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1. INTRODUCTION 

It is shown that a pseudo-quasi-metric (p.q. metric) on a set X may be 
equivalently regarded as a distance function function between subsets of X. 
This equivalent definition is generalized to fuzzy set theory where points need 
not have Boolean properties and hence in vhich a naive generalization of a p.q. 
metric is unsatisfactory. Additional axioms are introduced which correspond to 
pseudo-metrics (p. metrics) and metrics in fuzzy set theory. 

We define a uniformity for a metric space on a fuzzy set, using the definition 
of uniformity given by Hutton [l]. Complementing the results of Hutton [l], 
we obtain results on the generation of topologies on fuzzy sets by p.q. metrics. 
Conjugate pseudo-metrics are defined and a pseudo-metric for the fuzzy unit 
interval is given. 

2. PRELIMINARIES 

In the usual set theory, by a set X we mean the quadruple (P(X), n, U, ‘) 

where 9(X) is the power set of X and the operations are those of intersection, 
union and complementation. This is lattice isomorphic to (2X, A, v, ‘) where 
the operations A, v, ’ are defined as follows: 

(A&)(x) = /j&(x) forxEX 

(CA*) (4 = ; w4 for x E X 

h’(x) = hix)’ for x E X. 

The lattice isomorphism is the one which associates a set with its characteristic 
function. The theory of fuzzy sets considers lattices more general than 2 = (0, 11, 
which is a lattice with complement under the usual operations. 
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Throughout this paper (L, A, v, ‘> will be a completely distributive lattice 
with order reversing involution ’ (see Birkhoff [7]), and following the termi- 
nology of [6], it will be called a fuzz. We make Lx into a fuzz by giving it the 
product operations, also denoted by A, v, ‘, of (L, A, v, ‘j. For example, if 
h, , ha E Lx then 

@I A A,) (X) = h,(x) A h(x) for x E X. 

(Lx, A, v, ‘) will be called the fuzz X or the fuzzy set X. If h E Lx, then h(x) 
may be regarded as the degree of membership of x in h. A fuller description of 
fuzzy set theory may be found in Zadeh [2] and Goguen [13]. 

Since (L, A, v, ‘> is a complete lattice, it has least and greatest elements, say 0 
and 1 respectively. If 0 E Lx denotes the map which is everywhere 0 and ifI is 
similarly defined, then these are the least and greatest element of (Lx, A, v, ‘). 

DEFINITION 2.1. A fuzzy topology for X, or a topology for the fuzz X, is a 
pair (Lx, 9) (strictly speaking (Lx, A, v ‘, 7)) where Y C LX and 

(1) 0, 1GF 

(2) 9 is closed under arbitrary supremums 

(3) Y is closed under finite infimums. 

We define open and closed sets and interior and closure operators in the usual 
way. For example, if h E Lx then interior h is: X0 = V{p E Y / p < h}. The pair 
(Lx, 9-J will be called a fuzzy topological space (see Chang [3]). 

3. P. Q. METRICS As DISTANCE FUNCTIONS BETWEEN SETS 

Consider a p.q. metric space (X,p). Let d be a function which assigns to 
each ordered pair (A, B) E 9(X) x 9(X) a value in [0, co]. We would like d 
to give exactly the same information about the p.q. metric topology of p as does p 
itself. 

For all real Y > 0 and for all A E .9(X), we define D,*(A) by 

D,p(A) = 
I 
y / 3a E A such that p(u, y) < r 

1 

= IY I AAP(%Y) -1 . 

Then {D,p(A) 1 Y > 0} is a basis for the neighborhood system of A. It is clear 
that p(x, y) = A{Y 1 y E D,P({x})}. Since it is desirable that d and p agree on 
ordered pairs of singletons, we make the following definition: 

d(A, B) = A{Y 1 B C D,.“(A)>. 
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Then if A, B E P(X)\(@), we have: 

4w=A~aqYl APkw<‘/1 
CZCA 

Hence 

Thus 

4% w = V A ~(a, 4. 
beB aeA 

This function appears in Hausdorff [8] as an intermediate stage in the evolution 
of a metric for spaces of closed bounded sets. It will henceforth be called a 
HausdorfI p.q. metric. 

PROPOSITION 3.1. If d(A,B) = V,,, LA $(a, b) for 4 B c WV\{01 md 
if we define 

Und 

d(A, in) = 0 for A E 9(X) 

d(o, A) = co for AE9(X)\{@‘) 

then the following statements aye valid: 

(Ml) d(ia, A) = co VA E 9’(X)\{ 0 

d(A, A) = 0 VA E P(X) 

d(A, 0) = 0 VA E 9(X). 

(M2) 4% C) < 4% B) + 48 C) VA, B, C E 9(X). 

