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A theorem of Scott gives an upper bound for the normalized
volume of lattice polygons with exactly i > 0 interior lattice points.
We will show that the same bound is true for the normalized
volume of lattice polytopes of degree 2 even in higher dimensions.
In particular, there is only a finite number of quadratic polynomials
with fixed leading coefficient being the h∗-polynomial of a lattice
polytope.
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1. Introduction

An n-dimensional lattice polytope P ⊂ Rn is the convex hull of a finite number of elements of Zn .
In the following, we denote by Vol(P ) = n!vol(P ) the normalized volume of P and call it the volume
of P . By Π(1) := Π(P ) ⊂ Rn+1, we denote the convex hull of (P ,0) ⊂ Rn+1 and (0, . . . ,0,1) ∈ Rn+1,
which we will call the standard pyramid over P . Recursively we define Π(k)(P ) = Π(Π(k−1)(P )) for
all k > 0. �n will denote the n-dimensional basic lattice simplex throughout, i.e. Vol(�n) = 1. If two
lattice polytopes P and Q of the same dimension are equivalent via some affine unimodular transfor-
mation, we will write P ∼= Q . The k-fold of a polytope P will be the convex hull of the k-fold vertices
of P for every k � 0.

Pick’s formula gives a relation between the normalized volume, the number of interior lattice
points and the number of lattice points of a lattice polygon, i.e. of a two-dimensional lattice polytope:
Vol(P ) = |P ∩ Z2| + |P ◦ ∩ Z2| − 2. Here P ◦ means the interior of the polytope P .

In 1976 Paul Scott [10] proved that the volume of a lattice polygon with exactly i � 1 interior
lattice points is constrained by i:

Theorem 1 (Scott). Let P ⊂ R2 be a lattice polygon such that |P ◦ ∩ Z2| = i � 1. If P ∼= 3�2 , then Vol(P ) = 9
and i = 1. Otherwise the normalized volume is bounded by Vol(P ) � 4(i +1). According to Pick’s formula, this
implies |P ∩ Z2| � 3i + 6 and |P ∩ Z2| � 3

4 Vol(P ) + 3.
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Besides Scott’s proof, there are two proofs by Christian Haase and Joseph Schicho [5]. Another
proof is given in [15].

Our aim is to generalize Scott’s theorem. Therefore we need to introduce another invariant, the
degree of a lattice polytope: It is known from [4,11,12] that h∗

P (t) := (1− t)n+1 ∑
k�0 |kP ∩Zn|tk ∈ Z[t]

is a polynomial of degree d � n. This number is described as the degree of P and is the largest number
k ∈ N such that there is an interior lattice point in (n + 1 − k)P (cf. [2]). The leading coefficient of
h∗

P is the number of interior lattice points in (n + 1 − d)P and the constant coefficient is h∗
P (0) = 1.

Moreover the sum of all coefficients is the normalized volume of P and all coefficients are non-
negative integers by the non-negativity theorem of Richard P. Stanley [11].

It is easy to show that the h∗-polynomial of P and Π(P ) are equal. So P and Π(P ) have the same
degree and the same normalized volume, which is the sum of all coefficients of the h∗-polynomial.
Moreover∣∣((n + 2 − d)Π(P )

)◦ ∩ Zn+1
∣∣ = ∣∣((n + 1 − d)P

)◦ ∩ Zn
∣∣.

Scott’s theorem shows that the normalized volume of a two-dimensional lattice polytope of degree 2
with exactly i > 0 interior lattice points is bounded by 4(i + 1), except for one single polytope: 3�2.
We generalize this result to the case of n-dimensional lattice polytopes of degree 2.

