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In NMR or MRI of complex materials, including biological tissues and porous materials, magnetic suscep-
tibility differences within the material result in local magnetic field inhomogeneities, even if the applied
magnetic field is homogeneous. Mobile nuclear spins move though the inhomogeneous field, by transla-
tional diffusion and other mechanisms, resulting in decoherence of nuclear spin phase more rapidly than
transverse relaxation alone. The objective of this paper is to simulate this diffusion-mediated decoher-
ence and demonstrate that it may substantially reduce coherence lifetimes of nuclear spin phase, in an

Keywords: - anisotropic fashion. We do so using a model of cylindrical pores within an otherwise homogeneous mate-
Coherence lifetime . . . . L . . . .

Anisotropy rial, and calculate the resulting magnetic field inhomogeneities. Our simulations show that diffusion-
Relaxation mediated decoherence in a system of parallel cylindrical pores is anisotropic, with coherence lifetime

Porous media minimised when the array of cylindrical pores is perpendicular to By. We also show that this anisotropy

of coherence lifetime is reduced if the orientations of cylindrical pores are disordered within the system.
In addition we characterise the dependence on By, the magnetic susceptibility of the cylindrical pores
relative to the surroundings, the diffusion coefficient and cylinder wall thickness. Our findings may aid
in the interpretation of NMR and MRI relaxation data.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).

1. Introduction

In both a nuclear magnetic resonance (NMR) and magnetic
resonance imaging (MRI) experiment, a signal is created by the gen-
eration of coherence of nuclear spin phase by radiofrequency (RF)
fields. This coherence is subsequently lost and spin phases once
more randomised, the system thereby returning to a state in which
its entropy is maximised. The loss of spin phase coherence may
occur by several means. The stochastic modulation of the nuclear
spin Hamiltonian, due to Brownian motion (mainly rotational diffu-
sion) as well as internal bond vector motions, results in stochasti-
cally fluctuating magnetic fields [1]. Such randomly changing
fields are due to spin interactions, such as the chemical shift
anisotropy (CSA), nuclear spin dipolar couplings, and quadrupolar
couplings (for I > 1/2). Stochastically varying fields resulting from
stochastic modulation of the nuclear spin Hamiltonian are the
cause of nuclear spin relaxation, with the transverse relaxation time
constant having the conventional abbreviation T,. As such we
consider a relaxation process to be one involving stochastic
modulation of the nuclear spin Hamiltonian, concomitantly
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returning a spin system to the equilibrium state. Relaxation is
normally described using Redfield theory [2]. However, relaxation
is not the only means by which spin phase coherence is lost. If
nuclear spins experience a distribution of magnetic fields, either
statically or dynamically across a sample, for reasons other than a
stochastically varying Hamiltonian, spin phase coherence will be
lost, yet the process may not properly be labelled as relaxation. A
system may also therefore be characterised by a coherence lifetime
shorter than its T,. Causes for the decoherence which are not
relaxation include chemical exchange, static dephasing due to mag-
netic field inhomogeneities, and translational diffusion through
magnetic field inhomogeneities. It is the latter phenomenon that
is the subject of the current paper.

In an inhomogeneous material containing internal compart-
ments with different magnetic susceptibilities, the compartments,
which we label as “magnetic field perturbers”, result in small mag-
netic fields in response to the material being exposed to a strong
applied magnetic field. This situation is the case in both NMR
and MRI experiments of porous materials permeated by some
other material, or of biological tissues. A mobile nuclear spin
moving through the material (by translational diffusion or other
mechanisms) experiences a distribution of magnetic fields even if
the applied field is homogeneous. The ensemble of nuclear spins

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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therefore loses coherence of phase more rapidly than due to relax-
ation processes alone.

A similar effect is exploited in both NMR and MRI diffusion
measurements by the application of a strong pulsed linear field
gradient [3]. Any coherence lost, and which cannot be refocussed
by a 180° radiofrequency (RF) pulse or recalled by a pulsed field
gradient causing a counter-translation through k-space may be
attributed to translational diffusion. Classical formalisms of the
effects of translational diffusion in the presence of linear field gra-
dients on spin dynamics are well known, both for isotropic and ani-
sotropic diffusion [3-5]. These form the basis of the theory section
to come.

Our objective in the current work was to simulate the effects of
cylindrical magnetic field perturbers as causes of diffusion-
mediated decoherence. We will review the relevant theory,
developing general expressions, and present simulations of nuclear
spin dephasing due to translational diffusion through magnetic
field inhomogeneities arising due to cylindrical magnetic field
perturbers with different magnetic susceptibility from their
surroundings.

1.1. Relation to similar work

The effects of spherical magnetic field perturbers on diffusion-
mediated decoherence have been considered before [6]. However,
no consideration in that work was given to the anisotropy of coher-
ence lifetime, nor could the state of order of the system be consid-
ered as the field perturbers were limited to a spherical model.
There has also been work to characterise the decoherence of
nuclear spin phase in the static dephasing regime [7,8], which
has related decoherence to susceptibility differences, but
diffusion-mediated decoherence was not incorporated into the lat-
ter formalisms.