(M3) (i) A C B =z- d(A, C) > d(B, C) vc E 9(X). 

(ii) d(A, (Jo B,) = V, d(A, B,) for B, E 9(X). 

(M4) Suppose B, C, E 9(X) for all 01 in some index set A. 

Ifd(C,,D)<r~DCBfoyD~9(X),ol~Athend(~,,,C,,E)<y~ECB 
for E E .9(X). 

Proof. (Ml) It is enough to show that for A E Y(X)\{ o}, d(A, A) = 0. 
FixbEA.Then A & d(a, b) < d(b, b) = 0. Hence 

d(A, A) = V A d(u, b) = 0. 
bGA aeA 

409/6911-14 
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(M2) Let A, B, C 6.9’(X). If A, B or C is empty, (M2) follows using 
(Ml). Suppose now that A, B, C E Y(X)\{ D}. Then for all a E A, b E B, c E C 

This is valid for all b E B, giving 

&(a, 4 G $.~(a> b) + W 0, 

so that d(A, C) < d(A, B) + d(B, C). 

(M3) Follows immediately from the definition of d. 

(M4) Let d(uOIEd C’, , E) < r and suppose e E E. 
Since VfEE d(lJaed C, , f) < r it follows that d(uaeo C, , e) = AocU,,-, p(a, e) 

< r. 
Hence there exists a E used C’, such that p(u, e) < Y. 
Suppose a E C, where p E A. 
Then d(C, , e) < Y, so by hypothesis, e E B. This is true for arbitrary e E E, 

which gives EC B as required. 

Remarks. 1. From (Ml) and (M2) it is clear that d is a p.q. metric on 9(X). 

2. In view of (M3), d is contravariant in its first variable and covariant in 
its second. 

3. (M4) is equivalent to: 

Dyp (0 Cm) C u Rp(G) (see Theorem 4.3). 
R ‘2 

4. (M3) (i) may be written in the form of (M3)(ii) as: 

d(UB,A) < /jd(B,,A). 

OL a 

The reverse inequality is not true in general. 
We now show that (Ml)-(M4) completely characterize a Hausdorff p.q. 

metric. 

THEOREM 3.2. If d: Y(X) x ,9(X) - [0, co] then 

(1) 44 B) = VW A... d((u}, {b}) VA, B E 9(X) o d sutis$es (M3) and 
(M4). In which case, 

(2) if p(x,y) = d({xj, {y}) Vx,y E X tken p is a p.q. metric on X -=‘d 
satisfies (Ml) and (M2). 
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PYOOf. 

(1) (a) By Proposition 3.1. (t) In defining D,.r(A) as before and 
Drd(A) = u{B j d(A, B) < Y} then 

since 

Hence 

by (M3) (ii). 

In Theorem 4.3, using (M3)(i) and (M4) it is shown that 

4d(4 = u R”(@>>. 
WA 

Hence 
&d(A) = &P(A). 

In view of (M3)(ii) we have: 

d(A, B) = A {Y 1 B C Drd(A)). 

The proof is given in Theorem 4.5 for a more general case. By the above, 
d(A, B) = A{Y ! B C D,p(A)}. Thus by the reasoning preceding Proposition 3.1, 

44 4 = V A PM @H. 

(2) The proof involves Proposition 3.1. 

COROLLARY 3.3. A map d: P(X) x P(X) -+ [0, co] is a Hausdorff p.q. 
metric $7 d satis$es (Ml)-(M4). 

We now consider a topology for such maps. If d is a map satisfying (Ml)-(M4) 
then (Drd(A) 1 Y E (0, co), A E 9(X)} is a base for a topology on X. The proof is 
given for a more general case in Theorem 4.8. 

As observed in Theorem 3.2, restricting d to ordered pairs of singletons 
gives a p.q. metric, p say. From the proof of Theorem 3.2, we have 

Dyd(A) = &p(A) 

= yA QdW)* 
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The topologies associated with the map d and its restriction p are therefore the 
same. 

COROLLARY 3.4. A topological space is p.q. metrizable isf its topology is that 
associated with a map satisfying (Ml)-(M4). 

Remark. A map satisfying (Ml)-(M4) is an alternative definition of a p-q. 
metric. It is topologically equivalent to the usual definition in the sense of 
Corollary 3.4. We use this equivalence to make the following definition. 

4. P. Q. METRICS ON FUZZY SETS 

DEFINITION 4.1. A p.q. metric on the fuzz X, or a fuzzy p.q. metric on X, 
is a map p: Lx X Lx + [0, c0] satisfying 

(Ml) ~(0, A) = ~0 VA E LX, x f Q, 

P(& h) = 0 VA E LX, 

P(k a) = 0 VA E LX. 

