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Let k& be an algebraically closed field. Let 4 be a finite dimensional
k-algebra.

Following [12], an indecomposable A-module X is said to be directing
if it does not belong to a cycle X—» X, — --- - X, _, > X of nonzero
nonisomorphisms between indecomposable A-modules. Preprojective
components as well as connecting components of tilted algebras are formed
by directing modules. An indecomposable A-module X is sincere if
Hom ,( P, X) #0 for every projective A-module P #0. Representation-finite
algebras with sincere directing modules have been extensively studied. They
are tilted of tree type [1, 2, 12]; those algebras with more than 13 vertices
were classified in [2] (see also [13]) and all others in [6]. In this work
we consider the tame situation.

A tame algebra A is said to be domestic in at most n 1-parameters (we
write u, < n}) if there are A-k[T]-bimodules M, .., M, which are finitely
generated free as right k[ 7]-modules and for every de N, almost every
indecomposable A-module of dimension d is of the form M, ®,;, L for
some k[ 7]-module L. Our main result is the following.

THEOREM. Let A be a tame algebra with a sincere directing module X.
Then A is a domestic algebra in at most two 1-parameters, (i, <2. If p,=2,
then for every k[ T]-module L we have

Hom (M, ®rrq L, X) #0#Hom (X, M, @, L)

{up to reordering of the indices of M, M,).

The paper is organized as follows. In Section1 we recall the main
definitions and results needed in the work; in particular we explain the
structure of the Auslander—Reiten quiver 7", of a tilted algebra A of tame
representation type [8]. In Section 2 we show that the Euler form ¢,
controls the module category mod A. In Section 3, we give the proof of our
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theorem. The resuits of this work should be useful for the classification of
all tame algebras with sincere directing modules. We hope to report soon
about this.

This work was done during a stay in the University of Biclefeld. We
thank C. M. Ringel and his colleagues and students for hospitality and the
Deutsche Forschungsgemeinschaft for financial support. We also thank
Ms. Kollner for typing this work.

1. Basic RESULTS

1.1. We say that A is tame provided for each de N there are a finite
number of A-k[T]-bimodules M, .., M, which are free of rank d as
right k[ T}-modules, and such that every indecomposable A-module of
dimension d is isomorphic to M;®,r S for some i and some simple
k[ T]-module S.

For a tame algebra A and de N, we define u ,(d) as the smallest integer
n such that there are A-k[ T']-bimodules M, ..., M, which are free of rank
d as right k[ T]-modules and such that the set of modules

(M, ®r kK[TIUT—4):dek, 1<i<n}

meets all but finitely many isomorphism classes of indecomposable
A-modules of dimension d. Then A is said to be domestic in at most N
1-parameters if p,(d)< N for every d. We say that A is domestic in N
1-parameters (and write u , = N) if it is domestic in at most N 1-parameters
but not in at most (N — 1) 1-parameters. This definition is equivalent to at
given in the Introduction; see [5].

Some examples of domestic algebras are discussed in [12].

1.2. For simplicity, we assume that A is a basic and connected algebra.
We write A =k[Q]/I, where Q is the quiver of A4 and 7 is an admissible
ideal of the path algebra k[ Q] (see [7]).

By mod A we denote the category of finite dimensional left A-modules.
We view a A-module as a representation of Q satisfying the relations
imposed by 1.

By Qg (resp. Q) we denote the set of vertices (resp. arrows) of Q. For
each vertex xe€ Q, we denote by S, the simple A-module associated with x.
The projective cover P, and injective hull 7, of §, will be frequently used.

By I', we denote the Auslander-Reiten quiver of A with translation
(=Ditr, the dual of transpose operator). We do not distinguish between an
indecomposable A-module, its isomorphism class, and the corresponding
vertex in [ ,.
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1.3. We recall that A is said to be a tilted algebra of type A if there is
a tilted module 7 over the hereditary algebra A4 =k[4] such that
A=End (T) (see [13]). The tilting module ,T defines a torsion theory
(F(T),%(T)) in modd4 with F(T)={Y:Hom (T, Y)=0}, 4(T)=
{Y:Ext' (T, Y)=0} and a torsion theory (#(T), Z(T)) in mod A with
Y(T)={X:TorT, X)=0}, (T ={Z:T®, X=0}

Then the functor F=Hom ,(7, —) induces an equivalence between %(T)
and #(T) and F’=Ext!(7, —) an equivalence between % (T) and &' (7).