Parallel and individual cylindrical models have previously been
used to model gradient-echo phase contrast in the white matter of
the brain [9,10]. The objective in that work, however, was to
explain phase contrast in MRI, and no consideration was given to
diffusion-mediated decoherence, despite some overlap in concep-
tual model design. Similar concepts have recently been used to
explain anisotropic gradient-echo T; (which does not use
refocussing pulses and therefore contains static-dephasing
susceptibility-dominated contributions) in the brain [11].

However, there has been little interest at quantifying the
contributions to coherence lifetime due to diffusion-mediated
decoherence. Nonetheless, the dependence of diffusion-mediated
decoherence on the microscopic arrangement of structures within
the system may make it a useful phenomenon. There are a variety
of systems in which coherence lifetime and/or relaxation aniso-
tropy is known to exist (though not necessarily separable with
ease). In vivo, coherence lifetime is known to be anisotropic in car-
tilage [12-14] and has more recently been observed to be anisotro-
pic in the brain [15] and peripheral nervous system [16]. To what
extent the mechanisms modelled here may have a role is not yet
clear.

2. Theory

2.1. Diffusion in the presence of an arbitrary magnetic field
inhomogeneity

We present a classical description, therefore limited to uncou-
pled spin-1/2 nuclei, based on the work of Torrey [4] and later
work by Stejskal and Tanner [5]. The Bloch-Torrey equation for
transverse magnetisation including anisotropic translational diffu-
sion, in the laboratory frame of reference, is:

%M*(t, X) = (—iwp — i — IAWX) — Ry + V-DV)M* (t,x) (1)
Here, M (t,X) is the complex-valued transverse magnetisation as a
function of time t and spatial coordinate X, @, is the Larmor fre-
quency, w is the isotropic part of the chemical shift anisotropy
tensor, Aw(X) is a frequency difference function describing the mag-
netic field inhomogeneity, R, is the transverse relaxation rate con-
stant, V is the gradient operator, and D the translational diffusion
tensor. This is immediately simplified by working in a frame rotat-
ing at the chemically shifted Larmor frequency:

%M;(t, X) = (—IA®(X) — R, + V- DV)M™ (¢, X) (2)
where M} (t,X) is the transverse magnetisation in a frame of refer-
ence rotating at the Larmor frequency, and in the same sense as Lar-
mor precession. Following a similar approach to Torrey and others,
if we assume relaxation to be isotropic and independent of space,
we can factor its effects out as an exponential dampening:

%!ﬁ(ﬁ X) = (—iAw(X) + V -DV)y(t,X) (3)
where
Mg (£,X) = i(t,X) exp(—Ryt) (4)

In other words, transverse magnetisation may be represented
by a product of a purely time-dependent function exp(—R,t) and
a function of time and space (t,X). Now we need only solve for
¥ (t,X). This may be factorised into a product of two terms:

Y(t,X) = A(t, X) exp(ipAn (X)) (5)

Note that we have introduced the coherence order p, similarly
to recent modern treatments of the effects of diffusion on the
NMR signal [17]. This allows us to account for refocussing pulses.
This factorisation treats y(t,x) as being a product of a periodic
term exp(ipAm(X)t) and some as-yet-unknown term A(t,X) which
includes damping due to diffusion. However, if the frequency dif-
ference function Aw(x) (and therefore magnetic field inhomogene-
ity) is non-linear in space, A(t,X) is also a function of space - a
point we shall return to shortly.

Differentiating (t,x) with respect to time:

19} d .
SU(EX) = £ A(EX) exp(ipAn(X)D)

= 8Aétt, X) exp(ipAm(X)t) +A(t,X)ipAw(X) exp(ipAw(X)t) (6)
We also have, by substituting our assumed solution (5) into (3):

%lp(nx) = (ipAw(X) + V -DV)y(t,X) = ipAwA(t,X) exp(ipAw(X)t)

+ V -DVIA(t,x) exp(ipAw(X)t)] (7)

Evaluating the derivatives (see Appendix A for more details) and
dropping the variables upon which terms depends gives:

V -DV[Aexp(ipAwt)] = [V -DVA + ipt[VAw - DVA + VA
-DVAW] + A(iptV - DV — p*t?VA®w
-DV)] exp(ipAwt) (8)
Substituting into (7)

%w(t, X) = ipAwA(t,X) exp(ipAw(X)t) + [V - DVA
+ipt[VAw - DVA + VA - DVA®] + A(iptV - DV
— P’2VA® -DV)] exp(ipAwt) 9)