(M2) P(& CL) < P(& x) + P(X, p) VA, xv TV eLX. 

W3) (4 h < CL * P@, x) > P(CL, xl vx E LX. 

(4 P(x, V, 4) = V, P(x, AJ vx, A, E LX. 

(M4) Suppose p, xa E Lx Va E A. 

Ifp(x,,p)<r~P~~forPELX,01Ed,thenp(V,x,,y)<r=>y~~for 
YELX. 

Remark. Kramosil and Michalek [9] h ave defined a fuzzy metric which is not 
related to the above. They consider a metric as a subset of X x X x [0, CD) 
and in making this into a fuzzy set they obtain their fuzzy metric. 

DEFINITION 4.2. For all r E (0, a) let 

D,: Lx --f Lx be defined by 

D&V = V {CL I ~0, P) < r>. 

Then {Or ’ r > 0} will be called the associated neighbourhood maps of p. 

THEOREM 4.3. The following statements are valid for all r E (0, CO). 

(Al) D,(Q) = Q. 

642) A < D,(h). 

643) D,(V,L) = V, D,@d 
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Proof. (Al) and (A2) follow from (Ml) and the definition of Dr. Now 

P(&,P) < 7 -P(VLr) GP(b~PL) by (M3) (ih 
a 

<r 

so that 

Hence 

that is 

BY (M4)> 

Hence 

D, (v 4x) < v WU 
ci OL 

Maps satisfying (A2) and (A3) were introduced in [l] and were further 
considered in [6]. If f: L* -+ Lx satisfies (Al)-(A3) we define its inverse to be 

f-?LX-tLX where f-v) = A {tL If (CL’) G A’). 

It is clear that (Al) is necessary in order that f -l be well defined. (Consider, for 
example, f-l(l)). 

Hutton [I] proved the following result. 

PROPOSITION 4.4. Iff:LX -+ LX satisjes (Al)-(A3) then so does f -l. Further 
if f and g satisfy (Al)-(A3) then: 

f(h) < CL -f -l(tL’) < x’. (1) 
(f-l)-’ = f. (2) 
f <g -f -1 <g-l. (3) 

(f 0 g)-1 = g-1 0 f -1. (4) 

Unless otherwise mentioned, if f satisfies (Al )-(A3), f --I will be used to denote 
the inverse as defined above, rather than the usual function inverse. 
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The following theorem indicates the importance of the neighbourhood maps. 

THEOREM 4.5. If p is a fuzzy p.q. metric on X with associated neighbourhood 
maps (0,. ! r > O> then VA, p ELM, 

P@, CL) = /\ {r I CL G WW. 

Proof. Let f(h, p) = A {Y / p < D,(X)}. Then Vr > p(X, CL), p < D,(h), so 
that f(h, CL) < r. Hence 

f(k cl) G P(A 4. 

Now Vr such that p < D,(X), 

= P (4 v ix I P& x) < I)) 

= V {P@, xl I P@, x) < r> by (M3) (ii) 

< r. 

Hence 

Remark. At the beginning of Section 3 we considered a distance function d 
on a p.q. metric space (X, p) in defining 

d(A, B) = A {r / B C D,p(A)}. 

In the proof of Proposition 3.2 it was shown that DTd(A) = D,P(A). Thus 
Theorem 4.5 shows the consistency with our motivating example. 

PROPOSITION 4.6. If p is a fuzzy p.q. metric with neaihbourhood maps D, , 
then 

D, 0 D, < De, Qr, s > 0. 

Proof. Directly from (M2). 
We now give a partial converse to Theorem 4.5. 

PROPOSITION 4.7. If 9 = (D, / r E (0, 00)) is a family of maps, D,: Lx -+ Lx, 
satisfying (Al)-(A3) and such that Vr, s E (0, co) D, 0 D, < D,,, , then p: Lx x 
Lx -+ [0, 001 dejined by 

P(& p) = A {r I TV < D&W 

is a fuzzy p.q. metric on X. 
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Further its associated neighbourhood maps, E, say, are given by 

4 = v 4, 
S<T 

(i.e. E,.(A) = VScT D,(h) for h EP). 

D Proof. (Ml) f 11 o ows by definition of p and properties (Al) and (A2) of 
T* 

(M2) Let h, x, p E Lx. 
Now VY > p(A, x) Vs > p(x, II) we have 

x < D,(4 and FL G 4(x). 
Hence 

P < D, 0 W) < Dr+&$ 

So by definition of p, p(& P) < r i- s, i.e. P(k P) < P(k x) i- P(x, CL). 