Let 2 be the set of indecomposable A-modules of the form F(/,), where
1, is an indecomposable injective A-module. Then X is a slice in I',; that
is, the following properties are satisfied: X is path closed in I, ; for every
projective A-module P, there is some Se X2 with Hom (P, S)#0; if Se X,
then tS¢ X; if M and S are indecomposable, f: M — S is irreducible, and
Se X, then either M e X or M is not injective and 1~ M e 2. Observe that
the points of 2 induce a full subquiver of /", isomorphic to 4°°. The
component ¥, of I', containing X' is called the connecting component
(see [14]).

The following is a central fact for our work.

ProposiTioN [12, Addendum to 4.1]. If A has a sincere directing
module X, then A is a tilted algebra. Moreover, the sets of modules

Z(-X)={Yel,: there is a path from Y to X in I,
and every path from Y to X is sectional}.

(X - )={Yel,: there is a path from X to Y in I,
and every path from X to Y is sectional)}

are slices in I ;.

14. If X is a directing 4-module, its support supp X is convex (=path
closed) in A [3]. Hence A(X)=A4/{se@y: X(5s)=0) is a convex sub-
algebra of A with a sincere directing module (namely X). This reduces the
study of directing modules to that of sincere directing modules.

1.5. Let 4 be a tilted algebra of type 4. Assume that A is tame but not
representation-finite. Then 4 is not of Dynkin type [13].

If A=k[A4] is tame (equivalently 4 is of Euclidean type), then A4 is a
domestic tubular algebra [13]. In particular, 4 is domestic in one
l-parameter. The module category mod A and the Auslander—Reiten quiver
I' , are completely described in [13].

Assume A4 = k[ 4] is wild (for the purposes of this work, wild means not
tame; however, see [4]). Let T=T7,® --- @ 7T, be an indecomposable
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decomposition of a tilting 4-module such that A =End (7). Following
{87, we consider the sets

U= {1<i<n:Ext,(T;, X)#0 for only finitely
many indecomposables X e % (T)}
V={1<i<n:Hom(T,, Y)#0 for only finitely
many indecomposables Ye %(T)}.
Let T, =@, T;and . T=@,,, T, Then 4, =End ((T..) is called the

right end algebra of 4 and _A=End,(,.7T) the left end algebra. The
following facts were proved in [8].

(a) A is an iterated one-point extension (resp. coextension) of A
(resp. 4..).

(b) There are a factor algebra 4 of 4 and a tilting module LT of
A without preinjective direct summands such that End ,(,.7T)= 4.
Moreover, A=A x --- xA, with 4, connected, ,7=T,® --®7T,,
where T is an A4,-tilting module wit}lout preinjective direct summands and
A=A, x - xA, for A,-=EndA'(‘T,-). If we define F,=Hom (T, —):
mod 4; - mod 4;, then Hom_,(,.T, —)=(F}),c;<n-

(c) Dually, there are a factor algebra A, =A)x --- x4, of 4 with
A/ connected, and a tilting module 7, =T,@® --- @ T, of 4, such that
Ay =Ayx - x A, for Aj=End,(T). If F/=Ext\ (T, —):mod 4>
mod 4], then Ext) (T., —)=(F}) <<,

(d) Since A is tame and not representation-finite, then:

— 4 or 4, is tame and both are not wild.
— Each 4, is representation-finite or a domestic tubular algebra.

— Each A; is representation-finite or a domestic cotubular
algebra.

(e) The Auslander—Reiten quiver I", has the shape

COaEF =
L % | rallin
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where X' is the slice in I', and X, (resp. 2'/) is a slice in I, (resp. I' ;). The
tubular familes 7, or ] may be empty, but at least one of them is not.

1.6. As a consequence of (1.5) we get:

PROPOSITION. Let A be a tame algebra with a sincere directing module.
Then

(a) A is a domestic algebra.

