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Abstract

This paper focuses on the development of a thermodynamic approach to constitutive modelling of concrete materials,
with emphasis on the use of non-local damage models. Effort is put on the construction of a consistent and rigorous ther-
modynamic framework, which readily allows the incorporation of non-local features into the constitutive modelling. This
is an important feature in developing non-local constitutive models based on thermodynamics. Examples of non-local con-
stitutive models derived from this framework and numerical examples are given to demonstrate the promising features of
the proposed approach.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In the constitutive modelling for strain softening materials, localization due to softening is of great impor-
tance because strain softening and strength degradation are two of the important features of the material
behaviour, especially when the post peak behaviour is of great interest (e.g. the crack initiation and propaga-
tion due to fatigue in metallic materials, and crack propagation in concrete structures). The use of damage
mechanics, in combination with plasticity theory, enables us to derive appropriate models for the modelling
of these materials. However, as the material exhibits significant post-peak softening, appropriate treatments,
called regularization techniques, need to be applied to the constitutive modelling as well as the structural
analysis.

This is because conventional continuum mechanics is inadequate to capture correctly the softening behav-
iour of the material. Mathematically speaking, quasi-static analysis of boundary value problems involving
strain-softening material becomes ill-posed beyond a certain level of accumulated damage (Jirásek and
0020-7683/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.
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Bazant, 2002). This is due to the local loss of ellipticity of the governing partial differential equations, if these
are derived in the context of conventional continuum mechanics. From the numerical point of view, the strain
in the damaged region tends to localize in a very narrow zone, called the fracture process zone (FPZ), which
eventually leads to the formation of macro cracks. In the finite element analysis, this FPZ tends to narrow
upon mesh refinement, resulting in mesh-dependent numerical solutions. The problem is however similar in
many numerical methods (e.g. finite element, boundary element, and finite difference) employed for the solu-
tions of the governing partial differential equations in continuum mechanics.

Non-local regularization techniques have been found to be appropriate for the modelling of softening mate-
rials (Pijaudier-Cabot and Bazant, 1987) and help to avoid pathological problems encountered in the consti-
tutive modelling of these materials (Jirásek and Bazant, 2002). The key idea of non-local regularization is to
introduce non-local integral or gradient terms with a length scale into the constitutive models. This length
parameter, called characteristic length or internal length of the regularized continuum, is also used to control
the size of the non-local interaction of material points. The type of the governing partial differential equations
of the regularized continuum models then remain always unchanged (no loss of ellipticity in quasi-static anal-
ysis) and the boundary value problem therefore maintains the well-posedness during the deformation and
damage processes. These techniques of regularization have been widely applied to the constitutive modelling
in the context of both damage mechanics and softening plasticity (Pijaudier-Cabot and Bazant, 1987; Borino
et al., 1999; Jirásek and Patzák, 2002; Grassl and Jirásek, 2006). Nevertheless, some of the existing non-local
models (e.g. Addessi et al., 2002; Rodriguez-Ferran et al., 2004) are built without recourse to thermodynamics,
resulting in difficulties in assessing their thermodynamic admissibility.

On the other hand, the thermodynamic aspects of constitutive modelling using non-local theories have been
discussed by several researchers (Maugin, 1990; Santaoja, 2004; Nedjar, 2001; Polizzotto et al., 1998; Polizz-
otto and Borino, 1998; Borino et al., 1999; Benvenuti et al., 2002; Nilsson, 1997; Jirásek and Rolshoven, 2003;
Peerlings et al., 2004; Voyiadjis and Dorgan, 2004; Makowski et al., 2006). In thermodynamic approaches,
non-local or gradient terms can appear in the expressions of the first or second law of thermodynamics. How-
ever, none of the existing non-local thermodynamic approaches has exploited the transformation and inter-
changing between the dissipation function and the non-local yield/damage function. Instead, the
dissipation expression, in the non-local form, is usually used as a means to verify the thermodynamic admis-
sibility of the obtained non-local models. This process is complicated and sometimes leads to misinterpretation
of the features of the non-local model. As an example, the non-local plasticity model of Nilsson (1997), for-
mulated based on a thermodynamic approach, was found to produce results violating the condition of non-
negative dissipation in some special cases (see Jirásek and Rolshoven, 2003).

In some thermodynamic approaches (Nedjar, 2001; Santaoja, 2004; Voyiadjis and Dorgan, 2004; Makow-
ski et al., 2006), non-local or gradient terms of internal variables appear in the expressions of the energy poten-
tial, as independent internal variables. The corresponding associated thermodynamic forces are then defined
on those gradient terms. However, inconsistencies in the definition of those thermodynamic forces between
some approaches can be seen (e.g. in Santaoja, 2004 and Voyiadjis and Dorgan, 2004). In Santaoja (2004),
a scalar damage variable and its gradient form are associated with two corresponding thermodynamic forces,
both of which are of scalar form and subjected to a constraint. This is however different in Voyiadjis and Dor-
gan (2004) in which the thermodynamic force associated with a gradient quantity is arbitrarily assumed to be
of gradient form.

The Italian researchers (Polizzotto et al., 1998; Polizzotto and Borino, 1998; Borino et al., 1999; Benvenuti
et al., 2002) have also proposed a sound approach to thermodynamic non-local constitutive modelling. The
energy exchange due to non-locality (Bazant, 1991, 1994) is exploited and realized through the global satisfac-
tion of the first law of thermodynamics. A term called non-locality residual, which satisfies an insulation con-
dition for its total vanishing over the body, is used to obtain a local expression of the first law (and the
Clausius–Duhem inequality too). This concept of non-locality residual is in fact rooted from earlier work
by Edelen and Laws (1971) and has been adapted in several papers (Polizzotto et al., 1998; Polizzotto and
Borino, 1998; Borino et al., 1999; Benvenuti et al., 2002).