(M3) (i) Let X < CL. Then Vr > p(A x), x d Q.(h), hence x < Q(P) 
by (A3). Therefore p(p, x) < r which gives 

P(PY xl G P(h x)* 

(M3) (ii) Let T > p(~, V, A,). Then 

v A% < DrW 
CI 

=-P 4 < DA4 Vu 

2 P(P> 42) < r VOr 

z- v P(& A,) < r. 
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To show E, = Vs<r D,: 

VP < D,(h), I44 CL) G if 

<s vs > Y, 

* P G -WV vs > Y. 

Hence 

W) G 4N vs > Y, 
or 

w> G E&v vs < Y, 

so that 

v WV G Jfw). 
S<T 

Now VP such that p(X, p) < r, we have p(h, /J) < t for some t < Y. 

Hence 

CL G a(4 

G v Q(4, 
S<T 

that is 

J-m) = v (CL: PG4 PL) < r> 

G v Q&v- 
S<T 

To prove (M4): 
Suppose II, xa E LX Va E A satisfy 

P(xm 9 PI < y * B G P forj?ELX, 0r~A. 

Now if y E LX satisfies p( V, xol , r) < Y, then 

YG(VXa) 

= vi(vxa) , 
s<r o! 

= V v Ddxa) 
s<r u 

= V EAxJ 
d 

<CL by hypothesis. 
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Hutton [l] defined p.q. metrizability in terms of the neighbourhood maps and 
it was further considered in Hutton and Reilly [4]. 

We now consider the topology of the fuzzy p.q. metric space. We have 
anticipated the following result in a comment before Corollary 3.4. 

THEOREM 4.8. If p is a fuzzy p.q. metric on X with associated neaghbourhood 
maps D, , then {D,(h) / h E Lx, Y E (0, co)) is a base for a topology on the fuzz X. 

It will be called the topology of the fuzzy p.q. metric p. 

Proof. It must be shown that the arbitrary supremums of this set, together 
with 0 and 1, form a fuzzy topology. It is enough to prove that for all A, p eLx, 
r, s E (0, co) there exist K, ELX, t, E (0, co) 01 E d for some index set A, such that 

Let K = D,(h) A D,(p). If K = Q, then K = D,(Q). If K # Q, then 

K = V 1x1 I P& XJ < 11 * V {xz I P(P, x2) < s> 

= v v {Xl A x2 I P(h Xl> < y, Ph x2> < 4 

x1 x2 

= V{X,ba 

say, where 

Xa = xq A xu, 

and 

PC4 x013 < YY P(P, XaJ < s* 

Now VCX E A let t, = [y - ~(4 xa,)l A [s - P(P, xa,>l and Km = xII . If p(K, ,q> 
< t, then 

Now 

Hence 

P(x.1 5 ??) + PO9 XaJ < 1. 

BY W2) 

Hence 
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Similarly 

Hence 

Thus Vas4 Dta(K,) < K. Now 

Remark. Since h < DT(X) f or Y E (0, co), D,(X) is indeed a neighbourhood of 
AELX. 

PROPOSITION 4.9. In the topology of thefuzzy p.q. metricp, with nezghbodwod 
UPS D, , 

A = v {x 1 D,(x) < h for some Y > O}. 

Proof. Let T = V {x 1 D,(X) < h for some Y > O}. Now 

A== V{xIx<hxopen) 

= V {D,(K) 1 K ELM, r > 0 and D,(K) < x}. 

If x E Lx satisfies D,(x) < h for some r > 0 then x < D,(x) ,< A. Hence T < A. 
If D,.(K) < h for some K ELM, r > 0 and if p satisfies p(K, CL) < r then there 
exists s E (0, Y) such that p(K, p) < s. Hence p < D,(K). Thus 

Thus 

D,-,(P) < L 0 D,(K) 

< &(K) by Proposition 4.6 

< A. 

LEMMA 4.10. If (Lx, .F) is a fuzzy topological space then 

where 
X = [Int(X)]‘, 

Int(x) = x0. 
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Proof. Int(h’) = V {x 1 x < h’, x E S}. Thus 

[Int(h’)]’ = /\ (x’ 1 x’ > h, x E F-> 

= A {K j K > A, K closed} 

= x. 

THEOREM 4.11. In the fuzzy p.q. metric space (Lx, p, D,> (where all symbols 
have an obvious meaning), 

i = /\ D;‘(h). 
r>o 

Recall that D;l is the inverse in Proposition 4.4). 