By Eq. (9) and (6), after some simple manipulation we obtain:
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88—1? =V -DVA+ipt[VAw -DVA + VA -DVAw]
+ A(iptV -DV — p?t*VAw - DV)A®m (10)
As shown in Appendix A, this can also be expressed concisely
as:
0A . .
T exp(—ipAwt)V - DV[Aexp(ipAwt)] (11)

Recalling that A is essentially the diffusion damping term, the
problem is solved once Egs. (10) or (11) has been solved for A.
Eq. (10), and its concise form (11) therefore provide general
expressions for classical descriptions of transverse magnetisation
inclusive of anisotropic or isotropic translational diffusion in the
presence of an arbitrary magnetic inhomogeneity expressed by a
frequency difference function Aw(x). It is valid so long as one is
not considering spin interactions or exchange. It is not, however,
particularly practical, since its complexity makes general solutions
challenging. If instead we introduce the simplifying assumption
that the spatial dependence of A is locally linear on the length scale
of diffusion, or at least much shallower than that of Aw, then A may
be considered a function of time only. Then we have:

% = A(iptV - DV — p*22VA® - DV)A® (12)

The solution is straightforward:

A(t)=Aoexp {% \% -DV]Aa)(x)} exp {—%F[VAQ)(X) -DV]Aa)(x)}
(13)

where Ay is the initial signal intensity. The total signal amplitude,
including R, (transverse) relaxation, is obtained by integrating this
function over space:

S(t) = ‘./Ao exp {% V- DV]Aw(x)}

exp { - %ﬁ [VAw(X) - DV]Aw(x)}dX

exp(—Rat) (14)

In the damping term, note that the coherence order is always
positive (appears in the second power) and that the signal is
damped with the cube of time and linearly with components of
the diffusion tensor. In the oscillating (phase) term, the coherence
order may be variable (but is required to be piecewise constant
with time), and the signal evolves with the square of time and lin-
early with components of the diffusion tensor. Since the coherence
order changes between —1 and +1 between refocussing pulses, we
can expect a spin-echo sequence to refocus this term, but to have
additional dephasing in gradient echo sequences. The formula
above evaluates to the well-known results of Stejskal and Tanner,
if we let

Aw(X) = yG - X (15)

With G a magnetic field gradient vector and y the gyromagnetic
ratio for the nucleus under observation.

2.2. Field inhomogeneity function in cylindrically porous materials

Now, we require a form of the frequency difference function
(proportional to magnetic field inhomogeneity), arising due to
interfaces between materials of different magnetic susceptibility.
We are interested in the case of cylindrical structures, which arise
in various materials including biological tissues. For example, cap-
illaries and veins (containing paramagnetic deoxyhaemoglobin)
and the walls of myelinated axons (which are diamagnetic) may
be modelled as cylinders with different magnetic susceptibility

from their surroundings. For a single hollow cylinder with an infi-
nitely thin wall, where the material inside the cylinder has a
different susceptibility from the material outside, we have [9]:

2 cin? 2
0 0 2 T
(JMsmz oS 2¢ (é)v r> Te

0, r<re

Aw(X) = { (16)

where wy is the Larmor frequency, 0 is the polar angle between the
long axis of the cylinder and By, and the coordinates ¢, r represent
position in a cylindrical system with the z-axis parallel to the cylin-
der long axis and B, defined in the xz plane. y is the susceptibility
difference (with the susceptibility tensor assumed isotropic)
between the outside and inside of the cylinder, and r. is the cylinder
radius. In the case of an array of hollow cylinders, this may be
summed:

woxjsinz 0; cos 2¢; i >
ACU(X) — Z{ 2 <r2>7 = I (-17)
J

0, r <1y
Now, cylinders are enumerated by j.
We can also take account of finite wall thickness, in which case
the above equation becomes:

DoY) 32 ]
—7sin” 0;cos2¢; (sz)’ T =T

Ao (X) = o i . r2—r2
®) z]: 0% (cos? 0;— 1 —sin® ;cos2¢; (<4 ) ), ry<r<rg

0, r<ry
(18)

Once we have chosen geometry for a set of cylinders, Egs. (16)
or (17) may be used to calculate a frequency difference function,
and Eq. (13) applied to calculate the resulting decoherence of
nuclear spin phase. We created a Matlab class capable of calculat-
ing the frequency difference function for any arbitrary geometry of
any number of cylindrical field perturbers, based of Eqs. (17) and
(18), and which then determined the complex-valued evolution
of the magnetic resonance signal due to diffusion only according
to Eq. (14). We used Matlab version 2015b for all our simulations.

2.3. Correlation functions for relaxation due to translational diffusion

A correlation function for some arbitrary spin interaction may
be expressed as

Coalt) = / F9 (x0)F9 (X)P(X0) P(X[X0) dXdXo (19)

Here, the functions F*? are the spatial parts of the Hamiltonian for
the spin interaction of interest (e.g. CSA, dipolar couplings, etc.), q
indexes the basis functions in the expansion of the Hamiltonian,
P(Xo) is the probability that a spin will have coordinate xy at t=0
and P(x|x,) is the conditional probability that a spin will make a
jump to coordinate x at time t given coordinate X, at t =0.