The motivation of this paper is to exploit the concept of non-locality residual, and the Legendre transfor-
mation of the loading functions and dissipation function (Houlsby and Puzrin, 2000, 2006), in the formulation
of non-local model. Peerlings et al. (2004) argued that the insulation condition associated with the non-locality
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residual in the ‘‘Italian approach’’ restricts the energy exchange only in the dissipation zone and therefore is
too limiting. However, this argument in our opinion is not strong enough to restrict the use of the non-locality
residual concept, as long range energy exchanges and interactions between representative volume elements
(RVEs) inside and outside the dissipation zone can always take place at their boundaries, e.g. through equi-
librium equations.

It should also be mentioned here that this study only aims at proposing a consistent thermo-mechanical
approach for the formulation of non-local constitutive models. The formulation of a non-local model based
on this approach therefore just requires the specification of two energy potentials and follows a set of consis-
tently pre-established procedures. This simplifies the formulation and hence helps avoid potential violation of
the laws of thermodynamics in formulating complicated non-local constitutive models. The regularization
aspects of the derived non-local models in this study are therefore kept as simple as possible through some
numerical examples to demonstrate the independence of the numerical results from the spatial discretization.
It is desired to tackle those issues in future research.

The outline of this paper is as follows. In Section 2 two similar ways of introducing non-locality into an
existing thermo-mechanical framework by Houlsby and Puzrin (2000, 2006), followed by the modification
of this framework for the formulation of non-local models, are presented. The advantages of the modified
framework in formulating non-local models are highlighted. In Section 3 two non-local damage models pro-
posed and derived following procedures consistently established in the original framework and modified here
for non-local models. Simple numerical examples are then given and conclusions are withdrawn.

2. A thermodynamic approach to non-local constitutive modelling

2.1. Choice of non-local variable

In the case of damage-induced softening in quasi-brittle materials, the damage variables or the associated
damage energies should be treated as non-local quantities (Bazant, 1991). Of course, generally one can choose
other variables, which are indirectly related to the strain softening behaviour of the materials (e.g. the elastic
strain, which is in fact related to the damage energy) for non-local treatment. However, these treatments in
some cases can lead to models producing high residual stresses even at the very late stages of the fracture/dam-
age process (Jirásek, 1998). As the residual stresses at those late stages should be very small to represent the
failure of the material prior to the appearance of macro cracks in a complete separation mode, these enhanced
models are hence not capable of modelling realistic behaviour of the materials. Therefore the choice of non-
local internal variables, and the corresponding non-local models, should be carefully considered and examined
in order to avoid these pathologies. Among various non-local damage approaches using different non-local
quantities, those that are based on the non-locality of the damage energy have been proved to be satisfactory
and can give reasonably low residual stress when the damage measure is close to unity (Jirásek, 1998). In this
study we will adopt this kind of damage energy non-locality.

2.2. Non-locality introduced to the first law of thermodynamics

Since our attempt in this study is to formulate models based on thermodynamics, the problem here is the pos-
sibility of adapting an existing ‘local’ thermodynamic framework to a non-local approach. The energy potential
can be modified by introducing the damage gradient as a new internal variable (Maugin, 1990; Santaoja, 2004;
Nedjar, 2001) in order to account for the energy exchange due to non-locality. An alternative and more physical
way to introduce non-locality into an existing thermodynamic framework is to express the laws of thermodynam-
ics in a more general form in order to account for the energy redistribution in a certain volume element, where
damage occurs, due to the microcrack interactions. The size of this volume element, where the energy redistribu-
tion takes place, is proportional to the material characteristic length. Originally proposed by Edelen and Laws
(1971) with the concept of the non-locality residual, this is the approach adopted by several Italian researchers
(Polizzotto et al., 1998; Polizzotto and Borino, 1998; Borino et al., 1999; Benvenuti et al., 2002).

This approach is based on the assumption that there is energy exchange between points within a certain
volume element, whose size is proportional to the material internal length scale. In this case, the non-locality
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of damage, which can be explained through micromechanics analysis of microcrack interactions in a volume
element (Bazant, 1991 and Bazant, 1994), is accounted for based on the thermodynamic analysis of that vol-
ume. The interactions of microcracks are represented through the energy exchange at points inside that vol-
ume element. Following the approach, the first law of thermodynamics, which is usually derived in its local
form, is now stated in the non-local form over that volume of the material.
Z

V d

_W dV þ
Z

V d

_QdV ¼
Z

V d

_udV ð1Þ
where Vd is the representative region where the dissipation processes takes place; _W ¼ rij _eij is the rate of
mechanical work input; _Q ¼ �qk;k is the rate of heat supply to a volume element; and u is the specific internal
energy. In contrast with local theory, the size Vd of the dissipation region here cannot be infinitesimal but is
restricted by the material characteristic length (Polizzotto et al., 1998). As Vd is of finite size and cannot be
arbitrarily small, the local form of energy balance can only be withdrawn from (1) by using a non-locality
residual P accounting for the energy exchange in the region Vd.
_W þ _Qþ P ¼ _u ð2Þ

In this case, the insulation condition (Polizzotto and Borino, 1998)
Z

V d

PdV ¼ 0 ð3Þ
must be satisfied, restricting the energy exchange only within the volume Vd. It should also be noted here that
P is non-zero at points inside the volume Vd and equal to zero everywhere outside Vd, where there are no irre-
versible processes. The insulation condition therefore also holds in the whole material body.

The assumption on the non-locality of energy exchange seems reasonable as damage in this case produces
effects not only where it occurs but also at neighbouring points within the defined volume element. As a result
of this, the energy redistribution of points inside that volume results in the global satisfaction of the first law of
thermodynamics in this volume element (Polizzotto et al., 1998).