Proof. Int(h) = V {K 1 D,(K) < h f or some r > 0} by Proposition 4.9. Thus 
Int(h) = V {K 1 D;‘(X) < K’ some r > 0} by Proposition 4.4. So Int(h) = 
v {K ! K < [0;‘(1\‘)]’ some r > 0} = vr>o [&‘(A’)]‘. By Lemma 4.10, 

= /\ D;‘(h). 
00 

5. FUZZY PSEUDO-METRICS 

DEFINITION 5.1. A fuzzy pseudo-metric (p. metric) on X, or p. metric on 
the fuzz X, is a fuzzy p.q. metric d, with neighbourhood maps D, , satisfying 

D, = 0;’ Vr e (0, 03). (-44) 

Remark. This is equivalent to the usual definition when L = 2. 
Indeed if e is a p.q. metric on X in the usual sense with neighbourhood maps 

D, , i.e. D,(A) = {Y I A,,, e(a, y) < r} (see Section 3), then it is enough to prove 
e(x,y)=e(y,4Vx,yEX 

o D, = 0;’ VY E (0, CQ). 

The proof is as follows: 

K1(W) = n 64 C X I D&V C x\W 

= [u 64 Ix 6 QWI] 
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(3) If e(x, r) = e( y, x) then 

DX.9) = (2 I+, 4 -c rl 

= aw9* 

(x=) If D, = D;l Vr E (0, co), then 

Y E D&4) -=-Y E D;‘(M) 

-=- e(y, x) < r. 
Now 

PROPOSITION 5.2. In a p. metric space (Lx, d, 0,) 

h = A QO) = V {P I d(k PL) = 01. 
T>O 

Prooj. 

Let 

clearly 

Now suppose 

1 = /j D,(h) by Theorem 4.11. 
r>o 

T = V {p I d(k P) = 01. 

T < A WV. 
r>o 

CL < /\ D&9. 
r>o 

Then Vr > 0 p & D,(X), so that 

Hence 

44 CL) d d(h WV) Vr > 0 

==r VY > 0. 

d(h, p) = 0. 
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Thus 

DEFINITION 5.3. Hutton and Reilly [4] h ave defined a fuzzy topological space 
to be R, iff every open set is a supremum of closed sets. 

COROLLARY 5.4. Every fuzzy p. metric space is R, . 

COROLLARY 5.5. DC(X) < V {p / d(h, CL) < r} in a fuzzy p. metric space 
(Lx, d, D,>. Hence 

469 d WV vs > r. 

Proof. 

= A {P I W CL) G r>. 

Remark. The reverse inequality need not hold, even in the usual set theory. 
Consider, for example, a pseudo-metric on a two element set giving the discrete 
topology. 

DEFINITION 5.6. A fuzzy topological space (Lx, S) is normal iff VA, p E Lx 
such that h’, TV E F 3~ E Lx satisfying h < R ,< 17 < CL. 

THEOREM 5.1. Every fuzzy p. metric space (Lx, d, D,> is normal. 

Proof. Let h, p ELM where h = x and p = fi in the pseudo-metric topology. 
x = AT>O D,(h) and h < ~1 give 

= A VW) v ~1. 
T>O 

fi = V {K 1 Dr(K) < TV for some r > 0} 

= Vh I aE4 say, 

where Vor Ed 3, E (0, 00) so that 

Dr,(‘d < CL. 
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Let 

Then 

Now 

X=2 and X<x<p. 

Remark. The proof of this theorem is based on one given by Hutton and 
Reilly [4] where pseudo-metrizability is defined in terms of neighbourhood maps 
(see Remark 1 after Theorem 6.5). 

6. QUASI-UNIFORMITIES ON FUZZY SETS 

Hutton [l] has defined quasi-uniformities on fuzzy sets by considering 
entourages as maps D: Lx + Lx satisfying (Al)-(A3), (see Theorem 4.3). For 
quasi-uniformities in the standard case, i.e. L = 2, see Murdeshwar and 
Naimpally [IO]. 
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If D and E are entourages we require that their “intersection”, written D A E, 
is also an entourage. We define 

DA E:LX+LX 

(D A E) (A) = A (V [D(y) A E(y)]) 
Supr=A ver 

where rCLx. 

Hutton has shown that D A E is the largest of all maps satisfying (Al)-(A3) 
which are bounded above by both D and E. He has further shown that 

and 

(D A E)-l = D-1 A E-l. 

DEFINITION 6.1. Let v be the set of all maps E: Lx +Lx satisfying (Al)- 

(A3). 
A uniformity on the fuzz X is a set 9 C v satisfying 

(Ql) g++ 
@2) DEB > D-IEB 

(Q3) D,EE *DA.&‘E~ 

(Q4) DEN 3 3E~9 such that Eo E < D 

(Q5) DEB, D<EEc~+EE~ 

9 is a quasi-uniformity if (Ql), (Q3), (Q4) and (05) are true. 
The usual definitions of basis and sub-basis will hold. 
The fuzzy topology generated by a quasi-uniformity B is the fuzzy topology 

obtained by taking as interior operator the map Int: Lx -+ Lx defined by 

Int(h) = v {CL E Lx 1 D(p) < X for some D E 9}. 

