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Viruses and other pathogens can spread rapidly in social

insect colonies from close contacts among nestmates, food

sharing and periods of confinement. Here we discuss how

honey bees decrease the risk of disease outbreaks by a

combination of behaviors (social immunity) and individual

immune function. There is a relationship between the

effectiveness of social and individual immunity and the

nutritional state of the colony. Parasitic Varroa mites

undermine the relationship because they reduce nutrient

levels, suppress individual immune function and transmit

viruses. Future research directions to better understand the

dynamics of the nutrition–immunity relationship based on

levels of stress, time of year and colony demographics are

discussed.
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Introduction
Honey bees and other eusocial insects comprise more

than half of the insect biomass in the world making them

one of the most ecologically successful insect groups [1].

Contributing to this success is the coordination of activi-

ties among members of a colony. Essential tasks such as

thermoregulation, brood rearing and resource gathering

are efficiently executed due to the architecture and

organization of the nest and spatial proximity among

individuals. However, crowded conditions, warm tem-

peratures, high concentrations of resources and periods

of confinement in the nest are ideal for pathogen invasion

and transmission that can lead to epidemics [2,3�]. The

risk of disease outbreaks is mitigated by specialized group

behaviors (social immunity) and immune systems in

individuals.
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Honey bees are important pollinators in undisturbed

ecosystems, but are essential for the production of nu-

merous high-value crops [4]. Over the past decades, the

health of honey bees has been in steady decline especially

with arrival of parasitic Varroa mites (Varroa destructor
Anderson and Trueman). There has been considerable

effort to identify parasites and pathogens that threaten

the health and survival of honey bee colonies. Viruses

have received much attention due to the significant loss of

colonies especially over winter from Varroa mite and virus

associations [5,6��]. Greater attention also has been given

to nutritional needs of colonies and how improvements in

this area might reduce colony losses.

This review will focus on the role of nutrition in immune

response to viral pathogens. We briefly describe the

connections between nutrition and individual immunity,

and speculate on the possible changing nutritional

requirements of colonies throughout the year. These

changes might revolve around trade-offs between colony

growth and immune defense. Within this framework, we

include the effects of parasitism by Varroa because when

the mite is present, optimal nutrition alone might not be

sufficient to keep virus levels low [7,8] (Figure 1).

Honey bee viruses
More than 20 viruses have been identified to infect honey

bees worldwide [9]. The most common are: Deformed wing
virus (DWV), Black queen cell virus (BQCV), and Israeli acute
paralysis virus (IAPV) [10��]. IAPV, Acute bee paralysis virus
(ABPV) and Kashmir bee virus (KBV) often are referred to as

the Acute–Kashmir–Israeli complex or AKI, and share

similar characteristics [11] (Table 1). Viruses infect all

developmental stages and castes [9,12]. Though always

present in colonies, viruses often persist as covert asymp-

tomatic infections. However, if colonies are under stress,

virus levels can increase causing reduced worker longevity

and brood survival and colony loss in winter or early spring

[13–15]. Viruses such BQCV also can cause colony death by

preventing the development and emergence of a new

queen following queen loss.

A factor that has increased virus levels in managed colo-

nies of European honey bees in the U.S. and Europe is

Varroa. The mite weakens bees by feeding on hemo-

lymph of larvae, pupae and adults. Varroa also can trans-

mit viruses among nestmates and suppress host immunity

thus leading to elevated virus replication [9,16–20,21�]. In

colonies with large Varroa populations, brood cells are

invaded by multiple foundress mites causing higher

DWV levels than in singly infested cells even in

Varroa-resistant stocks [22,23]. Multiple infestations are
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Schematic of the relationships among nutrition, immunity and virus

levels and the effects on colony growth (a) and changes in the

relationships when bees are parasitized by Varroa mites (b).
common in the fall because mite populations are peak-

ing and there are fewer cells to invade. The combina-

tion of multiply infested cells and greater virus levels in

autumn ultimately causes colonies to die over winter

[5,6��,15].

