusion we again have the piecewise linear case, we therefore consider poly-

nomials of degree 2 in this paper – but the algorithm can also be used for

higher polynomial degrees.

Thus, the goal is to partition the input space such that the resulting

fuzzy membership functions have a large support of 1. This can be done by

means of fuzzy clustering, for example the fuzzy c-means algorithm (using a

fuzzifier 1 < m6 1:5) 2 as proposed in [8]. An even better solution is ob-

tained, when we apply our modified algorithm that rewards crisp member-
ship values for the partition of the input space (as we have discussed with

Fig. 1).

For each cluster in this partition, we use a polynomial of degree 2 to locally

approximate the input–output relationship in this cluster. This can be done by

means of switching regression models [6]. If we combine both algorithms, we

obtain a fuzzy clustering/regression algorithm where each cluster can be in-

Fig. 5. Minimum of three functions.

2 By means of a fuzzifier near 1 we obtain more crisp and convex membership degrees.
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terpreted as a rule in a TS model. Since both algorithms (clustering and re-

gression) are objective function-based, their combination is straightforward.

The new fuzzy model (FM) algorithm uses the sum of both distance functions

(FCM and FCRM) in the modified clustering algorithm:

d2ððxj; yjÞ; ðpi; qiÞÞ ¼ kxj � pik2|fflfflfflfflfflffl{zfflfflfflfflfflffl}
FCM distance

þ yj � qTi x̂xj
� �2
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
FCRM distance

: ð12Þ

The FCM distances are taken with respect to the input value xj and cluster

center pi, while the FCRM distances are taken with respect to the given output
value yj and the value of the polynomial at bxjxj with coefficients qi. The algorithm
is sketched in Fig. 6.

Since there are no dependencies between the parameters of the modified

clustering and regression prototypes (pi and qi), the same prototype update

equations hold for the combined algorithm. Nevertheless, cluster centers and

polynomials influence each other indirectly by means of the membership de-

grees, which depend on the distance to both models. (A different way to

combine FCM and linear FCRM can be found in [3].)
Of course, instead of using FCM to partition the input space other fuzzy

clustering algorithms may be used, for instance the GK algorithm. To do

this, we have to replace the FCM term in (12) and the corresponding

prototype update in Fig. 6. For the examples in Figs. 7(a) and 8(a) we have

chosen the GK algorithm. The figures show two functions 3 from which we

generated noisy sample data. The data were distributed evenly over the

input space and were not concentrated in clusters. The best resulting ap-

proximations (from a set of different cluster initializations) are shown in
Figs. 7(b) (g ¼ 0:05) and 8(b) (g ¼ 0:1). At the bottom of the plots you can

observe the contour lines of the membership functions and thus the ob-

tained partition of the input space, which has been adopted pretty good to

Fig. 6. The FM algorithm.

3 Fig. 7(a): f ðx; yÞ ¼ atanð3xþ 4yÞ þ 3 expð�ð3x� 4Þ2 � ð2y � 2Þ2 þ ð3x� 4Þ � ð2y � 2ÞÞ, Fig.

8(a): f ðx; yÞ ¼ atanðxÞ cosðy2Þ.
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the peculiarities of the respective function. This is remarkable because the

data distribution itself does not provide any hints for the optimal location
of the cluster centers (data evenly distributed), only the output values help

in adjusting them. When clustering is used to learn a fuzzy system it is quite

often assumed that the data points clump together where a new local model

should be inserted. However, in real-world data it is likely that regions of

high data density simply indicate the operating points of the systems and

not necessarily good centers for local models. Obviously, there is no such

assumption in this approach.

The large white regions at the bottom of the figures indicate those parts of
the input space where the memberships are dominated by a single cluster, that

is, we have a membership degree very close to 1 for a single cluster. Thus we

can be sure that the fuzzy model indeed reflects the regression model that is

associated with this cluster.

Fig. 7. Fuzzy model using five GK clusters to partition the input space: (a) original function; (b)

approximation.
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7. Conclusions

In this paper, we have presented a modification of FCM, which is more

closely related to the original (non-fuzzy) c-means algorithm. This can be de-

sirable for certain applications, for example if we want to attach linguistic

labels to the membership functions. We have proposed a modification of the

objective function that is minimized by FCM to reward nearly crisp mem-

berships. If we (heuristically) select a (in some sense) ‘‘maximum reward’’, we

have shown that the membership functions correspond to membership func-

tions that would be obtained by using the distance between the Voronoi cell
and a data object.

The obtained membership functions can also be interpreted as a fuzzified

minimum function. In retro-perspective, we can consider the modification

Fig. 8. Fuzzy model using eight GK clusters to partition the input space: (a) original function; (b)

approximation.
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as a substitution of the crisp minimum function of c-means by a fuzzified

variant.
Our modified version is suitable, when fuzzy clustering is applied to parti-

tion the input space of a (sampled) function, in order to construct local models/

approximations of the function. In this case it is desired that on the one hand

each local model should be valid on a large area as possible and on the other

hand that a continuous switching between the model is carried out on the

boundaries between the regions where the models are valid. With our approach

both these requirements can be satisfied.
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