
Theoretical Computer Science 112 (1993) 53-97

Elsevier

53

A sheaf-theoretic approach
to pattern matching and related
problems

Yellamraju V. Srinivas

Ahstraci

Srinivas, Y.V., A sheaf-theoretic approach to pattern matching and related problems, Theoretical

Computer Science 112 (1993) 53-97.

We present a general theory of pattern matching by adopting an extensional, geometric view of

patterns. Representing the geometry of the pattern via a Grothendieck topology, the extension of the

matching relation for a constant target and varying pattern forms a sheaf. We derive a generalized

version of the Knuth-Morris-Pratt string-matching algorithm by gradually converting this exten-

sional description into an intensional description, i.e., an algorithm. The generality of this approach

is illustrated by briefly considering other applications: Earley’s algorithm for parsing, Waltz filtering

for scene analysis, matching modulo commutativity, and the n-queens problem.

Contents

The geometry of matching
1.1. The Knuth-Morris-Pratt algorithm

1.2. Outline
1.3. Background
Topologies, sites, sheaves
2.1. Sites
2.2. Sheaves
A specification for pattern matching

3.1. The specification

Derivation of a pattern-matching algorithm

4.1. Decomposmg the pattern ._.
4.2. Decomposing the target

4.3. Building occurrence arrows from pieces

4.4. The abstract pattern-matching problem
4.5. Enumerating compatible families
4.6. Decomposition of covers

54

55

56

56

57

57

59

63

64

66

66

67

68

68

70

71

Correspondence to: Y.V. Srinivas, Kestrel Institute, 3260 Hillview Avenue, Palo Alto, CA 94304, USA.
Email: srinivas(Z kestrel.edu.

0304-3975/93/$06.00 c 1993-Elsevier Science Publishers B.V. All rights reserved

54 Y. V. Srinicas

4.7. Building compatible families from pieces

4.8. An incremental algorithm

4.9. Improving the incremental algorithm

4.10. Generation of elementary occurrences

4.11. Matching the pattern against itself

4.12. Computing the pattern-pattern-functor

4.13. An algorithm using subsumption

4.14. Instantiation for strings

5. Related algorithms

5.1. Multiple patterns

5.2. Patterns with variables

5.3. Commutative/associative matching

5.4. Nonlocal properties, approximate matching

5.5. Context-free parsing: Earley’s algorithm

5.6. Constraint propagation: Waltz filtering

5.7. Enumerating functions

5.8. The n-queens problem

6. Concluding remarks

6.1. In defense of abstract nonsense

6.2. Why Grothendieck topologies?

Appendix. A formal basis for KMP-style algorithms

Acknowledgment

References

73

74

77

79

80

81

82

83

86

86

86

87

81
88

90

90

91

92

93

93

94

96

96

1. The geometry of matching

The pattern-matching problem consists of finding occurrences of a pattern in

a target. A pattern is usually given by a constant entity (e.g., the string “Charlie”), an

exemplar (e.g., the expression E x E + E, with the variable E matching any expression),

or, in general, a predicate (e.g., a connected graph with a prime number of edges).

A target consists of an entity which is usually much larger than the pattern ~ hence,

the possibility of multiple occurrences of the pattern ~ and which may spread out in

space and time. Corresponding to the patterns above, some possible targets are a file

representing a document, a syntax tree produced during compilation, and a graph

representing a network. Usually, the pattern and the target are the “same kind” of

entities: strings, graphs, bitmaps, etc. An occurrence is a piece of the target together

with a correspondence with the pattern. If the pattern is a constant, this piece of the

target should be the same as the pattern; if the pattern is an exemplar, the piece should

have the same shape as the pattern; if the pattern is a predicate, the piece should satisfy

the predicate.

Pattern matching in graphs, and in any data structure more complex than graphs, is

NP-complete. However, in most practical situations, and when data structures such as

strings and trees are used, more efficient algorithms are possible. In particular,

occurrences of a constant pattern string in a target string can be enumerated in linear

time, as shown by the Knuth&Morris+Pratt string-matching algorithm 1221 (hereafter

abbreviated as KMP). This algorithm uses some clever tricks to achieve this bound.

Pattern matching and related problems 55

partial occurrences

a

‘\ /\
pattern

‘\ b -c \\
‘\

‘\
‘\ occurrence
,

8’ I arrow
2’

,’
.’

,’
‘Td_;-e

\ / \ / target
b - c

Fig. 1. Anatomy of an occurrence: example with graphs

In this paper, we will analyze this algorithm by providing a derivation of a generalized

version of the algorithm which works for any data structure (but not necessarily in

linear time).

In generalizing KMP to data structures- other than strings, the feature which

acquires prominence is the piecing together of an occurrence from partial occurrences.

We show an example of this phenomenon, using graphs, in Fig. 1: an occur-

rence arrow p-+t is obtained by gluing together smaller arrows pi-‘tj. The

notion of building an occurrence arrow by “gluing” together or “sewing” to-

gether smaller arrows has a decidedly geometric flavor. The rest of this paper is de-

voted to formalizing and exploiting this geometric nature of the pattern-matching

problem.

KMP has been generalized to data structures other than strings, such as trees

[20,9], and two-dimensional arrays [3, 71. However, these generalizations are ad hoc

in the sense that they do not provide a systematic way of obtaining a version of KMP

for other data structures. This lack of generality arises from the lack of focus on the

geometry of the problem.

1.1. The Knuth-Morris-Pratt algorithm

The KMP algorithm [22] is a fast pattern-matching algorithm for finding occur-

rences of a constant pattern in a target string. It is linear in the sum of the sizes of the

pattern and the target strings. KMP reduces the complexity of the naive algorithm for

string matching (check for a match at every position in the target string) by avoiding

comparisons whose results are already known (from previous comparisons). In

particular, given a character mismatch after the pattern is partially matched, the next

possible position in the target where the pattern can match can be computed by using

the knowledge of the partial match. This “sliding” of the pattern on a mismatch is the

most well-known aspect of KMP. We show below an example where there is

56 Y. V. Srinivas

a mismatch at the last character of the pattern and the pattern can be slid three

positions to the right:

pattern ahcaba

target abcahcahc

matches \ \ v x x x

slide - uhcaba
The amounts by which to slide the pattern on possible mismatches can be precom-

puted in time proportional to the size of the pattern. Thus, all occurrences can be

enumerated in a single left-to-right scan of the target string without backing up.