Theorem 2. Let P ⊂ Rn be an n-dimensional lattice polytope of degree 2. If P ∼= Π(n−2)(3�2), then
Vol(P ) = 9, |P ∩ Zn| = 8 + n and |((n − 1)P )◦ ∩ Zn| = 1. Otherwise the following equivalent statements
hold:

(1) Vol(P ) � 4(i + 1),
(2) b � 3i + n + 4,
(3) b � 3

4 Vol(P ) + n + 1,

where b := |P ∩ Zn| and i := |((n − 1)P )◦ ∩ Zn| � 1.

The following theorem of Victor Batyrev [1] motivates our estimation of the normalized volume of
a lattice polytope of degree d:

Theorem 3 (Batyrev). Let P ⊂ Rn be an n-dimensional lattice polytope of degree d. If

n � 4d

(
2d + Vol(P ) − 1

2d

)
,

then P is a standard pyramid over an (n − 1)-dimensional lattice polytope.

There is a recent result by Benjamin Nill [8] which even strengthens this bound:

Theorem 4 (Nill). Let P ⊂ Rn be an n-dimensional lattice polytope of degree d. If

n �
(
Vol(P ) − 1

)
(2d + 1),

then P is a standard pyramid over an (n − 1)-dimensional lattice polytope.

Jeffrey C. Lagarias and Günter M. Ziegler showed in [7] that up to unimodular transformation there
is only a finite number of n-dimensional lattice polytopes having a fixed volume. From Theorem 3 or
Theorem 4 follows

Corollary 5 (Batyrev). For a family F of lattice polytopes of degree d, the following is equivalent:

(1) F is finite modulo standard pyramids and affine unimodular transformation.
(2) There is a constant Cd > 0 such that Vol(P ) � Cd for all P ∈ F .
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Conjecture 6 (Batyrev). Let P be a lattice polytope of degree d with exactly i � 1 interior lattice points in its
(dim(P ) + 1 − d)-fold. Its normalized volume Vol(P ) can then be bounded by a constant Cd,i , only depending
on d and i. The finiteness of lattice polytopes of degree d with this property up to standard pyramids and affine
unimodular transformation follows from Theorem 3.

Theorem 2 proves Conjecture 6 in the case d = 2.

Corollary 7. Up to affine unimodular transformations and standard pyramids there is only a finite number of
lattice polytopes of degree 2 having exactly i � 1 interior lattice points in their adequate multiple.

This follows from Theorems 2 and 3.

Corollary 8. There is only a finite number of quadratic polynomials h ∈ Z[t] with leading coefficient i ∈ N,
such that h is the h∗-polynomial of a lattice polytope.

This follows from Theorem 2 and the fact that all coefficients of h∗
P are positive integers summing

up to Vol(P ).
In the remaining part of the paper we prove Theorem 2.

2. Preparations

The formula of Pick can be easily generalized for higher dimensional polytopes of degree 2 using
their h∗-polynomial. This shows that statements (1)–(3) in Theorem 2 are equivalent.

Lemma 9. An n-dimensional lattice polytope of degree 2 has normalized volume Vol(P ) = b + i − n, where
b := |P ∩ Zn| and i := |((n − 1)P )◦ ∩ Zn|.

Proof. The normalized volume of P can be computed by adding the coefficients of the h∗-polynomial
of P . Recall that h∗

1 = b − n − 1. Consequently Vol(P ) = 1 + (b − n − 1) + i. �
Let s ⊂ P be a face of P . By st(s) = ⋃

F , we denote the star of s in P , where the union is over all
faces F ⊂ P of P containing s.

Lemma 10. Let P be an n-dimensional lattice polytope of degree 2 and s ⊂ P a face of P having exactly j > 0
interior lattice points in its (n − 2)-fold:

(
(n − 2)s

)◦ ∩ Zn = {x1, . . . , x j}.
Moreover, we suppose

z := ∣∣P \ st(s) ∩ Zn
∣∣ � 1.

Then 0 < j + z − 1 � |((n − 1)P )◦ ∩ Zn|.

Proof. Given non-empty finite sets A, B ⊂ Zn , there is the following well-known inequality:

|A + B| � |A| + |B| − 1.