3. Results
3.1. Effects of a single cylinder

As a first demonstration of the effects of cylindrical field per-
turbers whose magnetic susceptibility is different from their sur-
roundings, we consider a single cylinder with an impermeable
and infinitely thin wall. This may model a cylindrical pore in a
material. As in all our simulations, for the sake of simplicity we
assume translational diffusion to be isotropic, and likewise the
magnetic susceptibility to be isotropic. We also assume that the
pores, their walls (in later simulations) and the surroundings
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contain 'H-containing solvent which is observed, such that the Lar-
mor frequency appearing in Eqgs. (16)-(19) is that of 'H. Fig. 1
shows simulations of what we can expect for a single cylinder.
Simulations were performed assuming a By field of 3 T (a common
field strength for modern clinical MRI scanners), an isotropic sus-
ceptibility difference of 0.5 ppm, an isotropic diffusion coefficient
of 1 pm?/s and using a single cylinder of radius 30 um in a cube
of 80 x 80 x 80 um?>. From panels 1a-d, we see that as the cylinder
is inclined relative to the applied field, it creates an inhomoge-
neous magnetic field in response, plotted as frequency difference
maps at a representative slice (this system has cylindrical symme-
try). Clearly, nuclear spins will diffuse through a magnetic field
changing more rapidly in space as the angle between the longitu-
dinal axis of the cylinder and the applied field approaches 90°. As
shown in Fig. 1e, dephasing is greatest at 90°. This is coherence life-
time anisotropy. We have also calculated coherence lifetime or “ef-
fective T," values. Although the diffusion-mediated decoherence is
plainly non-exponential, it remains common practice in NMR and
MRI to consider overall decoherence to be exponential, so we have
damped the functions in Fig. 1e with a relaxation time T, of 0.1 s,
then fitted a mono-exponential function to the total decay
functions to yield effective coherence lifetimes, plotted in Fig. 1f.
We can then more clearly see the anisotropy of coherence lifetime;
as the system is physically rotated with respect to By, the

e

Signal

0 02 04 06 08 1
Time (seconds)

coherence lifetime, defined as the effective time constant with
which nuclear spin phase coherence is irretrievably lost (and can-
not be refocussed), is also changed. We also attempted to extract
model-free coherence lifetimes by calculating the second central
moment of the relaxation-damped simulations, but found the
numerical stability of the (model-dependent) exponential method
to be superior. This is explained in detail with examples in the
Supplementary Material.

3.2. Effects of By

We next performed a simulation using a more complex model of
multiple cylindrical pores with walls of finite thickness, in which
the walls were composed of a material with different magnetic sus-
ceptibility from the surroundings and lumen (the latter two regions
having the same magnetic susceptibility). As before, the simula-
tions treated all regions as containing solvent with 'H nuclei in
equal concentration in all regions to be observed. Such a system
may be used to model myelinated axons of white matter fibres in
the brain. We created an array of 9 cylinders, each of outer radius
0.5 um and inner radius 0.1 um. The susceptibility difference
between the wall and surroundings/lumen was 0.05 ppm, and the
diffusion coefficient 0.7 pm?/s, similar to human brain parenchyma.
We varied the By field from 1 T to 23 T, covering the typical range of
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Fig. 1. Effects of translational diffusion through magnetic field inhomogeneities caused by a single cylindrical pore of 30 um diameter. Both the cylinder and surroundings
contain solvent with 'H nuclei which are observed. Panels a-d show the frequency difference function when the cylinder is inclined at angles of 0°, 30°, 60° and 90° relative to
Bo. All panels a-d share the scale bars of b and d, showing frequencies in Hz. Panel e shows the loss of nuclear spin phase due to diffusion through the magnetic field
inhomogeneities at a variety of cylinder angles relative to By. Panel f shows “effective T,” values obtained by damping the curves in panel e with a T, of 0.1 s, then fitting a

mono-exponential function to the total resulting decoherence function.
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Fig. 2. The effects of B, on nuclear spin phase decoherence in cylindrically porous media. Panels a, ¢, and e show frequency difference maps calculated for an array for
cylindrical field pertubers inclined at 90° relative to B, with Bg = 3, 7 and 19 T respectively, Panels b, d, and f show the corresponding diffusion-mediated decoherence of the
signal amplitude. Panel e shows the effective coherence lifetime as a function of orientation under the restrictive assumption that there is an inherent T, of 0.1 s at all fields.