The table assigning the amount of sliding to each mismatch is called the failure

function. We attack the problem of rigorously deriving such a function from a speci-

fication of pattern matching. There are several derivations of KMP in the literature

[12, 8, 38, 25, 271. However, all these derivations consider only pattern matching on

strings. It is not apparent how to generalize these derivations because they crucially

depend on properties of strings. We follow a more general approach of describing

a match in terms of sub-matches; this description depends only on the geometry of the

underlying data structure. We also explain the failure function as an instance of

backtracking, a general strategy for searching.

1.2. Outline

In Section 2, we give definitions and examples of topologies and sheaves. In

Section 3, we characterize the extension of the occurrence relation as a sheaf. In

Section 4, we derive a generalized version of KMP starting from an occurrence sheaf.

In Section 5, we show that the same derivation provides explanations for a variety of

other algorithms. The appendix is devoted to results from category theory and sheaf

theory, which form the formal basis of the derivation.

1.3. Background

The reader is assumed to have a working knowledge of category theory. The level of

category theory required for a thorough understanding of the formal basis of the

derivation in this paper precludes a short introduction here. However, the derivation

of the pattern-matching algorithm can be understood at an intuitive level, by thinking

of a category as a partially ordered collection of entities, a set-valued functor (and also

a sheaf) as a multifunction, and a natural transformation as an indexed family of

maps. We will extensively use natural transformations to represent compatible fami-

lies of partial occurrences.

Relevant concepts of category theory can be found in mathematics textbooks [23,

17, 301 or computer-science-oriented introductions to category theory [28,29,5]. The

notation used in this paper closely follows that used by Mac Lane [23].

Pattern matching and related problems 57

2. Topologies, sites, sheaves

We formalize the geometry of patterns via Grothendieck topologies, which are

more suited than general topology (point-set topology) to the finite structures which

arise in computer science.’ Normally, a topology is a collection of open sets which is

closed under arbitrary unions and finite intersections. A Grothendieck topology is

a generalization in which the poset of open sets is replaced by a category. The

topology itself is captured in the notion of a “cover,” which is a generalization of open

covers. The definitive reference for Grothendieck topologies and sheaf theory is SGA4

[2, Exposes I-IV]. Several other books have brief descriptions [16, 24, 30, 4, 211.

2.1. Sites

Definition 2.1 (Sieve). A sieve S on an object a in a category %? is a collection of arrows

with codomain a which is closed under right composition, i.e., iff: b+a is in S, then for

any arrow g : c-b, the composite f 0 g : c+a is in S.

Definition 2.2 (Grothendieck topology). A Grothendieck topology J on a category %? is

an assignment to each object a of 97, a set J(a) of sieves on a, called covering sieves (or

just covers), satisfying the following axioms:

(1) Identity cover. For any object a, the maximal sieve {fl codomain(f)=a} is in

J(a);
(2) Stability under change of base. If R E J(a) and b L a is an arrow of %?, then the

sievef*(R)= {c -5 blj”og~R} is in J(b);

(3) Local character. If REJ(~) and S is a sieve on a such that for each arrow

b L a in R we havef*(S)EJ(b), then SEJ(U).

Definition 2.3 (Site). A site is a category along with a Grothendieck topology. The site

formed by a topology J on a category Q? will be denoted by (%‘, J).

Explanation of axioms. The axioms of a topology’ are closure conditions on the

collection of covers. Axiom 1 states that the sieve generated by the identity arrow is

a cover. Axiom 2 states that, given a cover of an object and a sub-structure of that

object, the restriction of the cover to the sub-structure is a cover of the sub-structure.

Axiom 3 states that covers of covers are also covers. Specifically, given a cover of an

object, and given a cover for each of the objects3 in the cover, the composed cover is

‘See Section 6.2.
’ From now on, we will drop the adjective “Grothendieck” when referring to Grothendieck topologies.

3 Although, strictly speaking, the elements of a cover are arrows, we will frequently treat the domains of

these arrows as the elements of the cover.

58 Y. V. Srinivas

a (finer) cover of the original object. The axioms also imply that any sieve containing

a covering sieve is itself a covering sieve.

We now give a series of examples of topologies on data structures induced by

considering the sub-structure relationship. Other examples of sites are given in

Section 5. We will normally specify a covering sieve by providing a family of arrows

which generates it; such a family is called a covering family. Similarly, we will specify

a topology by giving a collection of covers which generates it - the generated topology

is the least topology which contains the given covers and satisfies the closure axioms

of Definition 2.2.

Example 2.4 (Sets). Sets and functions form a category Set. A cover of a set S is

a family of subsets of S, {Sj 4 S) ill}, whose union is S, i.e., Uitl So= S.

Example 2.5 (Connected graphs). A graph is a pair of sets (N, E C_ N x N) called

nodes and edges. A path from the node aI to the node ak in the graph G is a sequence

ofnodes al,u2, ak such that each (ai, Ui+ 1) is an edge in G, for all 1 <i< k. A graph

is connected if there is a path between any two nodes in the graph. The nodes and

edges of a graph G will be denoted by N(G) and E(G).

A graph morphismf: G-+H is a pair of functions

<.h: N(G)*N(H), .fr: E(G)+E(H))

which map nodes and edges compatibly, i.e.,

v((a,h>~E(G) ~~(_(u,h))=(.f~(a),,~~(b)).

Connected graphs and their morphisms form a category CGraph. A subgraph of

a graph H is a graph G such that N(G) g N(H) and E(G) & E(H). A cover of a graph

G is a family of subgraphs jGi 4 G 1 ill) such that

g N(Gi)=N(G) and u E(G,)=E(G).
ifI

Example 2.6 (Trees). A tree is an undirected, connected, acyclic graph. The defini-

tions of morphisms, subtrees, inclusions, and covers carry over from those of connec-

ted graphs. We, thus, have a subcategory of CGraph called Tree.