The second law of thermodynamics in this case is still cast in its local form:
_s P � qk

h

� �
;k

ð4Þ
with s being the entropy and qk/h denoting the entropy flux. Expansion of expression (4) then gives us
h_sþ qk;k �
qkh;k

h
P 0 ð5Þ
The dissipation here comprises two parts corresponding to the mechanical dissipation h_sþ qk;k and thermal
dissipation �qk h,k/h. As mentioned in the original framework (Houlsby and Puzrin, 2000), a more stringent
law than the second law of thermodynamics can be assumed here by assuming that h_sþ qk;k P 0, using the
fact that the thermal dissipation is always non-negative and small compared to the mechanical one for small
thermal gradients. Therefore the dissipation function, which is actually the rate of dissipation, can be rewritten
as:
d ¼ h_sþ qk;k P 0 ð6Þ
from which and the modified form (2) of the first law of thermodynamics, it follows that
d ¼ h_sþ rij _eij � _uþ P P 0 ð7Þ
Using the Helmholtz specific free energy f, defined by f = u � sh, we then have:
d ¼ rij _eij � _f � s _hþ P P 0 ð8aÞ
or _f ¼ rij _eij � d � s _hþ P ð8bÞ
It can be seen here that the dissipation (neglecting the thermal dissipation) turns out to be non-local due to the
appearance of the non-locality residual P. In this case, the Clausius–Duhem inequality (rij _eij � _f � s _h P 0Þ
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does not hold pointwise, as it does in the local approach. Instead, due to the insulation condition (3), the Clau-
sius–Duhem inequality now takes the following non-local form
Z

V d

rij _eij � _f � s _h
� �

dV P 0 ð9Þ
This means local violation of the inequality is allowed to occur during irreversible processes. Nevertheless, the
local dissipation (Eq. (7) or (8)) is always non-negative, noting that in this case of non-locality it does not coin-
cide with the local form of the Clausius–Duhem inequality.

2.3. Non-locality introduced to the second law of thermodynamics

In a similar way, one can also introduce non-locality into the existing thermodynamic approach by casting
the second law in a non-local form, while retaining the local form of the first law of thermodynamics. We
rewrite the first law in local form as
_W þ _Q ¼ _u ð10Þ

The non-local second law now reads
Z

V d

h_sþ qk;k �
qkh;k

h

� �
dV P 0 ð11Þ
Using the non-locality residual P, we can transform the above law to a local form,
h_sþ qk;k �
qkh;k

h
þ P P 0 ð12Þ
Neglecting the thermal term (see also Houlsby and Puzrin, 2000), the mechanical dissipation now becomes
d ¼ h_sþ qk;k þ P P 0 ð13Þ
which, after being substituted into the expression of the local first law of thermodynamics (10), coincides with
(7) in the previous case. As a result, the Clausius–Duhem inequality in this case is also satisfied in a global
sense (see Eq. (9)).

As can be seen from (11), the global satisfaction of the second law of thermodynamics can lead to processes
in which (11) are satisfied as an equality at global level. These processes are therefore interpreted as reversible
at global level. Since (11) does not guarantee the pointwise satisfaction of the second law, Polizzotto (2003)
argued that these processes could be physically meaningless. However, in both cases of non-locality (non-
locality introduced to the first and the second laws of thermodynamics), that mentioned problem also occurs
with the Clausius–Duhem inequality (9), which is generally used as a condition for any thermodynamically
admissible processes. The physical interpretation here could be the exchange of energies, which must have
been dissipated by heat, at points in the defined representative volume element. In other words, in the irrevers-
ible processes, energy at point-wise level within each volume element can be either dissipated by heat or trans-
ferred to neighbouring points within that volume element. The latter case here represents the local violation of
the second law of thermodynamics (or violation of the local Clausius–Duhem inequality), which can be
directly predicted as a consequence of the global satisfaction of the second law.

2.4. Proposed approach

With the insulation condition (3), non-locality in either case, 2.2 or 2.3, is restricted to irreversible pro-
cesses. Although the mathematical formulation is essentially the same, the physics behind that can be inter-
preted in different ways. In the first case, with non-locality introduced to the first law of thermodynamics,
long distance transmission of energy (other than contact forces between material points) could be viewed
as being responsible for the non-locality in the material behaviour. Nevertheless, this non-locality is only acti-
vated for irreversible processes, due to the insulation condition (3) which restricts energy exchange within the
volume Vd of dissipative processes. In the second case (Section 2.3), non-locality could be viewed as a result of
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the redistribution of energy which should have been totally dissipated to the outside (e.g. by heat). In other
words, at the material point under consideration, part of this energy can be transmitted to surrounding mate-
rial points, and the rest can be dissipated to the outside. In a similar way to the first case, this mechanism of
long range transmission of energy is only active when irreversible processes occur. Therefore, in the author’s
view, the introductions of non-locality to the first and the second law of thermodynamics have equal physical
meaning and can be treated as equivalent.

As can be seen in Sections 2.2 and 2.3, the difference here, compared with local approaches, is the appear-
ance of the non-locality residual P. The problem therefore lies in the determination of the appropriate expres-
sion for the non-locality residual P, which can both preserve the non-negative condition of the dissipation d

and satisfy the insulation condition (3). We adopt here the approach by Polizzotto and Borino (1998), in which
the regularization operator L and its adjoint L* were introduced. In this case, the non-local internal variable ~ak

is determined from its local counterpart ak through the operator L. We leave aside the exact physical meaning
of ak and consider it here as an internal variable which can be in scalar, vector, tensorial form or possibly a set
of internal variables. We have
_~ak ¼ Lð _akÞ ð14Þ

Generally the operator L can be of integral form (non-local theory) or gradient form (gradient theory). For
non-local theory the operator can be defined as (Borino et al., 1999; Polizzotto et al., 1998):
_~akðxÞ ¼ Lð _akÞ ¼
1

GðxÞ

Z
V d

gðky� xkÞ _akðyÞdV ð15Þ
in which x and y are coordinate vectors; g(ky � xk) P 0 is a certain weighting function and G(x) is defined as a
weight associated with the material point x, aiming at normalizing the weighting scheme:
GðxÞ ¼
Z

V d

gðky� xkÞdV ð16Þ
Alternatively in the gradient theory, the operator is given explicitly by (Polizzotto et al., 1998)
Lð _akÞ ¼ _ak þ c2r2 _ak ð17Þ

where c is the gradient coefficient, related to the internal length of the non-local continuum.