THEOREM 6.2. If (Lx, p, D,j is a p.q. metric space then 3 = {Or / r E (0, co)} 
is a basis for a quasi-uniformity on the fuzz X. Further, the fuzzy topology of the 
quasi-uniformity is that of the fuzzy p.q. metric space. 

Proof. Clearly 4 # 9 C T. For (Q3) ‘t 1 is enough to prove that VT, s E (0, co) 
3 E (0, co) such that D, < D, A D, . Let t = r A s. Suppose that h, v X, = 
h E Lx. Then 
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However 

which gives the required result. 
LS satisfies (Q4) since D,.,2 0 Dr,2 ,( D, . 
The remainder of the theorem follows by Proposition 4.9. 
We shall now prove results concerning the metrization of uniform spaces. 

LEMMA 6.3. Let U = {U, 1 n E W} C v be a sequence of maps in 9) satisfying 

U&i) := 1 if h#C! 

=o if h = 0, 
and 

u w+1 o U/l+1 o G,,, < o’,, VnEEw. 

Then tkere is a set 9 C v, 9 = {D? / r E (0, oo)}, satisfying 

and 

D, 0 Ds < &+s Vr, s E (0, co) 

Remark. This theorem is just that of Hutton [ 1: Theorem 91. The ppof is 
included here for completeness. 

Proof. VY E (0, co) define a map 4, E v by 

+ = U, if r E [2-hi-l,, 2-9 

or 

Then 
&.=lJ, if r>l. 

4TO4TOT& G42r Vr E (0, co). 

Now VY E (0, co) define a map D, E v by 

D, = v c$, o ..’ 

Clearly +r < D, Vr E (0, CO). 
Further D, < &. Vr E (0, co), since 

tlk > 1 b-1 ,..., rk such that 

4 r1 o *.* 04Tk <4zr. 

Indeed, if k = 1, the statement is trivial. 
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If K > 1, let j be the largest integer satisfying C:=, ri < Y/Z. Then 

By induction 

and 

Hence 

Since 

Thus 

It is clear that 

D, 0 Ds G Di.8 Vr, s E (0, co). 

PROPOSITION 6.4. If U is the sequence of maps in Lemma 6.3, then there exists a 
fuzzy p.q. metric p on X with associated neighbourhood maps E, , satisfying 

U nfl < E,-n G u,-l %z> 1. 

Proof. By Lemma 6.3 and Proposition 4.7. 

THEOREM 6.5 (P.Q. Metrization Theorem). A quasi-uniform space on the 
fuzz X, (Lx, B), is fuzzy p.q. metrizable $9 has a countable base. 

Proof. (a) Trivial. 

(t) If 9 has a countable base, say @ = {U, / n E W} we may rechoose Q 
so as to satisfy the hypothesis of Lemma 6.3, (see for example Pervin [ 111). The 
result follows by Proposition 6.4. 

Remarks. 1. Hutton [l] obtained the following result. (Lx, 9) has a count- 
able base iff 9 has a base {D, 1 T E (0, co)} satisfying 

Q 0 D, < %s Vr, s E (0, 00). 

409/69/l-15 
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This condition was taken to mean fuzzy p.q. metrizability in [l] and [4]. Theo- 
rem 6.5 shows it to be the same as our own definition of p.q. metrizability. 

2. WhenL = 2, i.e. in the usual set theory, we have the well-known result: 
A quasi-uniform space is p.q. metrizable iff the quasi-uniformity has a countable 
base. 

In view of Theorem 6.5, we have for the case L = 2: 
A topological space is p.q. metrizable iff it is fuzzy p.q. metrizable. This is 

just Corollary 3.4. 
We now obtain a result on the generation of topologies by fuzzy p.q. metrics. 

DEFINITION 6.6. Let (Lx, p, 0,) be a fuzzy p.q. metric space and let (Lx, a’> 
be a fuzzy quasi-uniform space. 

Then p is quasi-uniformly lower semicontinuous (q.u.1.s.c.) on (Lx, @) iff 
{DT j Y E (0, a)} C %. 

Remark. We know this is equivalent to the usual definition when L = 2 
(see for example Kelley [12]). 

DEFINITION 6.7. If P = {p,},,A is a set of fuzzy p.q. metrics on the fuzz X, 
then P is said to generate the quasi-uniformity 9 whose sub-base is the set of 
neighbourhood maps of each p, . 

P is called the gage of (Lx, a). 

THEOREM 6.8. Let (Lx, @) be a quasi-uniform space and let P be the set of 
all fuzzy p.q. metrics which are q.u.1.s.c. on (Lx, %>. Then P generates @. 