In addition to the threat viruses pose to honey bee

colonies, recent studies indicate that the viruses can cross

the species barrier and infect non-Apis species (e.g.,

bumble bees) [24,25]. Bumble bees have experienced

dramatic population declines, and might acquire viruses

while foraging on flowers previously visited by infected

honey bees. Therefore controlling viral diseases in honey

bee colonies is vital for stopping the spread of viruses

among wild pollinators [26�].
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Honey bee immune system
The risk of disease outbreaks is reduced in colonies of

honey bees and other social insects by group-level beha-

viors (‘social immunity’) and individual immunity. To-

gether these provide multiple levels of disease prevention

and responses to challenges from pathogens and parasites.

Social immunity

The collective defense against parasites and pathogens

that emerges from the behavioral cooperation among

individuals in colonies is ‘social immunity’ [2,3�]. With

social immunity, many individuals do small tasks that

collectively have a colony-wide impact on reducing the

spread of parasites and pathogens. For example, workers

remove adults that die in the colony (undertaking or

necrophoric behavior) and brood that are diseased or

parasitized (hygienic behavior). Adults that die outside

the nest also contribute to social immunity if they have

high pathogen loads [3�]. Thermoregulatory behaviors

also are a type of social immunity particularly when

worker bees generate a behavioral ‘social fever’ against

heat-sensitive pathogens such as chalkbrood fungus (Asco-
sphaera apis) [27].

In addition to group behavior inside the nest, bees collect

plant resins (propolis) and use them to create a water and

airtight antimicrobial and antiviral envelope around their

nest [28–32]. Some compounds in propolis such as p-

coumaric acid up-regulate immunity genes [33]. Other

compounds might limit the growth of Varroa populations

because they have miticidal properties [32,34].

Individual immunity

At the individual level, honey bees have several lines of

innate immune defense against foreign pathogens. Physi-

cal and chemical barriers including the exoskeleton cuticle

and the peritrophic membranes lining the digestive tract

are a first line of defense that prevent pathogens from

adhering to or entering the body [3�]. If a pathogen

breaches the physical and chemical barriers, honey bees

can protect themselves from infection with cellular and

humoral immune responses which represent a second line

of defense [35,36]. The activation of the innate immune

responses involves recognition of the highly conserved

structural motifs on the surface of pathogens, termed

Pathogen-Associated Molecular Patterns (PAMPs), by Pat-

tern Recognition Receptors (PRRs) that are germline-

encoded proteins [8]. The binding of PAMP by PRRs

triggers signaling cascades that lead to the activation of

hemocyte-mediated cellular immune response including

phagocytosis, nodule formation and encapsulation of the

invading pathogens, the initiation of phenoloxidase cas-

cade that regulates coagulation or melanization of hemo-

lymph, or the synthesis of antimicrobial peptides (AMP).

Several AMPs such as abaecin, apidaecin, hymenoptaecin,

and defensin have been identified in the hemolymph of

honey bees upon induction of microbial infections [37–40].
Current Opinion in Insect Science 2015, 10:170–176
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Table 1

Viruses commonly detected in honey bee colonies.

Virus Transmission Lifestage infected Symptoms Reference

Acute bee paralysis

virus (ABPV)

Horizontal primarily through

feeding, Varroa parasitism

Brood and adults Paralysis, trembling, inability to

fly, darkening and loss of hair on

thorax and abdomen

[9,11]

Black queen cell

virus (BQCV)

Horizontal primarily through

feeding, Varroa parasitism,

possible vertical transmission

through eggs

Brood and adults Dead queen larvae or prepupae

sealed in queen cells with dark

brown to black walls

[12]

Chronic bee

paralysis virus

Horizontal primarily through

feeding and contact, possible

transovarial

Adults Trembling inability to fly, bloated

abdomens, black hairless bees

[12]

Deformed wing virus Horizontal primarily through

feeding, venereal, transovarial,

transspermal, Varroa parasitism

Brood and adults Deformed wings in emergent

bees, premature aging of adults

[12,17,21�]

Israeli acute paralysis

virus (IAPV)

Horizontal primarily through

feeding, transovarial, venereal,

transpermal, Varroa parasitism

Brood and adults Similar to ABPV. Also, reduced

mitochondrial function, and

possible disturbance in energy-

related host processes.