Example 2.7 (Strings). A string (unlabeled) is a pair (s, cs) consisting of a set s and

a linear order cs on that set (i.e., a total, irreflexive, and transitive relation). A subset

r c s of a string (s, cs) is said to be contiguous if, for all elements a, b in r and for all

elements x in s, a cS x cS b * xEr. A morphism of strings is an order-preserving map

whose image is contiguous. Strings and string morphisms form a category, String.

A suhstring of (t,<,) is a string (s,<,) such that s c t is a contiguous subset oft and

<b is the restriction of ct to s. A cover4 for a string (s, cs) is a collection of substrings,

4The covers used [or KMP are different from these: see Definition 3.2

Pattern matching and related problems 59

the union of whose images is equal to s. For example, the families {“a”, “bc”} and
{ “&,, “b”, “ 91 c > are covers for the string “abc”.

Example 2.8 (Labeled structures). Strings, trees, and graphs can be labeled. A labeling

for a structure S is a function 1s: U(S)-+L assigning labels from a fixed set L to each

element of the underlying set U(S) of the structure (for trees and graphs, we assume

this set to be the nodes, thus yielding node-labeled trees and graphs). A labeled

morphismf: (S, I,)+(T, IT) is an ordinary morphismf: S+ T which preserves labels,

i.e., V SE U(S) &(f(s))= Is(s). These definitions yield the categories LString (labeled

strings), LTree (labeled trees), and LCGraph (labeled, connected graphs), for which the

definition of covers is as before.

2.2. Sheaves

Sheaf theory studies the global consequences of locally defined properties [31, 37,

1.51. The notion of “local” is characterized using a topology. A map which assigns a set

(e.g., a set of occurrences, a set of functions, etc.) to each object of a topology is called

a sheaf if the map is defined “locally”, i.e., the value of the map on an object can be

uniquely obtained from its values on any cover of that object.

Besides mapping each object to a set, a sheaf maps each arrow in the topology to

a “restriction” function in the opposite direction. In most of the examples we will

consider, the objects in the topology are constraints of some kind, and the sets to

which these objects are mapped are sets of entities satisfying the constraints (i.e., the

denotations of the constraints). The contravariance of the sheaf arises from the fact

that for any inclusion (in the topology) of a weaker constraint into a stronger

constraint, there will be more entities satisfying the weaker constraint than the

stronger one, thus inducing an inclusion of denotations in the opposite direction. For

the case of pattern matching, an occurrence of a pattern can be treated as an entity

that satisfies the constraint of “looking like the pattern”. A partial occurrence satisfies

the weaker constraint of looking like a piece of the pattern. In general, there will be

more partial occurrences than full occurrences, since not all partial occurrences need

be extendible to full ones.

The transition from locally defined properties to global consequences happens via

a compatible family of elements over a cover of an object. A cover of an object can be

viewed as providing a decomposition of that object into simpler objects. The sheaf

assigns a set to each element of the cover (i.e., each piece of the original object).

A choice of elements from these sets, one for each piece, forms a compatible family if

the choice respects the mappings by the restriction functions and if the elements

chosen agree whenever two pieces of the cover overlap. If such a locally compatible

choice induces a unique choice for the object being covered (a global choice), then the

condition for being a sheaf is satisfied. For pattern matching, a compatible family of

partial occurrences uniquely extends to a full occurrence.

60 Y. V. Sriniws

To formalize the intuitive description of sheaves given above, we need some

preliminary definitions.

Definition 2.9 (Contramriant horn-functor). For any object a of V, the contravariant

horn-functor associated with u, horn, (-, a) : VP -Set, is defined by the following

assignments:

for any object h in ‘G,

horn%,,-, u)(b) = homH (b, a) = the set of arrows from b to a in the category %;

for any arrow .f: b-+c in ‘%,

homC6 (-, a)(f): homK(c, u)+homC6(b, a) is defined by g ~gof:

In Definition 2.1, we defined a sieve as a collection of arrows closed under right

composition. A sieve has additional structure; this structure is highlighted by repre-

senting a sieve as a collection of arrows indexed by their domains, i.e., as a functor.

A sieve becomes a sub-functor of a horn-functor when we retain only those arrows

which are present in the sieve.

Jl
Definition 2.10 (Sieve:,functor representation). A sieve R = {ui d a (kZ} on an object

u of a category % can be represented as a sub-functor of the horn-functor horn% (-, u) as

follows:

bH{flfER and domain(f)=b},

c*b~g*, where g*:f~f~y.

The underlying structure of a sheaf is that of a multifunction.

Definition 2.11 (Presheaf). A presheaf on a category % is a contravariant functor

from % to the category of sets Set.

A sheaf is a presheaf that satisfies an additional “gluing” condition, i.e., “local”

information is sufficient to uniquely define the values in the codomain.

Definition 2.12 (Sheqf). A sheaf on a site (%‘, J) is a presheaf F : W’P+Set such that,

for every object u of VT and every covering sieve REJ(u), each morphism R+F in Set”“P

has exactly one extension to a morphism horn% (-, u)-+F.

The definition above implicitly treats the sieve R as a functor. A morphism t : R+F
in the functor category Set ‘OP is a natural transformation, and is a concise way of

representing a computible&nily,of elements on a cover R. Translating into elementary

language, for a sieve R = (ui 2 u 1 iEl) on the object a, a compatible family of

elements of F on the sieve R is a collection of elements {si~F(ui)) isI}, one for each

arrow in the sieve R, which are compatible in the sense that, for any arrow u : Ui-‘aj in

% for which,f;:=,fjo U, the function F(u) maps sj onto si.

Pattern matching and related problems 61

Morphisms of the form hom%(-,a)-+F bijectively correspond, by the Yoneda

lemma (see, for example, Mac Lane [23, Section III.2]), to elements of the set F(a).

Thus, the sheaf condition states that there is a bijection between compatible families

on any cover of a - families of locally defined entities ~ and elements of F(a) ~ globally

defined entities.

We give below a few examples of sheaves to illustrate locally defined properties and

the sheaf condition. Example 3.3 gives an example of a sheaf of occurrences for trees.

Other examples of sheaves are given in Section 5.