With the appearance of non-local terms (see Eq. (8b)), the Helmholtz free energy f can be assumed to be a
function of the total strain eij, temperature h, local internal variable bi and non-local internal variable ~ak. Its
time differentiation therefore reads
_f ¼ of
oeij

_eij þ
of
oh

_hþ of
obi

_bi þ
of
o~ak

_~ak ð18Þ
Comparing Eq. (18) with Eq. (8b), we have the following state laws:
rij ¼
of
oeij

ð19Þ

s ¼ � of
oh

ð20Þ
The dissipation then becomes
d ¼ �vb
i

_bi þ �va
k
_~ak þ P ð21Þ
where �va
k ¼ �of =o~ak and �vb

i ¼ �of =obi are termed generalized stresses (Houlsby and Puzrin, 2000, 2006) asso-
ciated with the non-local internal variable ~ak and local internal variable bi, respectively. For the second case of
non-locality (Section 2.3), mathematically the same expression as (21) for the dissipation can be obtained, as
Eqs. (18) and (8b) also hold in such a case.

On the other hand, for a rate-independent material, the dissipation must have a linear form (Borino et al.,
1999; Houlsby and Puzrin, 2000):
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d ¼ va
k _ak þ vb

i
_bi ð22Þ
where va
k ¼ od=o _ak and vb

i ¼ od=o _bi are called dissipative generalized stresses in the thermodynamic frame-
work by Houlsby and Puzrin (2000, 2006). For the non-local approach here, va

k , which is associated with a
non-local dissipation process, will be shown to be of non-local form. Comparing (21) and (22), we have
�vb
i ¼ vb

i ð23Þ
and P ¼ va

k _ak � �va
kLð _akÞ ð24Þ
The former expression (23) is a form of the orthogonality condition for the generalized and dissipative general-
ized stresses vb

i and �vb
i (Houlsby and Puzrin, 2000, 2006). The latter expression (24) in this case acts as a special

form of the orthogonality condition for va
k and �va

k , which will be shown to be of non-local form. In addition,
the insulation condition on the non-locality residual P must be satisfied (Eq. (3)). In physical terms, this con-
dition assures that energy exchange only takes place within a finite region Vd where the dissipation processes
are. Hence
Z

V d

va
k _ak � �va

kLð _akÞ
� �

dV ¼ 0 ð25Þ
We introduce here the operator L*, adjoint with L but applied to �va
k and defined by (see also Borino et al.,

1999; Jirásek and Rolshoven, 2003):
L� �va
k

� 	
¼ ~�va

kðxÞ ¼
Z

V d

gðky� xkÞ
GðyÞ �va

kðyÞdV ðyÞ ð26Þ
where function G(y) has been defined in (16). It is noted here that L* is self-adjoint (L* = L) only if function
GðxÞ ¼

R
V d

gðky� xkÞdV is not dependent on the position of the point under consideration (Borino et al.,
1999; Jirásek and Rolshoven, 2003). This is the case of infinite material bodies and results in symmetric
non-local tangent stiffness matrix (Borino et al., 2003). For a structure of finite size, L* 5 L and the symmetry
of the non-local tangent stiffness is lost. A modified weighting scheme was also proposed by Borino et al.
(2003) to remedy the problems of a non-symmetric stiffness matrix. It is, however, not adopted in this study.

From the second term of (25), we have
Z
V d

�va
kðxÞLð _akÞdV ðxÞ ¼

Z
V d

�va
kðyÞ

Z
V d

gðky� xkÞ
GðyÞ _akðxÞdV ðxÞ


 �
dV ðyÞ

¼
Z

V d

Z
V d

gðky� xkÞ
GðyÞ �va

kðyÞdV ðyÞ

 �

_akðxÞdV ðxÞ ¼
Z

V d

~�va
kðxÞ _akðxÞdV ðxÞ ð27Þ
Therefore the following equality can be withdrawn using (26) and (27)
Z
V d

�va
kLð _akÞdV ¼

Z
V d

L� �va
k

� 	
_ak dV ð28Þ
Substituting the above into (25), we obtain
Z
V d

va
k � L� �va

k

� 	� �
_ak dV ¼ 0 ð29Þ
It can be seen from the above expression that for any dissipation mechanism, the bracketed terms must en-
tirely vanish regardless of the relationship between it and _ak (Borino et al., 1999). This then leads to the fol-
lowing non-local form of the orthogonality condition:
va
k ¼ L� �va

k

� 	
¼
Z

V d

gðky� xkÞ
GðyÞ �va

kðyÞdV ðyÞ ð30Þ
It can be seen from (30) that va
k in (22) must be of non-local form. The above-presented approach has intro-

duced a way for incorporating non-locality into an existing thermodynamic framework, based on the concept
of non-locality residual. The idea can be adapted to any existing thermodynamic approach without any



G.D. Nguyen / International Journal of Solids and Structures 45 (2008) 1918–1934 1925
difficulty. However, the use of the non-local form of the orthogonality condition in combination with the
Legendre transformation of the dissipation function (Houlsby and Puzrin, 2000, 2006) in this thermodynamic
framework furnishes a consistent and rigorous way for the derivation of non-local constitutive models.