Proof. Let 9 be the quasi-uniformity generated by P. Then clearly 9 C @. 
To prove the converse, suppose U E a. 

Let 
U,(h) = 1 if h # 0. 

=Q if h = 0, 

and U, = U. 
Define U, E % inductively so that U,,,, 0 U,,, 0 U,,, < U, Vn E W. Then by 

Lemma 6.3, there exists a fuzzy p.q. metricp on X with neighbourhood maps D, 
satisfying U,, < D,-n < U,-, Vn 3 1. Hence p E P and U 3 D,,, . 

Thus U E 9. 
We now prove a symmetric version of Proposition 4.7. 

PROPOSITION 6.9. If 9 = (D? 1 r E (0, co)} is a family of maps D,: LX -Lx 
satisfying (Al)-(A4) such that Vr, s E (0, oo), D, 0 D, < D,,, , then d: Lx x 
Lx -+ [0, co] defined by 

d(A PL) = A {r I CL < WV) 

is a fuzzy pseudo-metric on X, with neighbourhood maps E, = Vscr D, . 
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Proof. Using Proposition 4.7 it remains to prove that E,. = E;l Vr E (0, CO). 
Now 

a D, = (OS’)-’ 

by Proposition 4.4. 
Hence 

VDs+/Dt]_‘> 
8<7 to 

so that 

By Proposition 4.4, this gives E;l < E, , and hence ET = E;l. 
Using this result it is now easy to obtain symmetric versions of Theorems 6.5 

and 6.8. 
We note that if, in Proposition 6.9, ~3 is the basis of a uniformity then the 

uniform topology is that of the pseudo-metric d. This follows since 

R/s < E, < D, vr E (0, co). 

EXAMPLE. Hutton [l] has defined a fuzzy unit interval, [0, l] (L), which 
reduces to the [0, l] when L = 2. He has also defined a uniformity for [0, l] (L). 
It satisfies the hypothesis of Proposition 6.9 and so a fuzzy pseudo-metric may 
be defined on [0, l] (L). By the note above, the fuzzy p-metric topology is that 
of the uniformity on [0, 1) (L). 

7. CONJUGATE Fuzzy P. Q. METRICS 

THEOREM 7.1. Let (Lx, p, D,> be a fuzzy p.q. metric space. Define 
q: Lx x Lx -+ [0, co] by q(h, cl) = A {I 1 p < D;‘(h)}. Then q is a fuzzy p.q. 
metric on X with associated neighbourhood maps {D;l j r E (0, 00)). 

Proof. By Proposition 4.4, {D;l 1 r E (0, oz)} is a family of maps satisfying 
the hypothesis of Proposition 4.7. Hence q is a fuzzy p.q. metric on X with 
associated neighbourhood maps E, = Vscr D;l Vr E (0, co). Now D, < Vs<r D, , 
since 

P@, PL) < r * P(k I.L) < s for some s E (0, r) 

- P < D,@) < V W). 
8<7 
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Hence 

D, < i,/ D, . 
a<1 

NOW 
Vs < r D, < Dr. 

Hence D;l < D;l by Proposition 4.4 

.*. V Db’ < D,l, so that E, < 0;‘. 
s<r 

The reverse inequality is also true since 

X1 < E, vs < Y. 

Hence D, = (D;‘)-l < E$ Vs < r. Thus Vscr D, < E;l, so that D, < E;l by 
the above. Hence D;l < ET by Proposition 4.4. 

DEFINITION 7.2. The fuzzy p.q. metric q is said to be the conjugate of p. 

PROPOSITION 7.3. In the fuzzy p.q. metric space (LX, p, 0,) 

x = v {P I !a PI = 01. 

Proof. From Proposition 4.11, 

1 = A D,‘(h). 
r>o 

Now 

Thus 

D;‘@) = v {CL I dk CL) < r>. 

1 = A v {CL I !I@, EL) < rl 
T>O 

Conversely, if 

then 

so that 

Thus 

2 v i/J I q(k PI = 01. 

x < D,%9 Vr E (0, oo), 

6 x) G r VT E (0, a), 

q(k x) = 0. 

x < v {P I q(k CL) = 01. 
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Hence 

Proposition 5.2 is the special case of Proposition 7.3 when p = q. 
If p and q are conjugate p.q. metrics in the usual sense then the map d defined 

by d(x, y) = p(x, y) v q(x, y) is a pseudo-metric in the usual sense. The next 
result generalizes this method. 

PROPOSITION 7.4. If (Lx,p, D,j and (Lx, q, D;‘) are conjugate fuzzy p.q. 
metrics then (Lx, d, E,) is a fuzzy pseudo-metric wh.e7e E, = Vscr (D,% A D$) and 

Proof. Since {DT A D;l i I E (0, CO)} satisfy (Al)-(A4) it is enough to show 
that (D, A D;l) 0 (OS A D;‘) < D,.,, A D;& and then to apply Proposition 6.9. 