(b) If A is domestic in one 1-parameter, then A is a finite enlargement
of a domestic tubular algebra or a finite coenlargement of a domestic
cotubular algebra.

(c) If A is a domestic in at least two 1-parameters, then there exist
only finitely many indecomposable sincere modules.

Proof. By (1.3), A is tilted algebra of type 4. Let A =k[4].

(a) With the notation of (1.5), A4 is domestic in at most r+s
I-parameters.

(b) Suppose A4, is not representation-finite. Then mod 4, is cofinite
in mod A.

(c) If A is domestic in at least two 1-parameters, then there are only
a finite number of slices in the connecting component €,. But for every
sincere module X, Z(X—) is a slice in [, (1.3). Hence the result
follows. |

1.7. We want to remark that most of the description of 7", given in
(1.5) also follows from the considerations on directing modules in [15].

1.8. ExampLES. (a) There are tame algebras which are tilted and
domestic in at least three 1-parameters. We borrow the example from [8]:
let A be the algebra with quiver

481/161/1-12
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and relations
1 f;=0=0,y, for 1<i<3
B, =0=a,y, for 2<j<4
Then 4 is hereditary of type 4, w[lere A is the union of two copies of D,

and A is a tilted algebra of type A,.

(b) The one-relation tame algebras in [12] denoted by G4 — 4’ all
have a sincere directing module. The letter G stands for “gluing.” Two
examples are as follows:

. I

- ./1\-. i } !

TR . .

. . | 1

! ! l ! .

N P ! 1
\;/ : . —_— [

-4/

The unique relation is the commutativity relation between the vertices
joined by a dotted line. In the first case 4=E;, 4'=E;; in the second
A=E,, 4/ =F,. In general, A is said to be the gluing of 4 and B if 4 and
B are convex subalgebras of 4, mod 4 Umod B is a cofinite subcategory of
mod A, and there exist a preprojective B-module N and a preinjective
A-module M such that Hom M, N}#0. Then the Auslander—Reiten
quiver [, is obtained from [, and [ by joining together the preinjective
component of I", with the preprojective component of I'p (see [12]). If 4
i1s domestic in r 1-parameters and B is domestic in s 1-parameters, then A
is domestic in r -+ s 1-parameters.

The two examples above are domestic in two 1-parameters.
(c) The family of algebras A,, given by the quivers

7
\

} m vertices
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with the commutativity relations indicated by dotted arrows are domestic
in two l-parameters with sincere directing modules. In fact 4, is also a
gluing of two hereditary algebras of type D,,.

2. THE EULER ForM OF A TAME TILTED ALGEBRA

2.1. Let A4 be a tame algebra which is tilted of type 4. Let 4 =k[4].
Let K,(A) be the Grothendieck group of A; then Ky(A)=Z2. A module
Xemod A has a dimension vector dim X = (dim, X(5)),. o, € Ko(A).

The bilinear form (-, —> on K,(A) is defined in such a way that

¢(dim X, dim ¥ = dim Hom ,(X, ¥) — dim Ext',(X, ¥) + dim Ext(X, Y).

The quadratic form ¢ ,(z)= {z, z) is called the Euler form of A. We freely
use the notation of [13].

The next proposition generalizes results in [3, 12]. Apart from its own
importance, we use it in the proof of our theorem.

PROPOSITION.  Let A be a tame algebra tilted of type A. Then the Euler
Sorm q , is weakly non-negative and controls the module category mod 4,
that is, q , satisfies the following properties:

(a) For any indecomposable X e mod A, g ,(dim X)e {0, 1 }.

(b) For any connected vector ze N2® with q ,(z} =1, there is precisely
one module X up to isomorphism with dim X = z.

(¢) For any connected vector ze N9 with q,(z)=0, there is an
infinite family (X ), c . of indecomposable modules with X; % X, if A3 u and
dim X; =z for every A.

By [8,(6)] or [9], g, is weakly non-negative (that is, g ,(z)=0 for
ze N?), Part (a) follows from the description of I", given in (1.5). The
proof of (c) and (b) is given in Sections (2.4) and (2.5) below.