This is a special case of Kneser’s addition theorem [6] or Theorem 5.5 in [14].
The claim follows by applying this inequality to A := {x1, . . . , x j} and B := P \ st(s) ∩ Zn , since

A + B ⊆ ((n − 1)P )◦ ∩ Zn . �
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3. Proof of the main theorem

For the proof recall that a Lawrence polytope L is a lattice polytope projecting along an edge onto
an (n − 1)-dimensional basic simplex, i.e.

L ∼= conv(0,h1e1, el, el + hle1: 2 � l � n),

where {e1, . . . , en} should denote a lattice basis of Zn . The numbers h1, . . . ,hn ∈ N are called the
heights of L.

If n = 2, then Theorem 2 is equal to Scott’s Theorem 1. So let n > 2.
The monotonicity theorem of Stanley [13] says that the degree of every face of a polytope is not

greater than the degree of the polytope itself. In particular this is true for every facet. So we will
distinguish the two cases that there is a facet of P having degree 2 or there is not.

For the second case we need a result of Victor Batyrev and Benjamin Nill. They proved in [2] that
every n-dimensional lattice polytope of degree less than 2 either is equivalent to a pyramid over the
exceptional lattice simplex 2�2 or it is a Lawrence polytope.

Case 1. There is a facet F ⊂ P of P having degree two, i.e.∣∣((n − 2)F
)◦ ∩ Zn

∣∣ = j � 1.

Define z := |P \ F ∩ Zn|. From Lemma 10 we get z + j − 1 � i. Thus, by induction, we get, if F �

Π(n−3)(3�2),∣∣P ∩ Zn
∣∣ = ∣∣F ∩ Zn

∣∣ + ∣∣(P \ F ) ∩ Zn
∣∣ � 3 j + n − 1 + 4 + z

= 3( j + z − 1) − 2z + 2 + n + 4
z�1
� 3i + n + 4.

Otherwise F ∼= Π(n−3)(3�2) and again by induction and Lemma 10: |F ∩ Zn| = (n − 1) + 8, z � i and
so |P ∩ Zn| = n − 1 + 8 + z � i + 7 + n. This term is smaller than 3i + n + 4 if i � 2. If i = 1 however,
we get

n + 8 �
∣∣P ∩ Zn

∣∣ = n + 7 + z � i + 7 + n = 8 + n,

so |P ∩ Zn| = 8 + n and Vol(P ) = 9 by Lemma 9. In this case P ∼= Π(n−2)(3�2) because Vol(F ) = 9
and F ∼= Π(n−3)(3�2).

Case 2. Every facet F of P has degree deg(F ) � 1.
Let y be an edge of P having the maximal number of lattice points; its length will be denoted

by h1, i.e. h1 = |y ∩ Zn| − 1. Among all 2-codimensional faces of P containing y, s should be the
face having the maximal number of lattice points. We will denote by F1 and F2 the two facets of P
containing s.

Again the monotonicity theorem of Stanley [13] implies deg(s) � deg(F1) = 1. Similarly to Case 1,
we will denote by z := |P \ {F1 ∪ F2} ∩ Zn| the number of lattice points of P not in F1 and F2.

By the result of Victor Batyrev and Benjamin Nill [2] we find that the facets F1 and F2 are either
(n − 1)-dimensional Lawrence polytopes or pyramids over 2�2.