Panel h shows the coherence lifetime anisotropy as a function of B,.

field strengths available from commercial MRI and NMR systems.
The results are shown in Fig. 2. The coherence lifetime, as before,
was obtained heuristically by damping the diffusion-attenuated
signal by an exponential function assuming a T, of 0.1 s regardless
of field strength and orientation. We then defined the coherence
lifetime anisotropy parameter as:

o

20
o (20

C

where T9 and T3° denote the coherence lifetime with the system
oriented at 0° and 90° relative to By respectively. It is clear that
diffusion-mediated decoherence becomes more severe as By
increases. Although the same pattern of coherence lifetime aniso-
tropy is seen regardless of field strength, the C parameter increases
with increasing field. This is a reasonable result given that the
Larmor frequency appears in Eqs. (16)-(18). We can expect that
magnetic field gradients are steeper at higher fields, such that a
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Fig. 3. Effects of diffusion coefficient on nuclear spin phase decoherence in cylindrically porous media. Panels a and b show the signal lost due to decoherence by diffusion
though magnetic field inhomogeneities created by the system’s geometry and susceptibility differences, with a corresponding to diffusion coefficient of 0.5 pm?/s and b to
2.5 um?/s. Panel ¢ shows the frequency difference map (with scale bar in Hz) with the system at 90° relative to By. Panel d shows coherence lifetimes of effective T, values
again obtained by including a T, of 0.1 s on the diffusion-related loss of coherence and fitting a mono-exponential function to the total decoherence function.
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Fig. 4. Effects of magnetic susceptibility difference on nuclear spin phase decoherence in cylindrically porous media. Panels a and b show the signal lost due to decoherence
by diffusion though magnetic field inhomogeneities created by the system’s geometry and susceptibility differences, with susceptibility differences of 0.05 and 0.5 ppm
respectively. Both panels share the legend in a. Panel ¢ shows monoexponential fits to example signal decoherence functions defined as diffusion-mediated decoherence
damped by exponential relaxation with a T, relaxation time constant of 0.1 s. Panel d shows the coherence lifetimes generated by such means as a function of susceptibility
difference and cylinder array angle relative to By.
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Fig. 5. The effect of system order on nuclear spin phase decoherence in cylindrically porous media. Panels a and b show two different geometries of cylinders with infinitely
thin, but impermeable, walls. Array a is perfectly aligned, but b has only a slight alignment parallel to its z-axis. Panels ¢ and d show the frequency difference map at a
representative slice through the geometries of a and b respectively when oriented at an angle of 0° relative to B,. Panels e and f show likewise but at 90° relative to By. Panels g
and h show the diffusion-mediated loss of signal for geometries a and b respectively. Scale bars are in units of Hz. Panels i and j show the coherence lifetime anisotropies for
geometries a and b respectively inclusive of a T, of 0.1 s. In all simulations the applied field was 3 T, the diffusion coefficient 0.7 pm?/s, the susceptibility difference 0.05 ppm.
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greater dispersion in phase is imposed across the same region of
space by a higher By.

3.3. Effects of diffusion coefficient

The effect of the diffusion coefficient was next investigated, in
the range 0.5-2.5 um?/s. The same system as in the previous sim-
ulations was used, expect that By, was fixed at 3 T. The results are
shown in Fig. 3. Although the same phenomenon may be seen as
in the basic simulations of Fig. 1, we can also see that the total
amount of anisotropy of coherence lifetime increases as the diffu-
sion coefficient increases. This is rational, as spins experience a
broader range of magnetic fields if they are able to move more
rapidly. We also see that there is a non-zero phase decoherence
even when the perfectly ordered array of cylinders is parallel to
By if they have walls of finite thickness.

3.4. Effects of magnetic susceptibility difference

In our next simulations, we used the same system as in the pre-
vious section (whose geometry is shown in Fig. 2¢), but fixed the
diffusion coefficient at 0.7 um?/s and varied the magnetic suscep-
tibility difference between the walls and lumen/surroundings.
The results are shown in Fig. 4. Again, the form of the decoherence
due to diffusion through field inhomogeneities is rather compli-
cated but clearly “fastest” when the array of cylinders is inclined
at 90° relative to By as seen in Fig. 4a and b. We also include some
examples of the quality of a mono-exponential fit to the exponen-
tially damped decoherence functions inclusive of a T, of 0.1 s in
Fig. 4c. The fits are of course not perfect but quite reasonable, vin-
dicating the common use of an exponential coherence lifetime,
including in our own work here. Panel 3d shows the coherence
lifetime, with its familiar pattern of anisotropy, and with its aniso-
tropy increasing as the susceptibility difference increases. With the
particular geometry used, at 90° relative to By, a susceptibility
difference of 0.5 ppm has the effect that diffusion-mediated deco-
herence accounts for about half the observed coherence lifetime,
which is correspondingly half the real T,.