22, If 4 is of Euclidean type. this result is just [12, (4.9)]. We can
assume that 4 is of wild type. We keep our notation as in (1.5). We
assume that A,,.., 4, (resp. A,.., A,) are not of Dynkin type and
A,yiy o A, (reSp. Ay, ..., A;) are of Dynkin type. Hence 7, ..., 7, (resp.
TNy T ) are tubular families [12, (3.1)]. Let Z; (resp. Z;) be a module
in the mouth of a homogeneous tube of 7; (resp. 7 ;); we set z,=dim Z,
(resp. z;=dim Z!.) Therefore, the algebra A is domestic in p+gq
I-parameters.
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LeEmMA. (i) If Xe 7;, then X has projective dimension pdim X < 1.
(i) If Ye T, then Y has injective dimension idim Y < 1.

(iii) Hom 4(Z,, Z_) 0=Hom /(Z;, Z)), for i # .
(iv) Hom,(Z,, Z])=0 if and only lfsuppZ nsupp Z; = (.

Proof. (i) If pdim X > 1, then there is a morphism 0 # f: I, » 1 X e 7,
which is impossible since all injective modules lie to the right of the
connecting component.

(1) is dual of (i); {ii1) is obvious.
(iv) Assume xesupp Z,nsupp Z;. Then Hom,(Z, I.)#0 and
Hom (Z], 1) #0. Since 7| is separating, then Hom ((Z,, Z])#0. |

23. Let I, be a subset of |J, ,.o,/(x, y) which generates the ideal
I and suppose card(/,) is minimal with this property. Set r(x, y)=
card(l,n I(x, v)). By [2], we have

(zywy= ) zx)w(x)— > z(x)w(y)+ Y r(x, p)z(x)w(y).

xe Qg (x> yje x, ve Qo

We denote by (-, —) the symmetrization of (-, —>. That is, (z, w)=
{zywy 4w, 2).

2.4. Proof of (2.1c). Let 0#veN<9 be a connected vector such that
g4(v)=0. We use induction on |v|=3  v(x) to show that v=mz,
(1<i<p)orv=mz] (1<j<gq), for some meN. Let X be a A-module
with dim X =v and such that dim, End ,(X) is minimal. Consider the
indecomposable decomposition X=@!_, X,, then Ext}(X,, X;)=0 for
every i#j [12,(2.3)]. Let w,=dim X,. Since ¢, is weakly non-negative,

0<g4w)) and 0< (w;, w;> for every i, j.

Hence 0= {w, w;> for every i j We may assume that the vector
yi=3%_,w, is connected. Since g ,(y)=0, by the induction hypothesis, y
is of the form mz; or mz; for some meN. Moreover, there is an inde-
composable module Y in a homogeneous tube with dim Y = y. Clearly, we
may choose X, to lie also in a homogeneous tube.

By (2.2), either supp X, =supp Y or supp X, nsupp Y =¢J. The result
is proved if we show that the first situation happens. Assume that
supp X, nsupp Y=¢.

Since v is connected, we may assume that there are arrows «, ..., &, from
supp X, to supp Y. Hence X, belongs to some tubular family .7; and Y to
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some family ;. In particular, there are no arrows from supp ¥ to
supp X;:

Let e, =dimS,. For x=g¢; (e,y)=0 [if (e,,y)<0, then
q 4(2y + e,) <0; contradiction. Since 0= (w,, y)=—3 . w,(x)(e,, ), then
{e., y)=0 for xesupp X,]. From (2.3) we get

0=(w, y)=— Z wila;) y(b)) +Z r(a;, t)y wla;) y(1)

i=1

+ 2 2 ) wix) (1)

@FEX 1

O=(e,,¥)=— Y »b,)) +Z r(a;, t) y(t) for i=1,..,1

(ai = b) € Q)

Therefore, 3, .. r(x, b;)w,(x)=0; that is, there is no relation joining
supp X,\{ay, .., a,} with b,, for any j=1, .., /. Since there are no oriented
cycles in supp X, we may choose a, to be a source in the set {a, .., a,}.
Hence, the convex subalgebra of A’ of A with support supp X, U {b,} is
wild. Indeed, the quotient A'/{a;:i# 1, b,=b,) is a coextension of a tame
concealed algebra by a preinjective module; therefore it is wild [11]. This
contradiction proves our assertion. ||

2.5. Proof of (2.1b). Let 0#veN9 be a connected vector such that
g4(v)=1.

Uniqueness. I X and Y are indecomposable A-modules with
dim X =v=dim Y, then either X belongs to the connecting component and
we apply [12, (2.4(8))] or X belongs to a domestic tubular (or cotubular)
algebra and we apply [12, (4.9)].