Example 2.13 (Books in a library). Consider a site y in

intervalsS and arrows are inclusions. An interval [s, t] is

intervals { [si, ti] / iEZ) if Uit, [Si, ti] = [S, t]. With respect

define a contravariant functor B : PP+Set as follows:

For any interval [s, t],

which objects are time

covered by a family of

to a particular library,

B([s, t]) is the set of books which are present in the library throughout the interval

cs, tl.
For any inclusion of intervals f: [s, t] 4 [u, u],

B(f) is the restriction function which maps each book onto itself. A book present in

the library throughout the larger interval [u,u] is obviously present during the

sub-interval [s, t].

This functor is a sheaf because, if { [si, ti] 1 ill} covers [s, t], and if a book is present in

the library throughout each of the intervals [si, ti], then it is also present throughout

cs, tl.

The sheaf of library books illustrates the slogan

if a property is locally true oVer a cover of an object,

then it is true over the entire object,

and shows how sheaves connect local and global properties. In the graph-coloring

sheaf (Example 2.14), it is possible to connect the chromatic number of a graph (a

global property) with colorings of subgraphs (local properties).

Example 2.14 (Graph coloring). Consider the site of undirected, connected graphs

described in Example 2.5. Let us confine our attention to a sub-category UCGraph,

of UCGraph which contains all the objects but only inclusion arrows. Consider the

task of coloring such graphs with at most k colors. Define a contravariant functor

C: UCGraph”,P+Set as follows:

For any graph G,

C(G) is the set of all k-colorings of the graph G.

For any graph inclusion f: G 4 H,

C(f) is the function which restricts the colorings of H to G. If a graph H has

a k-coloring, then each of its subgraphs also has a k-coloring.

5 It does not matter whether these intervals are open, closed, or any mixture of these.

62 Y. V. Sriniras

This functor is a sheaf because, if (Gi 1 iel) covers G, and if {ciEC(Gi) 1 ill) is a family

of colorings such that the colorings agree on intersections among the graphs Gi, then

the Ci’s induce a unique coloring of the entire graph G.

Example 2.15 (~heqfofjiinctions). Let D be a set (the domain). The powerset 9(D)

forms a category with objects being subsets of D and arrows being inclusions. We

obtain a site by defining a cover of a set X to be a family of sets {Xi 1 iEl} such that

Ui~, Xi=X. Let R be another set (the range). Define a contravariant functor

F: P(D)“p-tSet as follows:

For any set X c_ D,
F(X) is the set of all functions with domain X and range R.

For any inclusion ,f: X 4 Y,

F(f) is the map yt+glx(=g 3.f) which restricts the domain of a function.

This functor is a sheaf because, extensionally, a function is defined by specifying its

value for each element of the domain. Thus, if the family {Xi j ill} covers the set X,

and {fi: Xi+R 1 iel) is a family of functions such that

filX,nX,=fjlX,nX, for iJcl7

then there is a unique function f: X-+R such that

f(x)=fi(x) for any i such that X~Xi.

Example 2.16 (Nonsheaves). To help the reader understand the mechanics of the

sheaf condition, here are two examples of functors which are not sheaves. The

examples show that sometimes local properties alone are not sufficient to determine

global properties.

For any site (%‘, J), the topology J can be viewed as a functor as follows (see axiom

2 of a Grothendieck topology, Definition 2.2, for a definition off*):

a~J(a) for uEObj(%),

.f~f* for fEArr(%‘).

.1;
This functor is not a sheaf because, given a cover (ui - a 1 &I} of an object a, and

a compatible family of covers {city (iEl), there may be several covers on a which

extend this family.

For another example, consider the site of sets defined in Example 2.4, but only with

finite sets and inclusion arrows. Denoting this sub-category by FinSet,, define

a functor P : FinSet”,P+Set which maps each set to the set of all its permutations, and

each inclusion arrow to a restriction function on permutations (e.g., the inclusion

{a, h} 4 (a, b, c) induces the restriction bcact ba). This functor is obviously not

a sheaf.

Pattern matching and related problems 63

3. A specification for pattern matching

We will model an occurrence of a pattern p in a target t as an arrow p-+t in some

site. For the pattern-matching problem to be computationally tractable, and to

simplify the derivation, we make some additional assumptions:

(1) All objects in the site are finite.

(2) A finest cover6 exists for each object and is finite.

(3) Every arrow in the site is an occurrence arrow.

(4) All covers are strict epimorphic families.

The last assumption needs some explanation. An epimorphic family of arrows is

a generalization of a family of functions which are collectively surjective. A strict

epimorphic family satisfies the additional condition that all the information about the

codomain is contained in the family: arrows defined on elements of a cover of an

object determine a unique arrow on the object [2, Exposk I, lo].

Definition 3.1 (Strict epimorphic family). Let F= {ai-‘-, a 1 iE1) be a family’ of

arrows. A family of arrows G = {Ui -% b 1 ill} is said to be compatible with F if, for
every object c, every pair of indices i,jEI, and every pair of arrows u: c-+ai, v: c+aj,

The family F is said to be a strict epimorphicfizmily (Fig. 2) if, for every family of arrows

G which is compatible with F, there is a unique arrow h: a+b through which

G factors, i.e.,

gi = h Ofi: for all iE1.

The assignment of the unique arrow h to G, provided by the definition of a strict

epimorphic family given above, will be called a “gluing” operation in the rest of this

paper. Intuitively, a cover {Ui -& a 1 igl} provides a decomposition of the object a,

Fig. 2.

6 The collection of covers of any object is ordered by inclusion. The finest cover is the least element, i.e.,
a cover none of whose elements can be further decomposed via a cover.

’ Strict epimorphic implies epimorphic. Hence, there is no need to add this condition in the definition.

64 Y. V. Srinioa.7

and the arrow h can be viewed as being obtained by gluing together the domains of

the gi’s.

The notion of a strict epimorphic family is similar to, but weaker than, the notion of

a colimit. Whereas a colimit requires universality with respect to a given diagram, the

definition of a strict epimorphic family requires universality only with respect to the

entire sieve generated by the family.

Example 3.2 (Strict coversfor strings). In all the sites defined in Section 2.1 (except the

site of strings, Example 2.7) the covers are strict epimorphic families. We now redefine

the covers for strings so as to make them strict.