(A) F1 and F2 are Lawrence polytopes with heights h(k)
1 ,h(k)

2 , . . . ,h(k)
n−1 ∀k ∈ {1,2}, where we assume

that h(1)

l = h(2)

l = hl ∀l ∈ {1, . . . ,n − 2},

s = conv(0,h1e1, el, el + hle1: 2 � l � n − 2),

where {e1, . . . , en−2, e(k)
n−1} should denote a lattice basis of lin(Fk) ∩ Zn such that Fk = conv(s, e(k)

n−1,

e(k)
n−1 + h(k)

n−1e1) for k ∈ {1,2}. Since the degree of the Lawrence prism s is at most one, we obtain

∣∣((n − 2)s
)◦ ∩ Zn

∣∣ = Vol(s) − 1 =
(

n−2∑
hl

)
− 1.
l=1
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We may assume z = |(P \ {F1 ∪ F2}) ∩ Zn| �= 0 because otherwise P would be a prism over the face
P ∩ {X1 = 0}, which is an (n − 1)-dimensional lattice simplex of degree at most 1, whose only lattice
points are vertices. By [2] this is a basic simplex and hence P is a Lawrence polytope. Consequently
deg(P ) < 2, a contradiction. We have to distinguish the following two cases:

(i) |((n − 2)s)◦ ∩ Zn| � 1.

Because of Lemma 10, we get the estimation

z +
((

n−2∑
l=1

hl

)
− 1

)
− 1 � i.

In particular, h1 � i + 1. So we can bound the number of lattice points of P :∣∣P ∩ Zn
∣∣ = ∣∣(F1 ∪ F2) ∩ Zn

∣∣ + z = ∣∣s ∩ Zn
∣∣ + h(1)

n−1 + 1 + h(2)
n−1 + 1 + z

=
n−2∑
l=1

hl + (n − 2) + h(1)
n−1 + h(2)

n−1 + 2 + z � i + n + 2h1 + 2

h1�i+1
� i + n + 2(i + 1) + 2 = 3i + n + 4.

(ii) |((n − 2)s)◦ ∩ Zn| = 0.

In this case, s has degree zero, so it is a basic simplex. Our assumption on s implies that every
lattice point of P is a vertex. If n = 3, then Howe’s theorem [9] yields that P has at most 8 vertices,
therefore |P ∩ Zn| � 8 < n + 4 + 3i. So let n � 4.

In that case, since every 2-codimensional face is a simplex and every facet is a Lawrence prism,
we see that P is simplicial, i.e. every facet is a simplex. We may suppose that P is not a simplex. Let
S be a subset of the vertices of P such that the convex hull of S is not a face of P . Then the sum
over the vertices of S is a lattice point in the interior of |S| · P . Since the degree of P is two, this
implies |S| � n − 1. In other words, every subset of the vertices of P that has cardinality at most n − 2
forms the vertex set of a face of P , i.e. P is (n − 2)-neighbourly. As is known from [3], a polytope of
dimension n that is not a simplex is at most � n

2 
-neighbourly. Therefore n − 2 � n
2 . This shows n = 4.

Let f j � 0 be the number of j-dimensional faces of P . Since P is a 2-neighbourly simplicial 4-

dimensional polytope we get f1 = ( f0
2

)
and f2 = 2 f3. Since the Euler characteristic of the boundary of

P vanishes, i.e. f0 − f1 + f2 − f3 = 0, we deduce f3 = f0( f0−3)
2 . Let D denote the set of subsets � of

the vertices of P such that � has cardinality three but � is not the vertex set of a face of P . Therefore,
|D| = ( f0

3

)− f2 = f0(
( f0−1)( f0−2)

6 −( f0 −3)). Since |{(e,�): e is an edge of P , � ∈ D, e ⊂ D}| = 3|D|,
double counting yields that there exists an edge e of P that is contained in at least 3|D|

f1
many

elements � ∈ D. Therefore, any such � contains one vertex that is not in the star of e, and hence
Lemma 10 yields

i � 3|D|
f1

= f0 − 2 − 6
f0 − 3

f0 − 1
� f0 − 8.

Thus, |P ∩ Zn| = f0 � 8 + i < n + 4 + 3i.

(A′) F1, F2 and s are Lawrence polytopes that have no common projection direction.
Without loss of generality let F1 and s have two different projection directions. If s contains an

edge of length at least 2, then this has to be a common projection direction with F1, because s and F1
are Lawrence prisms. But this is a contradiction. Hence, all lattice points in s are vertices. In particular,
y has length one, so also all lattice points of P are vertices.