2.5. Non-local loading function

The dissipation potential in (22) is assumed to be decomposed into two additive parts, both of which are
homogeneous first order in the rate of corresponding internal variable. The requirement that every additive
part of the dissipation potential be non-negative is in fact more stringent than the second law of thermody-
namics. This assumption leads to the so-called weak coupling between internal variables, in contrast with
the strong coupling cases in which the dissipation potential can no longer be decomposed into additive parts
(see Einav et al., 2007). We rewrite the dissipation potential here, as:
d ¼ da þ db ¼ va
k _ak þ vb

i
_bi ð31Þ
The loading functions in this case are direct results of the degenerate Legendre transformation of the dissipa-
tion potential d, with ka and kb being two corresponding non-negative multipliers:
kaya ¼ va
k _ak � da ¼ 0 ð32Þ

kbyb ¼ vb
i

_bi � db ¼ 0 ð33Þ
The flow rules can be obtained by differentiating both sides of (32) and (33):
_ak ¼ ka oya

ova
k

ð34Þ

_bi ¼ kb oyb

ovb
i

ð35Þ
In the model formulation, if d is explicitly specified, ya and yb can be worked out straightforwardly (Ngu-
yen, 2005; Nguyen and Houlsby, 2007a,b). The enforcement of the orthogonality conditions, in both local (23)
and non-local (30) forms, will then be made, resulting in two corresponding loading functions. Alternatively,
the two loading functions ya and yb can also be specified based on experimental results, and the dissipation
potential can then be obtained from these loading functions, also through the Legendre transformation. This
dual process was described at length in Houlsby and Puzrin (2000) and illustrated in Nguyen (2005). The
advantage of making an explicit link between dissipation potential and loading function here is that energy
dissipation, e.g. due to fracturing processes in quasi-brittle materials, can be determined just by integrating
the dissipation potential (in fact the rate of dissipation). Although in practice, yield/damage activation sur-
faces should be specified based on experimental tests, their evolutions and interaction can be more readily con-
trolled in the constitutive model using the dissipation potential, especially in coupling cases with more than
one dissipation mechanisms (Nguyen and Korsunsky, 2006).

In summary, any models formulated based on the proposed approach just need the specification of two
potentials: the energy and the dissipation potentials. The dissipation potential here acts as a real potential gov-
erning the evolutions of internal variables, which is in contrast with the use of the dissipation as a pseudo
potential in other thermodynamic frameworks (e.g. in Lemaitre, 1992; Lemaitre and Chaboche, 1990). In
other words, va

k and vb
i need to be specified here to have an explicitly defined dissipation potential for the for-

mulation of constitutive models. In combination with the Legendre transformation of the dissipation function,
the enforcement of the orthogonality condition in both local (23) and non-local (30) forms during the model
formulation creates ways for the natural occurrence of the loading functions with desired features. The pro-
posed approach is hence distinguishable from other existing ones thanks to this feature of the thermodynamic
framework. Illustrations on formulation of non-local models in the context of damage mechanics will be pre-
sented in the following sections.

It should also be noted that although in the above approach two dissipation mechanisms with correspond-
ing internal variables ai and bi are used, their interaction (or coupling) in a non-local thermodynamic frame-
work is not yet considered here. Use of two different sets of local and non-local internal variables in the
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presented approach here is just to illustrate the difference in the arising forms of the orthogonality conditions.
Coupling between local and non-local internal variables is to be tackled in a separate study in which the weak
and strong coupling between different internal variables (see Einav et al., 2007) will also be accounted for.

3. Application of the proposed approach to non-local constitutive modelling of concrete

In the original approach (Polizzotto et al., 1998; Polizzotto and Borino, 1998; Borino et al., 1999; Benvenuti
et al., 2002) the Italian researchers just used the property (13), to specify a non-local form of a loading func-
tion (e.g. a non-local yield function in Borino et al. (1999)), which is in line with the principle of maximum
dissipation. In other words, due to Eqs. (22) and (30), the non-local form of va

k must appear in the loading
function. This is in contrast with the non-local approach by Nilsson (1997), in which the thermodynamic
admissibility of the non-local model is only partly assured (see Jirásek and Rolshoven, 2003). Neither
approach specifies a non-local form of the dissipation function and uses it to derive the corresponding non-
local loading function. In this section, we will make use of the Legendre transformation illustrated in the case
of non-local modelling, and show that a non-local form of the loading function can be directly derived from
two specified energy potentials: non-local dissipation potential and energy potential, following procedures
consistently established beforehand. The flexibility of the proposed approach here lies in the so-called non-
local form (30) of the orthogonality condition. Any expression for the dissipative generalized stress va

k can
be specified to obtain a non-local damage model with desired damage criterion and softening behaviour.

The proposed approach is applied here for the formulation of non-local damage models for concrete. How-
ever, only pure damage models are considered here. Coupling between damage and plasticity within this non-
local thermodynamic approach is not accounted for and should be an issue for further study.

3.1. A strain-based non-local damage model

The formulation of a simple non-local damage model is used here as an illustration. For a strain-based for-
mulation, the following Helmholtz free energy function is specified for isothermal processes.
f ¼ ð1� ~adÞE
2ð1þ mÞ eijeij þ

m
ð1� 2mÞ ekkell


 �
ð36Þ
or in a more convenient form
f ¼ 1

2
ð1� ~adÞaijkleijekl ð37Þ
in which ~ad is a non-local internal variable characterizing the damage processes; aijkl is the elasticity stiffness
tensor expressed in terms of elasticity modulus E and Poisson’s ratio m
aijkl ¼
E

2ð1þ mÞ
2m

1� 2m
dijdkl þ dikdjl þ dildjk


 �
The evolution laws of internal variables, following several thermo-mechanical frameworks (Lemaitre and
Chaboche, 1990; Maugin, 1992; Lemaitre, 1992), are derived by differentiating a pseudo-dissipation potential,
which is postulated to exist. The whole problem of specifying a constitutive law is then reduced to specifying
two potentials: the free energy and the dissipation potential. However, things are different here. Instead of pos-
tulating the existence of a pseudo dissipation potential, the dissipation in the framework used here is assumed
to be a function of the thermodynamics state of the material and the rate of change of state. In addition, use of
loading functions (yield and/or damage functions) or dissipation function is interchangeable in the framework.
Here, a dissipation function, which is in fact worked out from an energy-based damage function, is used and
takes the form
d ¼ F �1ð~ad; eijÞ _ad ð38Þ

where F �1ð~ad; eijÞ is a positive and increasing function associated with the damage process; this function in fact
controls the rate of damage dissipation.