[10,18]

Kashmir bee virus

(KBV)

Horizontal primarily through

feeding, transovarial, Varroa

parasitism

Brood and adults Weakening of colonies but no

clear field symptoms

[9,16]
There are several signaling pathways including Toll, Imd,

Jak-STAT as well as JNK, that have been experimentally

demonstrated to control the expression of many AMP

genes in Drosophila in response to virus infection [41–
43]. While a study reported that honey bees infected with

ABPV did not trigger either cellular immune or humoral

responses [44], a more recent study showed that a diverse

range of signaling pathways implicated in the cellular

innate immune responses are regulated in IAPV infected

honey bees [10��].

Recent studies indicate that RNA interference (RNAi) is

the major antiviral innate immune response in insects

[45–49]. This innate antiviral pathway is triggered by the

detection of exogenous double-stranded RNA (dsRNA),

an intermediate generated during RNA virus replication.

The response includes an RNase III-like enzyme called

Dicer 2 (Dcr2) that recognizes virus dsRNA as a PAMP

and cleaves long stretches of it into short interfering

RNAs (siRNAs) that are 21–23 nucleotide-long duplexs.

The resultant siRNA duplex, in association with Dcr-2

and the dsRNA-binding protein, is loaded onto RNA

Induced Silencing Complex (RISC) which comprises

multi-subunit effectors with Argonaute 2 (Ago2) as the

catalytic core of this complex and degrades the passenger

strand of siRNA. The guide strand of the siRNA remains

bound to RISC and guides the RISC to cognate viral

RNAs that are sliced by the endonuclease activity of

Ago2 at the point of complementarity, thereby restricting

viral replication (reviewed in Brutscher et al., 2015). The

honey bee genome encodes the core components of the

RNAi pathway including Dicer enzymes, Argonaute

endonucleases, a Drosha homologue, dsRNA-binding

proteins Loquacious, R2D2, Pasha [50] and homologue
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of systemic RNA interference defective protein (SID-1),

a gene essential for transporting of dsRNA between cells

and the systemic spread of RNAi signals [51].

The role of RNAi in mediating dsRNA-induced antiviral

response in honey bees was confirmed in several studies.

IAPV is a widespread RNA virus of honey bees that was

initially linked with colony collapse disorder (CCD) [52].

Deep-sequencing analysis of honey bee workers from

CCD-colonies revealed abundant siRNA matching the

nucleotides of IAPV and other viruses associated with

colony losses, indicating the activation of RNAi pathway

in CCD-colonies for combating viral infections [53].

Injection and feeding of dsRNA corresponding to a

segment of the intergenic region (IGR) and a segment

of gene encoding the capsid structural protein can reduce

the intensity of IAPV infection in honey bees [54,55].

Feeding siRNA targeting an Internal Ribosomal Entry

Site (IRES) of IAPV required for protein translation can

confer antiviral activity in bees [56]. Additionally, feeding

dsRNA that is specific to DWV can lead to reduction in

DWV infection in DWV-inoculated bees [57]. dsRNA-

mediated non-specific antiviral response was demonstrat-

ed by a study showing that the administration of dsRNA,

regardless of sequence could trigger an antiviral response

that controls virus infection in honey bees [58]. More

recently, a study of the global gene expression in both

IAPV infected and uninfected bees indicated that RNAi

pathway had increased activity in the virus infected bees,

further confirming the role of RNAi in antiviral immunity.

The study also showed alterations in DNA methylation

patterns in response to viral infection, suggesting that

honey bees may possess parallel epigenomic and tran-

scriptomic mechanisms to respond to viral infection [59].
www.sciencedirect.com
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These findings and those reported by others are very

encouraging for RNAi development as a tool for manag-

ing virus diseases in honey bees.

Nutrition and immunity
Honey bees meet all their nutritional needs with nectar

and pollen. These resources are collected in quantities

that exceed colony demands and are stored for periods of

dearth as honey and beebread. Nectar and honey contain

carbohydrates and are the energetic fuel for all stages and

castes. Pollen and beebread provide protein and nutrients

required for physiological processes such as brood rearing,

growth and immunity [60�,61].

The connection between nutrition and immunity has

been demonstrated in numerous organisms where im-

mune function is affected by caloric restriction [62��,63].