Given a string (s, cs> and two elements X, YES, we say that x and y are adjacent in

s if the string “xy” is a substring of s. A cover of a string s is a family of substrings

{si 4 s 1 iEl} such that, for any pair of elements X, y which are adjacent in s, there is

a substring si in the cover in which x and y are adjacent. Thus, for the string “abed”,

the following families are covers: {“abed”}, {“abc”, “bed”}, { “ab”, “bc”, “cd”). How-

ever, (“ah”, “cd “3 is not a cover because b and c are adjacent in “abed” but they are

not adjacent in any element of the cover. To understand the requirement about

adjacency, observe that the cover has to not only cover the elements of a string but

also cover the total order of the string.

A string can alternatively be considered to be a simple, acyclic path in a graph (i.e.,

all the nodes in the path are distinct). The definition of cover for strings is then

a specialization of that for graphs.

3.1. Tke spec$cation

Using the vocabulary introduced until now, we can abstractly characterize pattern

matching as follows.

A pattern-matching problem consists of the following:

A data structure

A site (%, J) satisfying the assumptions outlined at the beginning of

Section 3.

The input-output relation

Given a pattern p and a target t, with p, tEObj(??),

find the set of occurrences of p in t, i.e., compute horn% (p, t).

We will represent the occurrence relation as a collection of sheaves of the form

hom%(-, t), one for each target t. The fact that the horn-functors are sheaves trivially

follows from our assumption that all covers are strict epimorphic families. The sheaf

condition for these sheaves allows us to find occurrences of a pattern by decomposing

the pattern, finding occurrences of the pieces, and gluing the partial occurrences.

In Section 5, we will consider variants of our derivation which can be applied to

sheaves other than horn-functors. The definition of such sheaves then becomes part of

the problem specification.

Pattern matching and related problems 65

pattern, p cover for pattern, P

underlying site, LTree

\a c/

n

bz- q ----+ c3

See example 3.3

Fig. 3. Sheaf of occurrences: example with labeled trees.

Given that horn-functors are automatically sheaves, to specify a pattern-matching

problem in this framework, we only have to specify the topology of the data structure

involved. This entails defining the underlying category and the collection of covers

satisfying the assumptions of finiteness, strictness, etc. A constructive proof that covers

are strict will yield the gluing operation used to build a full occurrence from a compat-

ible family of partial occurrences.

Example 3.3 (An occurrence sheaf). In Fig. 3, we show an example of the sheaf of

occurrences of a pattern tree in a target tree. The underlying site LTree, of labeled

66 Y. V. Srinivas

trees, is defined in Examples 2.6 and 2.8. In the figure, we show a specific target tree t,

a specific pattern tree p, the finest cover P for the pattern, and a part of the sheaf of

occurrences, homLTree(-, t). The pattern cover is represented as a functor, but only the

codomain of this functor is shown. The subscripts on the labels in the target tree are

not part of the tree; they are a convenient notation for representing occurrence arrows.

A sample-compatible family of partial occurrences is shown with bold arrows. Dotted

arrows indicate partial occurrences which do not give rise to any compatible families.

4. Derivation of a pattern-matching algorithm

We now present a derivation of a generalized version of the KMP algorithm. We

follow the genera1 heuristic of converting the extensional description of the occurrence

relation as a sheaf into an intensional description (an algorithm). The algorithm

results from a synergy of four very general program synthesis/transformation

techniques:

(1) Divide and conquer. Exploit the sheaf condition; assemble a full occurrence by

gluing together partial occurrences.

(2) Finite diferencing. Collect and update partial occurrences incrementally while

traversing the target.

(3) Backtracking. Instead of saving all partial occurrences, save just one; when this

partial occurrence cannot be extended, fail back to another.

(4) Partid ev&ation. Precompute pattern-based (and, therefore, constant)

computations.

The formal basis of the implementation strategies and transformations we use is

given in the appendix. A rigorous derivation, with the theories represented using

algebraic specification, is given in the author’s dissertation [36].

Notation. For the rest of this section, we assume a site (%?,J) satisfying the assump-

tions of Section 3. The horn-functor horn&, t) will be written sometimes as h’. The

category of presheaves on the category %? will be denoted by PreShv(W), and the

category of sheaves on the site (%?, J) by Shv(V, J). When a cover is denoted by

a family of arrows such as (pi+pf, the index varies over the arrows; hence, if there are

two different arrows q 2 p from q into p, these will be denoted by pi4p and pjAp> with

i#j and pi=pj=q.

4.1. Decomposing the pattern

We first exploit the sheaf condition on the occurrence sheaf horn&, t) to produce

a problem reduction strategy [35] for enumerating the occurrences of a pattern in

a target:

(1) Decompose. Choose a cover {pi-p) for the pattern p.

Pattern matching and related problems 67

(2) Soloe sub-problems. Find occurrences of elements of the cover, i.e., find partial

occurrences pi+t of the pattern.

(3) Compose. Glue together partial occurrences to obtain full occurrences p+t.

(4) Base case. For indecomposable pieces pi of the pattern, decompose the target;

see Section 4.2.

We can simplify solving the sub-problems by using the stability of covers under

refinement (the third axiom of a Grothendieck topology) and by choosing the finest

cover for the decomposition. This choice eliminates the recursion in step 2; other

choices are possible, provided the topology is “nice” [36]. The gluing operation of

step 3 is the constructive version of the bijection given by the sheaf condition (the

notation ; indicates an arrow which is an isomorphism),

Nat(P, h’)Gh’(p),

where P is the chosen cover of the pattern. Since we have chosen the occurrence sheaf

to be a horn-functor, the above gluing operation can be obtained from the definition of

a strict epimorphic family. The unique arrow provided by the latter definition is

ultimately obtained from the definition of the data structure which forms the site.

4.2. Decomposing the target

The problem has been reduced to enumerating occurrences of pieces of the pattern.