G.D. Nguyen / International Journal of Solids and Structures 45 (2008) 1918–1934 1927
A note should be given here to the forms of damage variable in the energy potential and dissipation poten-
tial. For formal purposes (see Houlsby and Puzrin, 2000), the generalized stress �v and dissipative generalized
stress v should be kept separate (see Section 2.3). The enforcement of the orthogonality condition in the form
�v ¼ v is then made during the model formulation. In combination with the Legendre transformation of the
dissipation function, it furnishes a way for the natural occurrence of the loading function. For a local formu-
lation (e.g. Nguyen, 2005; Nguyen and Houlsby, 2007a) based on the framework used, as the orthogonality
condition is enforced in a local form the same local internal variable is associated with �v and v. However,
for a non-local form of the orthogonality condition in this study (see Eq. (30)), different forms of the same
internal variable are correspondingly associated with the generalized stress �v and dissipative generalized stress
v (see Eqs. (21) and (22)). Therefore, the rate of local damage variable must be used in the dissipation potential
(38), while its non-local counterpart is used in the Helmholtz free energy function f in (36) and component
function F �1 in (38).

The derivation of a constitutive model here follows standard procedures established beforehand in the ori-
ginal framework (Houlsby and Puzrin, 2000, 2006), and partly illustrated in the preceding sections. The stress
and generalized stresses are derived from the energy function:
rij ¼
of
oeij
¼ ð1� ~adÞaijklekl ð39Þ

�vd ¼ �
of
o~ad

¼ 1

2
aijkleijekl ð40Þ
In (40), the thermodynamic force �vd conjugate to the non-local damage indicator ~ad is of local form and can be
identified as the strain energy release rate with respect to ~ad under constant stress (Lemaitre, 1992). The dis-
sipative generalized stresses in this case can be obtained from the dissipation function in a way similar to the
above derivation of the stress and generalized stresses:
vd ¼
od
o _ad

¼ F �1ð~ad; eijÞ ð41Þ
The damage criterion is then derived by eliminating _ad from Eq. (41). It is a result of the degenerate Legendre
transformation of the dissipation function, in which the strain eij appearing in (41) is considered as a passive
variable in the transformation (see Collins and Houlsby, 1997). In the case of scalar damage variable here, (41)
directly results in a damage loading function of the form
yd ¼ vd � F �1ð~ad; eijÞ ¼ 0 ð42Þ
Since ad is only a scalar variable, there is actually no ‘‘flow rule’’ for the damage process, and the damage mul-
tiplier, which resembles that in plasticity, coincides with the scalar damage increment _ad
_ad ¼ kd

oy�d
ovd

¼ kd ð43Þ
Following the non-local thermodynamic formulation in Section 2.4, the non-local form vd ¼ L�ð�vdÞ of the
orthogonality condition must hold, turning the above damage loading function to
yd ¼ L�ð�vdÞ � F �1ð~ad; eijÞ ¼ 0 ð44Þ
The choice of function F �1ð~ad; eijÞ is flexible and can be made on the basis of desired features of the damage
surface and the evolution law of damage. In the simplest case we may have F �1 ¼ F 1ð~adÞ, as a function of
the non-local damage variable ~ad only. For pure damage behaviour, F 1ð~adÞ can assume the following form
(Nguyen, 2005):
F 1ð~adÞ ¼
f 02t

2E
E þ Eptð1� ~adÞnt

Eð1� ~adÞ þ Eptð1� ~adÞnt


 �2

ð45Þ
in which f 0t is the uniaxial tensile strength; Ept and nt are two parameters governing the damage evolution, the
physical interpretations and calibration of which can be found in Nguyen (2005).

The damage loading function (42) becomes
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yd ¼
1

2

Z
V d

gðky� xkÞ
GðyÞ aijkleijekl dV � F 1ð~adÞ ¼ 0 ð46Þ
So far we have not defined the volume Vd where dissipation takes place, and the weighting function g(ky � xk)
for the regularization operator L. These are required for the definition of the non-local damage criterion in
(46). In the literature, Vd is a volume defined by a sphere of center x and radius R and g(ky � xk) can be de-
fined as the bell-shaped weight function:
gðrÞ ¼ gðky� xkÞ ¼
0 if r > R

1� r2

R2

� �2

if r 6 R

8><
>: ð47Þ
or Gauss distribution function:
gðrÞ ¼ exp � r2

2l2

� �
ð48Þ
in which R is termed non-local interaction radius, and l is a length parameter of the Gauss distribution func-
tion (Jirásek, 1998). We adopt the definition (47) in this study.

As the damage criterion is specified here in strain space, this is the case in which the stress update can be
carried out without spatial coupling between material states at several integration points. In other words, the
damage increment can be directly determined from the rate form of the damage function, based on the strain
rates at several integration points within a sphere (or circle) of radius R. The consistent non-local tangent stiff-
ness matrix can be readily derived following Jirásek and Patzák (2002). This matrix is however non-symmetric
due to the use of the non-local averaging in (26). In this study, local secant stiffness was used. As a conse-
quence this significantly increased the computational costs. In addition, it should be noted here that the aver-
aging scheme in (30) is unable to reproduce uniform field for bounded structure (Comi and Perego, 2001). This
may lead to numerical difficulties in some models where the non-local damage variable is directly evaluated
using that averaging scheme (Comi and Perego, 2001). This is however not the case here since the non-locality
of damage is implicitly defined through its associated non-local thermodynamic force (see Eq. (46)). The
implementation of the model is not of main concern here and therefore not presented. Numerical example
demonstrating the mesh-independence of the model described above will be shown in Section 4.
3.2. A stress-based non-local damage model

We present here a non-local coupled damage-plasticity model formulated based on the non-local thermo-
dynamic approach in Section 2.4. The Gibbs free energy function is assumed to be of the following form:
g ¼ �Dijklrijrkl

2ð1� ~adÞ
ð49Þ
in which ~ad is the non-local scalar damage variable, respectively; Dijkl is the elasticity compliance tensor ex-
pressed in terms of elasticity modulus E and Poisson’s ratio m as
Dijkl ¼
1þ m

2E
� 2m

1þ m
dijdkl þ dikdjl þ dildjk

� �
The dissipation here takes the form:
d ¼ F �1ð~ad; rijÞ _ad ð50Þ
where F �1ð~ad; rijÞ is a positive and monotonically increasing scalar-valued function associated with the damage
process.