Existence. The proof goes by induction on |v]. Let Xemod A be a
module with dim X=v and such that dim, End ,(X) is minimal. Let
X=&&!_, X, be an indecomposable decomposition. As in (2.4), we have
Ext!(X;, X,)=0 for i # j. Set w,=dim X,. Then either

g,(w)=0 forall i and <w; w;>#0 for a unique pair i, j
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or
galwy)=1, g,(w;)=0 for 2<i<y
and

{wi,w; > =0 for all i#j.

We distinguish these cases:

(i) Assume g,(w,)=0for 1<i<t, {w,w,>=1and {w,w;>=0
for (i, j) # (1, 2). Without lost of generality we may assume that the vector
w=3"'_,w, is connected. Then g, (w)=0 and by (2.4), there exists an
indecomposable module Y in a homogeneous tube with dim Y =w. Clearly,
we may choose X, to lie also in a homogeneous tube. Since 1 = (w,, w) =
dim, Hom ,(X,, Y), then X, belongs to some family Z; and Y to some
family 7.

Since 1= (w,, w)=3,w;(x)(e,, w) there is a vertex y with 1 =(e,, w).
Then w(y)=0. For the vector z=w+ (w,—e¢,)=v—e,, With g,(z)=1,
there is an indecomposable module Z with dim Z=z and trivial
endomorphism ring. Since (z,e,)= —1, there is an indecomposable
extension of Z and S,. This proves the claim.

(ii)) Assume that g,(w,)=1, g4(w,)=0for 2<i<trand {w,w,>=0
for all i+ j. Assume that ¢ > 2. Using (2.4) and the induction hypothesis we
may suppose that t=2 and that X, is a module in a homogeneous tube (in
the tubular family 7).

Assume that supp X, nsupp X, # . By the argument in (2.2iv), we get
that X, and X, belong to the same tubular family. Hence X, and X, are
modules over a domestic tubular (or cotubular) algebra. By [12, (4.9)],
there exists an indecomposable module X with dim X =v.

Therefore we may assume that supp X, nsupp X, = . Then there are
arrows connecting supp X, and supp X,:

a|

supp X supp X

Let B be te tame concealed algebra with supp X,.
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Our argument in the proof of (2.4) shows that there are no relations
joining points x € supp X,\{a,, .., a;} and y e supp X,. Suppose the vertices
a; are ordered in such a way that g, is a sink in the set {a,, a,,,, .., a,}.
Consider R;, the restriction of rad P, to the algebra B. Since
(dim R,,dim X, = —{e,,,dim X, = —(e,,, dim X,)=0, then R, is
regular in B. Then P,, belongs to the tubular family (with ray insertions) .

Suppose there is an arrow a, — a,. Let R, be the restriction of rad P, to
the domestic algebra B, with vertices supp X, u {a,}. As above, R, belongs
to the tubular family of I'p. Hence the one point extension B[ R,] is a
domestic tubular extension of B. In particular, there are no arrows from a,
to supp X,, a contradiction. Repeating this argument, we get that there are
no arrows between a; and a;, i # J.

Therefore there are no relations starting at x € supp X,\{q;}, ending at
yesupp X, and using a path which passes through a,, i=1, ..., /.