We solve this problem by decomposing the target; however, we have to be careful,

because occurrences may be split among pieces of the target (consider the occurrence

“bed” 4 “abcde” when the target is split into “abc” and “cde”). Thus, the appropriate

structure to decompose is the entire sheaf. We can decompose the sheaf hom%(-,t)

using a problem reduction strategy, based on the fact that the functor

&<%,J>. . % -5 PreShv(%‘) sh Shv(%‘, J)

carries covers to epimorphic families (Theorem A.3); y is the Yoneda embedding and

sh is the sheafification functor. Intuitively, a decomposition of the target induces

a decomposition of the corresponding sheaves. Here is the strategy:

(1) Decompose. Choose a cover {tj--‘t} for the target t.

(2) Solve sub-problems. Build the occurrence sheaves horn&, tj) for each piece of

the target.

(3) Compose. Combine these sheaves to produce the occurrence sheaf horn&, t).

(4) Base case. For indecomposable pieces tj of the target, see Section 4.3.

The above composition operation can be expressed as

horn&, t) = C* horn&, tj),

provided we choose arrows in the cover (tj+t) to be monies (see Theorem A.4 and the

discussion before it). The colimit above is taken in the category of sheaves Shv(%T, J).

68 Y. V. Sriniuas

Using the fact that the sheafification functor is a left adjoint (see Theorems A.2 and

AS), we can reduce the colimit to

horn% (-, t) = sh (1 Cz homH (-, tj),

where the colimit is now in the category of presheaves PreShv(%), and can be

computed pointwise (roughly, by computing the union homx(pi, tI)u horn&pi, t,)u...

for each pi).

4.3. Building occurrence arrows .from pieces

Combining the schemes for decomposing the pattern and the target, we see that we

only need the values of homK(pi, t), which in turn depend on the values of

homv(pi,tj).8 We can now compute hom%(p,t), which is our goal, in two ways: (i)

sheafify the colimit of the horns-(-, tj))S obtained above and read off the value

horny, (p, t), or (ii) only compute the part of the colimit which gives the values of

horn, (pi, t), and pass via the sheaf condition to the value of horn&p, t). We will follow

the (apparently simpler) latter approach here; we will return to the former in

Section 4.8.

(1) Decompose. Choose the finest cover { pi-‘p} for the pattern p, and any manic

cover (tj H I} for the target 1.

(2) Solve sub-problems. Find the elementary occurrences pi+tj, thus filling in the

values of homcd(pi, fj) in the functors hom%(-, tj).

(3) Compose.

(a) Codomain. Combine the partially filled functors horn% (-, fj) (via a colimit of

presheaves) to obtain a partially filled functor homK(-, t), i.e., fill in the values of

hom,(pi,r) by composing the elementary occurrences pi+tj with the arrows in

the cover tj ++ t.

(b) Domain. Glue together the partial occurrences pi+t [via the sheaf condition

on horn% (-, t)] to obtain full occurrences p+t.

(4) Base case. Generation of elementary occurrences Pi~tj is dependent on the

underlying site/data structure; see also Section 4.10.

This strategy for computing occurrences is a formalization of the intuitive descrip-

tion of matching given in Section 1 and Fig. 1. Figure 4 informally represents the

process for strings.

4.4. The abstract pattern-matching problem

The computing of occurrences by decomposing the pattern and the target has

not changed the computational aspect of the problem significantly (enumerating

‘Since colimits in Preshv(%) are computed pointwise, and because we have assumed that the pattern
pieces pi come from the finest cover, sheafification will not modify the values of homH(pi,t,).

Pattern matching and related problems 69

glue via
sheaf

condition

pattern, p hom(p,t) target, t

Fig. 4. Building occurrence arrows from pieces.

compatible families of partial occurrences is the real problem; see Section 4.5).

However, the strategy has a descriptive advantage: we have abstracted away the

specific data structures involved by using the device of Grothendieck topologies. The

problem has now been recast as follows:

Find occurrences of the graph of the pattern cover in the graph of the

occurrence sheaf.

This description is now in the language of categories, functors, and natural trans-

formations, abstract mathematical structures which have been studied extensively.

Moreover, this description has the advantage that such graphs can be decomposed

and manipulated in more convenient ways than Grothendieck topologies (see

Example 4.2). Thus, our approach can be seen as a generic method for pattern

matching, parameterized by a Grothendieck topology.

Example 4.1. We show how the strategy of Section 4.3 can be instantiated for the tree

occurrence sheaf shown in Fig. 2. The pattern p is decomposed into the finest cover

P as shown; this cover consists of single nodes or single edges. The target t is

decomposed likewise; this decomposition occurs implicitly when the target is tra-

versed and each new edge is encountered. Traversing the target generates elementary

occurrences - homr,rree(pi, fj) - sue h as al-b,, b,-c,, etc. The colimit of the functors

hom&,tj) is just a pointwise union; so, these elementary occurrences are used to

populate the part of the sheaf shown in the figure. Once the requisite part of the sheaf

is filled, we obtain full occurrences ~ horn L~ree(p, t) ~ using the sheaf condition. This is
done by enumerating compatible families on the pattern cover - a sample family is

shown with bold arrows - and gluing them together. The gluing operation for trees is

straightforward: combine a collection of partial functions on p to obtain a total

function on p. The reader may note that compatible families are just occurrences of the

graph of the pattern cover in the graph of the occurrence sheaf.

70 Y. V. Srinivas

4.5. Enumerating compatible families

In the problem reduction strategy described above, finding elementary occurrences,

Pi~tj, is the “base case”, and is usually trivial (e.g., identity arrows), or dependent on

the particular data structures and occurrence relation used. We will consider certain

data-structure-independent aspects in Section 4.10.

The most complex part of the strategy above is using the sheaf condition, and

consists of two steps:

(1) Enumerate compatible families of partial occurrences, Nat(P, II’), where P is the

chosen cover of the pattern.

(2) Glue together such families to obtain full occurrences.

The gluing operation is dependent on the site and we do not consider it further.

There are several ways to compute compatible families. A simple procedure is to

use the definition of a natural transformation; this yields a generate-and-test algor-

ithm. Another way is to exploit the connection with limits (see SGA4 [2, ExposC I,

Section 3.51):

Nat(P, h’) z Lim k’(pj),

where g/P is the cover P represented as a comma category. The above limit can be

computed via products and equalizers [23, p. 109, 29, p. 821 (the latter has an

algorithm).