The derivation of the constitutive models here follows the same route illustrated in Section 3.1. The total
strain and generalized stresses are derived from the energy function g as follows:
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eij ¼ �
og
orij
¼ Dijklrkl

1� ~ad

ð51Þ

�vd ¼ �
og
o~ad

¼ Dijklrijrkl

2ð1� ~adÞ2
ð52Þ
In a similar way, the dissipative generalized stress vd is:
vd ¼
od
o _ad

¼ F �1ð~ad; rijÞ ð53Þ
The derivation of the damage criterion is a result of the degenerate Legendre transformation of the dissipation
function (Houlsby and Puzrin, 2000, 2006):
yd ¼ vd � F �1ð~ad; rijÞ ¼ 0 ð54Þ

We also have the following evolution rule for the scalar damage increment _~ad
_~ad ¼ kd

oyd

ovd

¼ kd ð55Þ
The non-local form (30) of the orthogonality condition also holds:
vd ¼ L�ð�vdÞ ¼
Z

V d

gðky� xkÞ
GðyÞ

Dijklrijrkl

2ð1� ~adÞ2
dV ðyÞ ð56Þ
turning the damage loading function (54) to
yd ¼
Z

V d

gðky� xkÞ
GðyÞ

Dijklrijrkl

2ð1� ~adÞ2
dV ðyÞ � F �1ð~ad; rijÞ ¼ 0 ð57Þ
In the above expression, choice of the scalar-valued function F �1ð~ad; rijÞ, which is of non-local form, is flexible,
provided that it is non-negative to assure the thermodynamic admissibility of the dissipation process. The sim-
plest choice of F �1ð~ad; rijÞ could be F 1ð~adÞ, as selected in the previous section. However, in general it can be in
any other forms which can produce desired damage surfaces and damage evolution laws. Here the following
form of F �1ð~ad; rijÞ is adopted:
F �1ð~ad; rijÞ ¼
0 if rijðyÞ ¼ 0 ði; j ¼ 1 . . . 3Þ 8 y 2 V dR

V d

gðky� xkÞ
GðyÞ

Dijklrijrkl

2ð1� ~adÞ2
dV ðyÞ


 �
F 1ð~adÞ

F 2ðxðxÞÞ otherwise

8<
:

ð58Þ

where F 1ð~adÞ and its parameters have been defined in (45); and the non-local function F2(x(x)) is defined here
as a non-negative and scalar-valued function depending on the non-local energy-like x at coordinate x of the
material point under consideration. Substituting (58) into (57), we obtain:
yd ¼
Z

V d

gðky� xkÞ
GðyÞ

Dijklrijrkl

2ð1� ~adÞ2
dV ðyÞ

" #
1� F 1ð~adÞ

F 2ðxðxÞÞ


 �
¼ 0 ð59Þ
As the first bracketed term in (59) is an energy-like term which is positive definite in non-zero stress states, its elim-
ination in (59) is straightforward. Therefore, the damage function yd can be rewritten in a simplified form as:
yd ¼ F 2ðxðxÞÞ � F 1ð~adÞ ¼ 0 ð60Þ

It is worthwhile to note here that the damage energy �vd in Eq. (52) always involves in the dissipation process. This
is because function F �1ð~ad; rijÞ turns out to be equal to �vd when damage occurs under the criterion (60). In such
cases F 2ðxðxÞÞ ¼ F 1ð~adÞ, and the dissipation rate due to damage becomes �vd _ad. However, the activation and
the evolution of damage are associated with the damage criterion (60). The technique presented above provides
a useful way to integrate damage criterion with desired features into the thermodynamic framework used.

The choice of function F2(x(x)) is flexible here to obtain the desired shape of the damage surface. In the
proposed model here, we define it as a non-local stress-based function, evaluated at position x of the material
point:
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F 2ðxðxÞÞ ¼ LðxÞ ¼ L
ð1þ ptÞrþij rþij � pthrkkihrlli

2Eð1� ~adÞ2

 !

¼ 1

GðxÞ

Z
V d

gðky� xkÞ
ð1þ ptÞrþij rþij � pthrkkihrlli

2Eð1� ~adÞ2
dV ðyÞ ð61Þ
in which L is the regularization operator defined in (15); h i denotes the Macaulay bracket; pt is a parameter
controlling the shape of the damage surface in stress space (Nguyen, 2005); and rþij is defined as the positive
part of the total stress tensor rij, which in turn is decomposed into positive and negative parts using the eigen-
value decomposition (Ladeveze, 1983; Ortiz, 1985):
rþij ¼
X3

m¼1

hrmipm
i pm

j ð62Þ
where pm is the unit vector of the mth principal direction and rm is the mth principal stress. Further details and
some properties of the decomposition can be found in Ladeveze (1983) and Ortiz (1985). Use of other more
complicated forms for F2(x) is possible, but not pursued in this study to preserve the simplicity yet the prac-
ticality of the proposed constitutive model.

It is noted here that in principle, the adjoint regularization operator L* or any other form of non-local aver-
aging can be used in (61). In all cases, the thermodynamic admissibility of the model is always strictly satisfied,
through the enforcement of the non-local form (30) of the orthogonality condition. This is an interesting fea-
ture of the approach presented here, allowing the flexibility in the formulation of non-local constitutive
models.