First we observe that there is an indecomposable module X5
with dim X5 = dim X, + ¢,. Moreover, dim X (a;) = 1 [indeed,
(es,, dim X) <O0. If (e, dim X,) < —1, then g,(dim X, +dim X, + ¢, )=
2+ (e, dim X,)<0, contradicting (2.4). Hence, —1=(e,,dimX,)=
{dim X, e, > = —dim X (a,}]. Therefore, there is no difficulty defining ¥
indecomposable with dim Y=dim X, +dim X,=v. This proves our
result. §

3. THE MAIN THEOREM

3.1. Let A be a tame algebra with a sincere directing module. By (1.3),
A is tilted of type 4. If 4 is Euclidean, A is domestic in one 1-parameter
(1.6). Assume A is domestic in at least two l-parameters (in particular, 4
is wild). By (1.6), there exist only finitely many indecomposable sincere
A-modules. By (2.1), there is a bijection X+ dim X between the inde-
composable sincere modules and the sincere positive roots of g ,. Therefore
there exists a maximal sincere root v of q,.

LEMMA. Let v be a maximal sincere root of q,. Then

(i) (v, e.)=0 for every x € Q,-
(i) There are at most two vertices x with (v, e} >0 (these are called

exceptional indices of v [13]). Either there is a unique exceptional index a
and v(a)=2 or there are exceptional indices a# b and v(a)=1=uv(b).

Proof. To repeat the proof in [12, (1.1)], we first need to show that for
any indecomposable sincere module Y, its dimension vector u=dim Y
satisfies that —1<(u, e, )< 1 for every xe Q,. Indeed, if (¥, e,) <0 then
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g.u+e.)<1. By (2.1), there are no sincere null roots of g, therefore
(u, e,)= —1. Now, assume that (u,e,)>1; then g (u—e,)<0 and u—e,
is a positive vector. Hence (u,e.)=2, u—e, is not sincere, and
u—e, =37 | w, where w;is a null root of g, and supp w;, supp w; are not
connected by arrows, for i#j Let Y, be an indecomposable A-module
with dim ¥,=w,. Since Y is sincere (and hence directing), either
{dim Y,, dim Y>> 0or {(dim Y, dim Y, > 0. Suppose (dim Y;, dim ¥} > 0.
Since (w;,u—e,>=0, also {(w, e, >>0. As supp ¥, is convex in A,
{e,,w;>=0.Thus (w;,e.}>0.Butthen0 <Y | (w, e )=(u—e,e.)=0,
a contradiction.

(1) Assume (v, e,.)= —1, then ¢q,(v+e,)=1 contradicting the maxi-
mality of v.

(i) Since 2=(v,v)=3, (v,e,), the result follows from the first
remark and (i}). |

In two of the examples of (1.8) we show a maximal sincere root. The
exceptional indices are encircled;

2 = 1
P @,
| i AN
> 1 1 1
! !
l
2
{

3.2. THEOREM. Let A be a tame algebra with a sincere directing module.
Assume that A is domestic in at least two l-parameters. Then A is domestic
in two l-parameters and it is the gluing of two tilted algebras which are
domestic in one \-parameter.

Proof. Let X be a sincere directing A-module such that v=dim X is a
maximal root of g,. Assume A is tilted of type 4; then 4 is of wild type
and we keep the notation as in (2.2).

(1) Suppose v has a unique exceptional index a. Consider one of the
null roots z;; then (v, z,)>0 (otherwise, (v, z;)=0 contradicts the maxi-
mality of v or (v, z;) <0 contradicts (2.1b)). Then z,(a)=3, z;(x)(v, e,) =
(v, z;)>0 and a is contained in supp z,. Since for 1<, j<p, i#J, the
supports of z; and z; do not intersect, then p < 1. Similarly, ¢ < 1. Hence A
is domestic in p + g =2 l-parameters. In particular, p=1=g4.
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Let x be a source in supp z; such that x¢supp 4,. Set B= A/(x). Then
B is a tilted algebra [8, 4.1] which is domestic in one 1-parameter. Dually,
let y be a sink in supp z, such that u¢supp A;. Then B'=A/(y) is a tilted
algebra which is domestic in one I-parameter. Clearly, A is the gluing of
B and B'.

(ii) Suppose a# b are the exceptional indices of v. By [12, (6.5)],
a and b are sink or source vertices in Q (for the proof apply (3.1) instead
of representation-finiteness). Suppose that « is a source in Q. Let
Wy =2y, s Wy =Zp Wy 1 =2,y Wy, ,=2,. Then for each i=1, .., p+gq,

wi(a)+w;(b)y={(w;, v)>0.