3.5. Effects of order of cylindrical pores or objects

Our next simulation examined the effects of how ordered the
system of cylindrical field perturbers is upon the diffusion-
mediated decoherence and coherence lifetime anisotropy. To do
so, we set up two different arrays of hollow cylinders of infinitely
thin but impermeable walls, and assumed a susceptibility
difference between the lumen and surroundings. The first array
comprised 9 cylinders of slightly different radii, all parallel and
evenly spaced on a grid. The second array comprised the same 9
cylinders, but rotated and translated so as to retain a modest
degree to alignment only, and not to lie on a regular grid. These
geometries may be seen in Fig. 5a and b. From panels c to f, we
see that the disordered system always creates an inhomogeneous
field; there is no angle at which the field vanishes. As such, there
is always some dephasing in the disordered array. However, the
dephasing also varies less as the system is rotated relative to By,
as seen in Fig. 5g—j. The coherence lifetime anisotropy is greater
overall in the ordered system, even though there is always some
diffusion-mediated decoherence in the disordered system. This is
since the fields produced by the disordered system may either
interfere constructively or destructively. Often, cylinders at differ-
ent angles conspire to cancel out the fields produced by one
another to some extent in the disordered system, making the field
gradients experienced by moving nuclear spins smaller than in the
ordered system. A strong coherence lifetime anisotropy is therefore
an indicator of a high degree of order.

3.6. The effects of wall thickness

We next simulated the effect of wall thickness in ordered arrays
of cylinders in which the wall has different susceptibility from the
lumen/surroundings. A similar system to that of Figs. 2-4 was used,
save that the wall thickness was the variable and B, fixed at 3 T. The
results are shown in Fig. 6. The main result was the observation of
increasing coherence lifetime anisotropy with wall thickness up to
0.3 um. This is similar to the thickness of the myelin sheath in vivo
[18]. As in all previous simulations, even with a relatively small sus-
ceptibility difference of 0.05 ppm and diffusion coefficient of
0.7 pm?/s, diffusion-mediated decoherence was a significant con-
tributor to reducing coherence lifetime below T, when the system
of parallel cylinders was not parallel to By. The fact that diffusion-
mediated decoherence did not increase when the wall thickness
increase beyond 0.3 pm (with a total radius of 0.5 pm) is probably
because further increases do not add significantly to the total
amount of wall material, adding as they do to the inner radius.

3.7. The effect of packing density

Finally, we simulated the effects of cylinder packing density on
diffusion-mediated decoherence by using arrays of cylinders of
infinitely thin walls. Everything except the distance between cylin-
ders (packing density) was kept constant. We performed simula-
tions with packing densities from 30 to 55 pum with a fixed
cylinder radius of 10 um. The results are shown in Fig. 7. The
coherence lifetime anisotropy shows the familiar pattern for each
packing density. However, the dependence on packing density is
not obvious. The packing density with the largest anisotropy of
coherence lifetime was 35 pm, and whilst that with the smallest
extent of coherence lifetime anisotropy was 55 pm, there is no
obvious relationship. It is unlikely that coherence lifetime aniso-
tropy could therefore be usefully deployed to infer information
on packing density in practical situations.

4. Discussion

We have provided a formalism for describing diffusion-
mediated decoherence of nuclear spin phase for systems with arbi-
trary magnetic field inhomogeneities and applied the formalism to
the case of media containing cylindrical perturbers whose walls or
lumen have different magnetic susceptibility from their surround-
ings. Such systems arise in cylindrically porous materials, but also
in biological tissues abundant for instance in the brain. This can be
considered of particular interest when interpreting MRI of the
brain. In the white matter of the brain, bundles of closely aligned
myelinated axons exist with a high degree of order, in which the
myelin sheath around the axon has a distinct magnetic susceptibil-
ity from its surroundings. It is now accepted that the T, describing
the coherence lifetime in a gradient-echo experiment without refo-
cussing, is an anisotropic quantity in white matter predominantly
because of the susceptibility difference between the myelin sheath
and its surroundings [9,11,19-22]. In many of our simulations,
parameter choices have been driven by such a system. Although
we stop some way short of claiming to have fully modelled this tis-
sue type of the brain in our simple simulations, we may offer some
insight. The capillary bed in white matter, where capillary lumens
contain (varying amounts of) deoxyhaemoglobin, also has a high
degree of alignment relative to the ordered axons [23-25] and pro-
vides another pertinent example of cylindrical field perturbers in
biology. In structural biology, longitudinally stretched polyacry-
lamide gels are used to impose alignment on a system and thus
measure its alignment tensor. Such a gel is elliptically porous,
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Fig. 6. The effects of wall thickness on nuclear spin phase decoherence in cylindrically porous media. Panels a-c show the frequency difference maps (sharing the scale in in c,
in Hz), at wall thicknesses of 0.1, 0.2 and 0.3 pm and a fixed outer radius of 0.5 pm. All maps are at an inclination of 90° to Bo. Panels d and e show diffusion-mediated
decoherence at wall thicknesses of 0.1 and 0.4 pm respectively. Panel f shows the coherence lifetimes inclusive of a T, of 0.1 s by mono-exponential fitting. The B, field was

3T, the diffusion coefficient 0.7 um?/s and the susceptibility difference 0.05 ppm.

but the formalism here could be applied to aid in the description of
relaxation in such systems.