Dietary protein (pollen) provides essential amino acids

needed for the synthesis of peptides in immune pathways

[64,65] including components of AMP [66��]. Carbohy-

drates (nectar and honey) provide energy for metabolic

processes associated with innate humoral and cellular

immune reactions, and can provide secondary plant me-

tabolites that have antimicrobial properties [67].

The relationship between nutrition and immunity is

compromised when bees are parasitized by Varroa. Work-

ers that are parasitized during development emerge with

lower protein levels that cannot be raised even if suffi-

cient pollen is available [68]. Varroa-infested pupae also

can have significantly lower protein content, elevated free

amino acid levels, and lower emergence weights than

uninfested pupae suggesting that protein synthesis, and

ultimately growth, are inhibited by Varroa [69].

Recently, nutrigenomic studies have revealed the effects

of both carbohydrate and protein sources on transcrip-

tional profiles of adult bees. Constituents in honey up-

regulate detoxification pathways in the gut [33] and genes

associated with protein metabolism and oxidative reduc-

tion [70]. These effects were not found in other carbohy-

drate sources commonly fed to bees in managed colonies

(e.g., sucrose solution or high fructose corn syrup). Pollen

activates nutrient-sensing and metabolic pathways, and

influences the expression of genes affecting longevity,

immune function, the production of certain AMP [7] and

pesticide detoxification [71]. However, if bees are para-

sitized by Varroa, there is a decrease in protein metabo-

lism, inhibition of certain immunity genes and increased

virus levels that cannot be reversed by pollen feeding.

Thus, there are limitations to the benefits of diet on

immune function in Varroa parasitized bees [7,8,69].

Conclusions and future directions
Honey bee nutrition is one of the most rapidly expanding

research areas in bee biology largely due to colony losses

from malnutrition and the accompanying pathologies.
www.sciencedirect.com 
Though honey bee nutrition has been investigated

for many years, molecular tools and the availability

of the honey bee genome are enabling more compre-

hensive studies on the role of nutrition in honey bee

health. To this end, we suggest several areas for future

investigations. The first is a comprehensive evaluation

of the nutritional value of pollen and nectar within the

context of the nutritional needs of colonies throughout

the year. An underlying assumption in comparing the

nutritional value of pollens and in the development of

protein supplements is that the nutritional needs of

colonies are constant, and the relationship between diet

and immunity is simply driven by energy consumption

rather than specific nutrient blends that are key in

determining an individual’s immune response. Honey

bee colonies go through yearly cycles. Brood production

and colony demographics change throughout the year,

so it is reasonable to assume that so do nutritional

needs. As demonstrated in other insects, diets that

are optimal for growth are not necessarily optimal for

immunity [62��]. Thus, colonies that are building in the

spring may require nutrients geared toward growth

while in the fall when brood rearing is reduced and

colonies are preparing for overwinter confinement,

nutrients needs may be directed at supporting immune

function. Nutritional analyses of pollen collected at

different times of year in combination with nutrige-

nomic studies examining the effects on metabolic and

immune gene expression could broaden our perspective

on the nutritional needs of colonies and how they are

met by the seasonal pollens bees collect.

The second area needing greater study is the role of the

microbiome in nutrient processing and immunity. The

composition of nutrients obtained from food influences

microbial communities in the gut [72,73,74��]. The com-

munities could affect immune function by providing

essential nutrients, inducing host immune responses or

reducing the growth of pathogens [75–79]. While there is

evidence for these benefits in other organisms, the role of

microbial communities as extensions of social and indi-

vidual immune systems has only begun to be explored in

honey bees.

Though improved nutrition can optimize colony growth

and immune responses to virus, Varroa parasitism might

undermine any benefits that nutrition might offer.

Abundant resources stimulate brood rearing and popu-

lation growth throughout the spring and summer. How-

ever, as the colony grows, so does the Varroa

population. In the fall, when less brood is available

the large Varroa population generates high parasitism

rates [13,14,80]. Going into winter, the colony will be

comprised of a majority of adults that were parasitized

during development and harbor virus [5]. Colonies such

as these have high overwintering mortality rates. A final

research area that needs further study is the role of
Current Opinion in Insect Science 2015, 10:170–176
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nutrition on Varroa reproductive success and virus

transmission. If improvements in bee nutrition affect

either of these factors, then the relationship between

nutrition and immunity could be re-established even

when Varroa are present.
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