Since we are interested in arriving at the KMP algorithm, we follow a different

strategy: just as the matching problem has been “lifted” to that of graph matching, so

can the topology be lifted to a topology on the covers themselves. This allows us to

decompose the pattern cover into pieces and build compatible families piecemeal.

Compatible families Nat(P, h’) form a functor as P varies: 9

Nat(-, h’): PreShv(‘G)“P+Set

P F+ Nat(F, k’)

T
I I

_ 55

G +-+ Nat(G, k’)

For the case of pattern covers, T is usually an inclusion of a piece of the pattern cover,

and -0 T is the restriction of a compatible family (over the entire pattern cover) to that

piece.

Let the pattern cover be decomposed via a colimit (“shared union”)

P = Colim P,.
-

‘A cover is a sieve and, hence. a functor and an object of PreShv(%).

Pattern matching and related problems 71

Since the functor Nat(-, h’) carries colimits to limits,” we have

Nat(P, h’) = Lim Nat(P,, h’).
-

If we choose the topology on covers to be that defined in Section 4.6, then the functor

Nat(-, h’) actually forms a sheaf:

The situation at the base level is mirrored in the functor category.

4.5.1. Why ascend to functor categories?

One may ask why we should be dealing with functor categories and topologies on

covers; why not use an appropriate topology at the base level? This is indeed possible,

if the underlying site provides enough decompositions to enable occurrences to be

computed easily. Sometimes, intermediate covers may not exist, thus not providing

“stepping stones” in between elementary occurrences and full occurrences. Trees are

an example.

Example 4.2. Consider the tree pattern on the left below, in the site LTree (see

Example 2.8):

a + a +

I \ I\
b c b c

When the target is traversed depth-first, and occurrences are assembled bottom-up, it

is possible to have a partial occurrence of the kind shown on the right above, which is

obviously not a tree. A similar situation arises when assembling occurrences

of connected graphs: partial occurrences during intermediate stages need not be

connected.

In examples such as those above, we can rectify the lack of decomposition oppor-

tunities for objects by expanding the underlying category of the site and altering the

topology accordingly. Rather than do this on a site-by-site basis, our approach using

a topology on covers shows a systematic and general way of accomplishing this.

4.6. Decomposition of covers

We will now define a topology on covers which makes Nat(-, h’) a sheaf, and which

provides more flexible decompositions than those given by the covers in the under-

lying site.

lo This is true of all contravariant horn-functors [23, p. 1121; “Nat” is just the name of the homsets in the

category Preshv(W) of functors and natural transformations.

72 Y. V. Srinivus

Definition 4.3 (A topology on sieves). Given two functors F, G : V’P+Set on a category

w, an inclusion of functors F t G is a natural transformation, each of whose compon-

ents is an inclusion arrow, i.e., for each object CE%, F(c) G G(c). Consider the category

of all sieves in % together with the sub-functor relation. A cover for F is a family

IF, ~5 F} of sub-functors such that

u Fx=F, i.e., V’CE% u F,(c)=F(c).
J x

The collection of all sub-functors of a sieve S (or sub-sieves of S) forms a poset. The

union of two sub-sieves, written as Xu Y, is just the pointwise union of the two

functors, or the union of the arrows in each of the sieves. The intersection Xn Y is

similarly defined pointwise.

Definition 4.4 (Prime urrow, prime she). Given a sieve S in a category F?‘, an arrow

YES is said to be prime (in S) if it cannot be factored, i.e., $(IIES, gEArr(%))f= h n g.

A sub-sieve R c S is said to be prime (in S) if it is generated by a prime arrowf‘ES, i.e.,

R = { fo g 1 gEArr(+Z) and codomain(g)=domain(f)}.

The intent of Definition 4.4 is to specify the lifting of covers from a site to its functor

category. Let (?Z, J) be a site, p a pattern, and P its finest cover. Let { pi+p) be the

collection of prime arrows in P. Then the collection of prime sieves generated from the

arrows pi (the corresponding prime sieves will be denoted by Pi) covers the sieve P in

the functor category (in fact, it is the finest cover, if P is).

The following definition of complement will be useful for decomposing covers into

two pieces.

Definition 4.5 (Complement of a siece). Given a pair of sieves R s S, the complement

of R with respect to S, written as S- R, is defined to be the sieve generated by S-R

(set difference). When the sieve S is clear from the context, the complement of R will be

written as R’.

Note that the intersection of complementary sieves need not be empty. Com-

plementary sieves yield the following pushout:

RnR’-R’

The purpose of lifting covers to the functor category was to allow decompositions of

the pattern cover. The following definition provides the pieces.

Pattern matching and related problems 73

Definition 4.6 (Sub-pattern). Given a pattern p and its finest cover P, a sub-pattern is
the union of any collection of prime sieves in P.

Note that, since sub-patterns are defined at the functor category level, there need
not exist an actual object corresponding to the sub-pattern in the underlying site (cf.
the disconnected tree of Example 4.2).

4.7. Building compatible families from pieces

The derivation until now has left us with the task of computing compatible families
Nat(P, h’). Using the topology on covers described above, this reduces to computing
a limit:

P=Colim P, * Nat(P, h’)= Lim Nat(P,, h’).
- -

We do not seem to have made any progress, because we again have to compute a limit,
which is equivalent to the problem of enumerating compatible families (see the
beginning of Section 4.5). However, we can now simplify this limit to a pullback if the
decomposition of P into Px’s consists of only two pieces (along with their intersection);
the topology defined on covers guarantees that this can always be done (see
Section 4.6). Pullbacks in Set can be easily computed: the pullback of A L C &- B

is given by

A~B=((x,y)EAxBIf(x)=g(y)j= u (f-‘(4xg-1(c)),
CSC

with the arrows into A and B being the two projections from the product.

4.7.1. Binary decomposition: pyramid algorithms

At each stage, we decompose the pattern cover into two pieces, yielding a binary
tree of decompositions. We obtain the following divide-and-conquer strategy [32]:

(1) Decompose. Split the pattern cover P into two pieces, P,, P,,, and their intersec-
tion Pxy, as in the following pushout:

P, - P

(2) Recursive invocation. Compute compatible families on the pieces, Nat(P,, h’)
and so on, together with the restriction functions corresponding to the inclusions
PxY G P, and PxY 4 PY.