Then p <2 and ¢ < 2. Suppose p + ¢ =4. Then up to reordering of the roots
we have

wi(a)#0=w(b), wa(a) =0#wy(b)
wy(a) #£0=w;(b’), wa(b)=0# w,(b).

The algebra B= A/(a) is a tilted algebra domestic in two 1-parameters. We
write 4 = B[R] as a one-point extension with R=rad P,. We do not lose
generality, assuming that R is indecomposable. From the description of
Iy in (1.5), R belongs either to the tubular family J; or the connecting
component %, (observe in particular that B and B, are both not
representation-finite ):

Consider indecomposable A-modules Y, such that dim Y,=w,. Then
Hom ,(R, Y,}#0 for i=1,3. This can only happen if supp ¥,n
supp Y, = &, which contradicts w,(a) # 0 # ws(a).

Suppose now p=1 and ¢=2. We may assume that w,(a)+# 0 # ws(a),
then w(a)=0#w,(b). Hence B=A/(a) is a tilted algebra in one
{-parameters. Write again 4 = B[ R}. We obtain a contradiction as above.
Hence p+g=2.

Consider the case p=2, g=0. Let X', X', be the slices corresponding to
the algebras 4, A,. It is not hard to show that there is a projective P, €,
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such that R=rad P,= R, ® R,® R’ with R,, R, indecomposable modules
and 2(R, — ) containing a subgraph of type 2., i=1, 2:

e

—_—

R,

Cs s

Passing to a convenient quotient of A, we may assume that s is a
source in . Then A= B[R] with B= A/(s) and the subspace category
%(Hom g(R, mod B)) is representation-finite. Hence Z(R, — ), (R, —)
are disjoint trees. But this implies that Homg( R, mod B) contains a sub-
poset of type (1, 1, 1, 1), which is representation-infinite. Contradiction.

The case p=0, ¢g=2 is similar. Thus p=1=g¢g in case (ii). The last
assertion follows as in case (i). ||

3.3. For the problem of construction of the tame algebras with a sincere
directing module [11], we have the following result, similar to [13, (6.5)].

PROPOSITION. Let A be a domestic algebra in two 1-parameters with a
sincere directing module. Then there exists a sink or source vertex a such that
the quotient A= A/(a) also has a sincere directing module. Moreover, a may
be chosen in such a way that A is domestic in one 1-parameter.

Proof. By (1.6) and (2.1), there is a minimal sincere root u of g ,. Let
Y be an indecomposable module with dim Y =u. By (3.1), there exists a
vertex ae Q, with (u, e,)=1=u(a). As in (3.2ii)), a is a sink or a source
in 0. Consider the quotient 4 = A/(a). Since w =u— e, satisfies g ,(w)=1,
there is an indecomposable A-module W with dim W = w. We claim that W
is directing. Otherwise there is a cycle W-—> W, — - — W,—> W of
non-zero non-isomorphisms between indecomposable A-modules. Suppose
that ¢ is a source in Q@ and let R=rad P,. Then the functor
mod 4 — mod 4, MHM— (M, HomA(R M), id) is an embedding. Hence
the cycle Y=W -2 W, -5 ... — W,—=5 W = Y between indecomposable
A-modules yields a contradiction.

Let z be a null root of ¢, and Z indecomposable with dim Z = z. Since
Y is a sincere directing module, then

0<(z,u)=3 z(x)(u,e,).
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There exists some ae Q, with z(a)#0 and (u,e¢,)=1. Then u(a)=1 and
the quotient 4 = A/(a) is domestic in at most one 1-parameter. Then (3.2)
implies that A is domestic one 1-parameter. |

3.4. Remark. The proof of Theorem (3.2) could be given using only
“vector space category” arguments (in fact, we had used such arguments in
the proof; a slight generalization would provide a complete proof of the
result). Nevertheless, we find that the proof using “quadratic form”
arguments is interesting. The additional information in (3.1), (3.3), and
hence the classification problem [117 strongly depends on the use of the
Euler form.
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