Since any of the two different projection directions of the Lawrence prism s maps a four-gon face
onto the edge of an unimodular base simplex and two edges of the four-gon give the projection
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direction, we see that there is at most one four-gon face in s. Therefore, s contains at most (n − 2) +
2 = n lattice points.

Since Fk contains at most two vertices not in s for k ∈ {1,2}, we get |(F1 ∪ F2) ∩ Zn| � n + 4 <

n + 4 + 3i. Therefore we may assume z := |P \ (F1 ∪ F2) ∩ Zn| �= 0.
If |((n − 2)s)◦ ∩ Zn| = 0, then we will proceed exactly like in case (ii) from (A). So let j :=

|((n − 2)s)◦ ∩ Zn| � 1.
Because of Lemma 10, we get the estimation z + j − 1 � i, in particular z � i. Hence we can bound

the number of lattice points of P :∣∣P ∩ Zn
∣∣ = ∣∣(F1 ∪ F2) ∩ Zn

∣∣ + z � n + 4 + i < 3i + n + 4.

(B) F1 is a Lawrence polytope with the heights h1 � h2 � · · · � hn−1, F2 ∼= Π(n−3)(2�2).
Here

s = conv(0,h1e1, el, 2 � l � n − 2)

and h1 = 2, h2 = · · · = hn−2 = 0, because s is contained in the simplex F2. If z = |P \{F1 ∪ F2}∩Zn| = 0,
then ∣∣P ∩ Zn

∣∣ = ∣∣F2 ∩ Zn
∣∣ + ∣∣F1 \ F2 ∩ Zn

∣∣ = 6 + (n − 3) + hn−1 + 1

hn−1�h1=2
� 4 + n + 2 < 3i + n + 4.

Otherwise if z � 1, we obtain just like in (A) 0 < z + (h1 − 1) − 1 � i. Therefore∣∣P ∩ Zn
∣∣ = ∣∣(F1 ∪ F2) ∩ Zn

∣∣ + z = ∣∣s ∩ Zn
∣∣ + (hn−1 + 1) + 3 + z

= h1 + (n − 2) + (hn−1 + 1) + 3 + z � i + 4 + hn−1 + n
hn−1�h1=2

� 3i + n + 4.

(C) F1 ∼= F2 ∼= Π(n−3)(2�2).
Here either s is a pyramid over 2�1 or s ∼= Π(n−4)(2�2). Again h1 = 2.
If z = |P \ {F1 ∪ F2} ∩ Zn| = 0, then∣∣P ∩ Zn

∣∣ = ∣∣F2 ∩ Zn
∣∣ + ∣∣F1 \ F2 ∩ Zn

∣∣ � 6 + (n − 3) + 3 < 3i + n + 4.

Otherwise if z � 1, we obtain z � i because of |((n − 2)s)◦ ∩ Zn| � 1 and Lemma 10. So as a result∣∣P ∩ Zn
∣∣ = ∣∣F1 ∩ Zn

∣∣ + ∣∣F2 \ F1 ∩ Zn
∣∣ + z � (6 + n − 3) + 3 + z = n + z + 6

� n + i + 6 � n + 3i + 4.

This completes the proof. �
Remark 11. In [12], Stanley shows that the coefficients of h∗

P also appear in the polynomial
(1 − t)n+1 ∑

k�0 |(kP )◦ ∩ Zn|tk ∈ Z[t]. So we can also compute the coefficients of h∗
P in a different

way than in Lemma 9. Then it is easy to show that the bounds of Theorem 2 are also equivalent to
the following estimations:∣∣(nP )◦ ∩ Zn

∣∣ � (n + 4)i + 3,∣∣2P ∩ Zn
∣∣ � (4 + 3n)(i + 1) + n(n + 3)

2
.
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