The key results of our simulations are the following: first,
diffusion-mediated decoherence of nuclear spin phase makes a sub-
stantial contribution to reducing the coherence lifetime below the
T, in ordered systems which are not parallel to By, and disordered
systems to a lesser extent but irrespective of orientation. Second,
diffusion-mediated decoherence is anisotropic in ordered systems,
having its most substantial effects when a system'’s axis of order is
perpendicular to By. Third, the time-course of decoherence takes a
complicated form, but to first order can be incorporated into relax-
ation as an exponential process. Finally, the extent of diffusion-
mediated coherence increases with increasing diffusion coefficient
and increasing absolute susceptibility difference.

We have seen in all our simulations that ordered systems dis-
play diffusion-mediated decoherence in an anisotropic fashion,
with decoherence fastest when the system is perpendicular to
the Bo. We have also seen that the diffusion coefficient and suscep-
tibility difference cause systematic alterations to the extent of
diffusion-mediated decoherence. Therefore, coherence lifetime
measurements, and in particular coherence lifetime anisotropy
measurements, contain information on diffusion and susceptibil-
ity. This is of course apparent from the mathematics, but is repre-
sented more clearly by simulations in a simple but realistic system.

A corollary is that measurements of susceptibility, diffusion and
coherence lifetime may in future be combined to produce a consis-
tent model for the system under examination. A conclusion based
on one measurement type alone but which fails to predict another
measurement type may not be acceptable.

Another corollary is the corruption of measurements of any par-
ticular parameter due to the failure to consider diffusion-mediated
decoherence. As an example, consider an attempt to measure the
translational diffusion tensor (or coefficient if isotropic) by a
pulsed field-gradient NMR or MRI experiment. Such measurements
always contain some small contamination from relaxation, but this
is normally isotropic. However, if the decoherence due to cylindri-
cal pores is especially severe, as our simulations show it to be at
high magnetic fields, and for large susceptibility differences, one
may introduce an additional decoherence due to the anisotropic
local fields. This may in turn make the diffusion tensor a function
of magnetic field strength and system orientation relative to mag-
netic field - even if the diffusion tensor were in reality isotropic.

4.1. Obtaining and using information from coherence lifetime
measurements

The work we have presented deals only with predicting the
effects of cylindrical field perturbers of known geometry and
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showing a complex dependence on packing density.

properties on nuclear spin phase decoherence, and we have thus far
neglected the issue of garnering information about a system of
unknown geometry and other parameters. We may envisage two
main applications: the determination of geometric details of sys-
tems which are likely to possess cylindrical pores but which cannot
be examined microscopically (such as biological tissues in vivo), and
the removal of the effects of diffusion-mediated dephasing due to a
known geometry to leave “pure” relaxation or pulsed field-
gradient-mediated dephasing for further interpretation.

Although it is unlikely that the full geometric specification of a
cylindrical array could be obtained by relaxation data alone,
limiting-case models may be fitted to decoherence data, with
spin-echoes sampled and a sufficient number of time points, and
preferably with the availability of multiple orientations and mag-
netic fields, both of which are under experimental control, to at
least some extent. “Limiting-case” models may be restricted to a
regular array, for example, to extract an “effective pore radius”. Fit-
ting may proceed by means of any number of techniques, though
in many systems there is likely to be at least some prior informa-
tion available so a Bayesian approach may be most effective. If
the diffusion effects were to be removed, based on known geome-
try, one may again implement a model of reduced complexity. It is
possible that data will be needed at multiple orientations and field
strengths to garner quantitative information reliably and possibly
with additional physical restraints, for example knowledge of the
diffusion tensor or coefficient.

4.2. Relaxation due to translational diffusion through field
inhomogeneities

We have made the distinction between decoherence and relax-
ation from the outset, and dealt only with decoherence. However,
translational diffusion is a known relaxation mechanism, even if
the magnetic field is homogeneous. Diffusion-mediated relaxation
occurs since intermolecular dipolar (and quadrupolar for I>1/2)

couplings are stochastically modulated by translational diffusion.
These effects have been studied, and are generally small compared
to intramolecular dipolar and quadrupolar couplings (provided any
exist). If the field is inhomogeneous, CSA becomes a relaxation
mechanism since stochastic translations (even without rotations)
alter the local field experienced by a nucleus. However, we
consider the translational diffusion through inhomogeneous
fields of the type presented in our simulations an unlikely candi-
date for a relaxation mechanism of any significance, and present
our argument here. We might consider a simple model for relax-
ation due to translational diffusion through magnetic field inho-
mogeneities as follows: taking CSA as an example, for which the
relevant basis functions are well known, the zero-order correlation
function is

Coo(t) = gAz /(a)o + Aw(X))(wo + Am(Xg)) x (3 cos?0 —1)

x (3 cos? 0 — 1)P(Xo)P(X|Xo)dxdxo (21)

Here, we have made the modification that the usual Larmor fre-
quency is substituted for the Larmor frequency inclusive of the fre-
quency difference function. The abbreviation A is loosely the
anisotropy of the CSA tensor. The conditional probability P(x|xo),
provided the media is isotropic, may be obtained using a random
flight model, or a coarse approximation may be obtained simply
by the translational diffusion equation. The latter case with a
well-known solution leads to:

Coo(t) = gAZ / (0o + A (X)) (o + A®(Xo)) x (3c0s20— 1)

(r — 1o)?