Now 

Similarly 

(D, A D;‘) o (OS A 0,‘) < D, 0 D, < D,,, . 

(D, A D,l) 0 (OS A D,l) < D& . 

Since Dr+ A D& is the largest map satisfying (Al)-(A3) which is smaller than 
both D,,, and D;:, , it is evident that 

(Or A D;l) 0 (OS A 0;‘) < Drfs A D;;, . 

Remark. When L = 2, the fuzzy pseudo-metric d satisfies 

4&4! lY1) = P(W {YH v Q({4, {YH vx,yex. 

Indeed, since (D, A D;l) (A) = D,(A) A D;l(A) when L = 2, we have 

d(M (~1) = A P I Y E WW n DX4)) 

= A {r I P(b>, (~1) < y and d{4 {Y>) < ~1 

= PW {YH v 4({41 {YD 

8. FUZZY METRICS 

DEFINITION 8.1. A fuzzy pseudo-metric (Lx, p, 0,) is a fuzzy metric if it 
satisfies 

VA E LX, 
(A 1 D, (4 = 4 645) 
r>o 
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where A ,.>” D,: Lx 4Lx is the largest map satisfying (Al)-(.43) and 

iA 1 D, (4 < WV vs E (0, 02). 
T>O 

From Hutton [l], 

CA 1 Dr (4 = A v A D&4 where TCLX 
T>O supr=n ver r>o 

= A V 7 by Proposition 5.2. 
supr=n ver 

Hence (A5) becomes 

A= A Vr VA E LX. 
supi-=h YEI- 

Remarks. 1. When L = 2, this is equivalent to 

A = U {xl VACX, 
XEA 

b45)’ 

or 

{x) = F] vx E x, 

which is the usual condition for a pseudo-metric, d, to be a metric since 

{x> = {y I 4x, Y) = 0). 

2. Murdeshwar and Naimpally [lo] give the condition for a quasi- 
uniform space (in the usual sense), (X, %?), to be T, as: 

A = n{ CT C’ E 4’) 

where A is the diagonal in X x X. 

3. (A5) is equivalent to: 
The identity on LX is the largest map f satisfying (Al)-(A3) such that 

This follows by Proposition 5.2. 

DEFINITION 8.2. A fuzzy topological space is To, according to [4], if every 
fuzzy set h E LX may be written as the union and intersection of closed and open 
sets. 

I.e. h = Aiisl VjsJE pij where pii is either open or closed, for all i, j. 
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PROPOSITION 8.3. Every fuzzy metric space is T,, . 

Proof. From (A5)‘. 

Remark. I have not been able to show that every T,, fuzzy pseudo metric 
space is a fuzzy metric space. It is possible that (A5) should be weakened. I have 
also been unable to show that the fuzzy pseudo-metric on [0, l] (L) in the 
example of Section 6 is a fuzzy metric, or even that it is T, . 

9. FUZZY POINTS 

Wong [5] has introduced the concept of fuzzy points, 

DEFINITION 9.1. A fuzzy point in the fuzz X is a fuzzy set u EL* such that 
there exist y,, EL, x,, E X satisfying 

u(x) = y. if x = x0 
zzz 0 if x # x0 * 

This definition differs from Wong’s in that he required y. E L\{O, 1). 
If u is a fuzzy point, we shall write u = (x0 , yo). If X E Lx then h = VIEX A, 

where X, = (x, X(x)). 
A naive generalization of a p.q. metric is as follows, where 9 denotes the fuzzy 

points of the fuzz X. 

DEFINITION 9.2. A naive p.q. metric on the fuzz X is a map 

p: 9 X B + [0, co] satisfying 

(Ml)* p(u, u) = 0 VUEP. 

P’W* P@, 4 d ph v) + p(v, 4 Vu, vu, TJ E 9. 

We may extend p to Lx x Lx by defining 

and 

As in Proposition 3.1, (Ml)* * (Ml) and (M2)* * (M2). In general (M3) 
and (M4) do not hold. The reasoning in Proposition 3.1 which gives (M3) and 
(M4) when L = 2, does not hold since there may exist fuzzy points (x0 , hi) and 
(x0 , ha) with h, , X, , 0 all distinct. 
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Now (M3)(i) and (M4) are used to prove condition (A3) of Theorem 4.3 and 
(M3)(ii) gives Theorem 4.5. These two fundamental results have allowed us to 
parallel the usual theory of metrics. In particular we are able to consider a 
metric space as a special uniform space. 

We conclude that Definition 9.2 is too general for the development of a 
satisfactory theory of fuzzy metric spaces. 
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