The non-local damage model described in this section however suffers some computational drawbacks due to
the non-symmetry of the non-local tangent stiffness matrix and the coupling between integration points. It is dif-
ficult, or even impossible, to derive the non-local consistent stiffness matrix and the stress update process is very
complicated and time consuming. This is due to the use of an implicit law for damage evolution and the coupling
between integration points. In particular, the stress update algorithm leads to a system of non-linear equations to
be solved at every iterative step. The size of this system of equations depends on the size of the damage zone, with
damage spreading due to non-locality. On the other hand, local stiffness matrix was used for the numerical sim-
ulation, due to difficulty in deriving the non-local consistent stiffness matrix. Therefore the computational cost
increases considerably during the simulated failure process. Details on this can be found in Nguyen (2005).
The finite element implementation of a constitutive model with the non-local damage criterion (60) has been
described in Nguyen (2005) and Nguyen and Houlsby (2007b) and therefore is not presented here.

4. Numerical examples

Some numerical examples are used here to demonstrate the mesh objectiveness of the numerical solutions of
structural problems, captured by the non-local damage models presented in Section 3. More demonstrations
on the mesh independency of those models can be found in Nguyen (2005) and Nguyen and Houlsby (2007b).
In addition, the constitutive behaviour of those models along with the calibration of model parameters has
been described in other papers (Nguyen, 2005; Nguyen and Houlsby, 2007a,c). The analytical proof for the
regularization effects of non-local models derived within the proposed non-local thermodynamic approach
is a subject of another study and not incorporated here.

4.1. Double-edge notched specimen under tension using non-local isotropic damage model

In this numerical example, the numerical simulations of a double edge notched specimen under tension (Shi
et al., 2000; Fig. 1) are presented. In the numerical models, the specimen is fixed in both directions at the bot-
tom edge, and in horizontal direction at the top edge. The numerical analyses were carried out using two
meshes of 6-node triangular finite elements, with prescribed vertical displacements on the top edge of the
specimen.
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Fig. 1. Double edge notched specimen (10 mm thick) – geometry (a) and FE meshes (b).

0

0.2

0.4

0.6

0.8

1

1.2

0 0.05 0.1 0.15 0.2
Prescribed displacement (mm)

Lo
ad

 (K
N

) 

Experimental
Numerical, mesh1
Numerical, mesh2

Fig. 2. Load–displacement curves.
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The material properties and model parameters used are: Young’s modulus E = 24 GPa, Poisson’s ratio
m = 0.2, tensile strength ft = 2.4 MPa, fracture energy Gf = 0.059 N/mm, non-local interaction radius
R = 8 mm, Ept = 3779 MPa and nt = 0.29 (see Nguyen and Houlsby (2007a,c) for details on the choice of
model parameters). The isotropic strain-based damage model in Section 3.1 was used for the numerical
simulation.

The numerical results are depicted in Fig. 2, showing the agreement in the load–displacement curves
obtained from different finite element meshes, thus proving the lack of mesh dependence of the proposed
model. In addition, the overall shape of the numerical load–displacement curves is consistent with the exper-
imental one.
4.2. Three-point bending test using stress-based non-local damage model

The numerical simulations in this example are carried out on a notched beam in a three point bending test,
aiming at investigating mode I fracture and crack propagation (Fig. 3). The geometrical data and material
P/2

L/2b

D
a0

P

L

Crack path 

Fig. 3. Geometrical data and half beam model used in the numerical analysis.



Fig. 4. Finite element meshes: coarser (a) and denser (b).
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Fig. 5. Load-deflection curve and damage pattern at very late stage of the numerical analysis (mesh b, zoomed-in at center part of the half-
beam).
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properties are taken from the experimental test of Petersson (1981): L = 2000 mm, D = 200 mm, b = 50 mm,
a0 = 100 mm, E = 30,000 MPa, m = 0.2, f 0t ¼ 3:33 MPa, GF = 0.124 N/mm, with the fracture energy being
measured eliminating the effect of the beam’s self weight (see Petersson, 1981).

The nonlocal interaction radius was taken as 2.0 times the maximum aggregate size (dmax = 8 mm, Peters-
son (1981)), resulting in R = 16 mm and the following model parameters (see also Nguyen and Houlsby,
2007a,c): Ept = 6899 MPa and nt = 0.32. The numerical analyses were carried out using two different finite ele-
ment meshes of six-node triangular elements, with different mesh densities. Because of symmetry, only half of
the beam was modelled (Fig. 4). Numerical results, in the form of load–deflection curve and damaged pattern,
are shown in Fig. 5. The damage process zone can be clearly seen in the figure and the numerical crack path
agrees well with the experimental one in Fig. 3. The numerical load–deflection curves obtained from different
meshes are almost identical, again demonstrating the lack of mesh-dependency of the proposed model. In
addition, they also match quite well the experimental curves.
5. Concluding remarks

The key point of the approach proposed in this study is the incorporation of the concept of non-locality
residual into a well defined thermo-mechanical framework. Energy exchanges between material points in
the dissipation zone are therefore taken into account. This results in a non-local form of the orthogonality
condition (Ziegler, 1983; Houlsby and Puzrin, 2000) and allows in principle the definition and formulation
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of any non-local constitutive model. In particular, explicit link between dissipation potential and yield/damage
function and way to introduce non-local damage function with desired features into the proposed non-local
approach were presented (Sections 2.5 and 3.2). The derivation of any non-local damage model then requires
the specification of only two energy potentials and follows procedures consistently established beforehand.
This helps to simplify the formulation of complicated thermodynamically-consistent non-local models. The
application to non-local constitutive modelling of concrete illustrates the capability of the proposed non-local
thermodynamic approach. However the computational aspects of non-local models presented in this study
have only been briefly discussed and therefore should be a subject for more research. In addition, further
research is also required on the incorporation of different coupled dissipation mechanisms within the presented
non-local thermodynamic framework, as well as the localization analysis for various non-local models derived
within this framework.
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