20 -3 _ )
(3 cos” By — 1)P(Xo)(4mDt) 2exp( Dt

)dxdxo (22)

Once equipped with a correlation function, calculation of relax-
ation time constants is straightforward. However, our simulations
normally place the frequency difference in the range of tens of Hz,
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whereas the Larmor frequency is in the MHz range (128 MHz for
3 T). Given that translational diffusion is not a significant relax-
ation mechanism in most systems (though there are exceptions),
a perturbation 6 orders of magnitude smaller than the Larmor fre-
quency is unlikely to serve as a noticeable relaxation mechanism.
The effects of small frequency differences due to magnetic field
inhomogeneities are therefore likely to be manifest as nonlinear
phase evolution and decoherence only. We can apply a similar
argument to all other orders of the correlation function for CSA
relaxation, and to dipolar relaxation. Where there exists an orient-
ing potential, such as liquid crystals, rather more elaborate correla-
tion functions are called for [26,27]. In such systems, strong
orienting potentials make translational diffusion a mechanism of
relaxation anisotropy.

5. Conclusions

We have shown, by means of detailed simulations, that in sys-
tems with cylindrical pores whose walls or lumen are permeated
by some media with a different magnetic susceptibility from the
surroundings, that loss of nuclear spin phase coherence due to
translational diffusion though the resulting local magnetic fields
may be substantially more rapid than the effects of relaxation
alone. The reduction of coherence lifetime below T is also aniso-
tropic. An awareness of such phenomena is important when inter-
preting relaxation data, and may have utility in extracting greater
information content from relaxation data.
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Appendix A. Evaluation of spatial derivatives

We provide here some additional information on the evaluation
of the gradients required to derive the equations describing diffu-
sion though arbitrary magnetic fields. In the derivation, we come

up against the equation:
V -DVI]Aexp(ipAwt)] = [V -DVA +iptVA-DVAw

+A(iptV - DV — p*t*VAw

-DV)Aw] exp(ipAwt) (23)
Here, we show some additional working. Firstly, note:
0 7]
V.DV = ]Z;aijDjkaka (24)
Therefore:
. o 9 .
V -DV]Aexp(ipAwt)] = ;;Djk % 8_xkA exp(ipAwt) (25)

Now, apply the chain rule to obtain the following derivative:

0 . . O0Aw . . O0Aw
™ exp(ipAmt) = lpta—xk exp(ipAmt) = lpta—xkf (26)

Next, apply the product rule to obtain:

ZZDﬂ( ox; axk

oA O | oA Of >f
= (’)xkf + OXy, OXj + OXj OXy + A OXjOXy,

_ oA OA oA >’f
- ax]vt)xkf + E)xk t wf + lpt dx;:)f +A XX
(27)

The final term of the RHS on the second line may be simplified
according to:

P _ 0 [inrore
Xjox, X p t Xy,

— ipt[ 80 f 4 ipt iy s (28)

OXjOXy, OXj Ox
= ipe[ i + ipt e ef
Such that:
PA . [0AdAw OAdAw
ZZ fkax % A= Z ik (8x8x pt{aTck x| ox; oxg
A0 22 0A® DA

OXJ‘ OXy BX_,‘ OXy

DVA+VA -DVA®]+A(iptV -DV — p?t2VAw - DV)Aw]exp(ipAwt)
(29)

Alipt

)f— [V-DVA+ipt[VAw

Equipped with this, the full expression for the time derivative of

Y is:

9 =ipAwAexp(ipAwt) +[V-DVA+ipt[VAw-DVA

ot
+VA-DVA®]+A(iptV -DV — p*t*VAw-DV)Aw]exp(ipAwt)
(30)
However, we also have available the expression:
2y =2 [Aexp(ipAwt
& = lAexp(ipAon) a1

= "A 4 exp(ipAwt) + AipAw exp(ipAwt)

Equating the latter two formulae, then knocking out common
factors and terms leads to the result in the main paper:

=V -DVA+ipt[VAw -DVA + VA -DVA®]

+A(iptV - DV — p?t2VA® - DV)A®
= exp(—ipAwt) ZZD]k 5 s Aexp(ipAot) (32)

0t

= exp(—ipAwt)V - DV[A exp(ipAwt)]

Appendix B. Supplementary material

Supplementary data associated with this article can be found, in
the online version, at http://dx.doi.org/10.1016/j.jmr.2016.05.007.
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