74 Y. v. Srinil~as

(3) Compose. Join compatible families via the following pullback:

Nat(P,,., 11’) c-----Nat(P,, h’)

I 7
Nat(P,, 11~) - Nat(P, 11’)

(4) Base case. For indecomposable pieces of the cover, i.e., prime sieves, Pi, the

compatible families are obtained from horn% (pi, t) and their restrictions. These values

are, in turn, computed from elementary occurrences homK(p,, tj) by decomposing the

target (Section 4.3). Ultimately, elementary occurrences depend on the underlying site.

The recursive invocation terminates because the pattern cover P is finite and, hence,

the decomposition tree is finite. We, thus, obtain a top-down nonincremental algo-

rithm. Such an algorithm could be implemented on a SIMD-style machine, a tree

machine, or a data flow machine. The key observation is that the locality in the

definition of a sheaf can be fruitfully mapped into the locality required by parallel

machines.

Complexity. The worst-case complexity of the above algorithm for strings, with

pattern length /p / and target length 1 t (, is L’ (1 p(x 1 t I). The reason is that pieces of the

pattern may occur within the pattern itself, thus necessitating multiple copies of

elementary occurrences. We will later see how to avoid the generation of multiple

copies.

The binary decomposition algorithm works when the partial occurrences pi-t are

all available at once. We now investigate how to make this algorithm incremental, i.e.,

compute occurrences assuming that the target is traversed sequentially. This choice

will ultimately lead us to the KMP algorithm. We will assume that traversing the

target produces increments which are compatible families over some prime sieve of the

pattern cover (see Section 4.10 for how these increments are generated).

Considering the expression for compatible families again,

P=Cohm P_, + Nat(P,h’)= Lim Nat(P,,h’),
__f -

and choosing a binary decomposition operation (pushout), we see that, to compute

compatible families on P, given families on P,, we need the families on the comp-

lement P:. Compatible families on P_k can be computed by the same expression, but

this time we need families on the complements with respect to Pi. Continuing this

reasoning, and considering that an increment can be a compatible family on any’ prime

sieve, we see that we need families on all combinations of prime sieves. Using

Definition 4.6, this means that we need compatible families on every sub-pattern.

Pattern matching and related problems 75

To update the compatible families Nat(ZZ,h’) for any sub-pattern I7, given in-

crements on prime sieves Pi, we will use the technique of finite differencing [26].

Notation. To simplify the presentation, we will use the notation ~ 0 _ for pushouts

and ~ @ _ for pullbacks. This notation omits the third object and the two arrows

required for pushouts and pullbacks. These should be evident from the context: the

third object is usually the intersection, and the two arrows are inclusions. Also, we will

assume the result of such an operation is not just an object, but also a pair of arrows;

these arrows are required to compute subsequent pushouts or pullbacks!

Consider the following expression for the occurrence sheaf h’ (see Section 4.2):

horny, ((, t) = sk c Colim homK(-, tj),
-

where {tj H t) is a manic cover for the target t, and sk is the sheafification functor.

Now, assume that we already have computed the sheaf for the portion t of the target,

and we incrementally traverse a little more, &, such that we have the following

pushout for the traversed portion of the target:

t -t@&

The new portion of the target, at, yields new elementary occurrences of the form

homK(pi, &t) for some pieces pi of the pattern. Applying the above equation, we get

hornrb (-, t @ 6t) = sk 3 (horn% ((, t) 0 homx((, 6t)).

The standard formula for sheafification involves a colimit over covers (see Theorem

A.2). Since we are not interested in the entire sheaf, we can use the following

isomorphism l1 given by the sheaf condition:

homx((,r 0 &)(p)zNat(P, k’O k”‘),

where p is the pattern, and P is the chosen pattern cover. The problem now is to

update the compatible families Nat(P. 11’) as k’ changes. k’@ k”’ is a colimit of

functors, which is computed pointwise; therefore, values of k’@ k” are given as set

unions. Hence, we can use the distributive law of Lemma A.6.

The sheaf Nat(-, k’) is given by the following:

(1) Base case. For a prime sieve Pi, Nat(Pi, k’) is derived from the values k’(pi) and

their restrictions.

(2) Induction. For a sub-pattern Il which is not a prime sieve, let it be decomposed

as the pushout Il, @ l7,. Then,

Nat(I7, k’)=Nat(U,, kc) 0 Nat(I7,,, k’).

‘I To get an equality, rather than an isomorphism, the compatible families on the right have to be glued.

76 Y. V. Srinims

We can now distribute the increment k” over the definition above, yielding the

following:

(1) Buse case. For a prime sieve Pi, Nat(Pi, k’ @ k”) is derived from (k’ @ k”‘)(pi),

which is given by

(k’O k”)(pi)=k’(pi)Uk”‘(pi).

(2) Induction. For a sub-pattern Il which is decomposed as the pushout 177, @ KIY,

Nat(l7, k’ @ k6’)= Nat(fl,, k’ @ kar) 0 Nat(I&, k’ 0 khr)

=(Nat(H,, k’) 0 Nat(H,, k’))u(Nat(I7,, k’) 0 Nat(II,, kbf))

u(Nat(n,, k”) 0 Nat(U,, k’))

u(Nat(l7~ x> k6’) 0 Nat(n y 3 k”)).

As discussed at the beginning of this section, the entire sheaf Nat(-, k’) has to be

updated, because we can get new elementary occurrences for any piece pi of the

pattern and, therefore, new compatible families on any prime sieve Pi; the constraint

of a binary decomposition then requires all partial occurrences to be maintained.

Figure 5 shows the incremental maintenance of a sheaf as new elements are added

to it. A sheaf spreads out in two dimensions, with increments in one dimension, and

the pattern pieces in another. The distributive law on which the incremental mainten-

ance is based exploits the fact that additions to the sheaf in the two dimensions are

independent.

4.8.1. Binaq3 decomposition: incremental version

The expression given above for computing Nat(D, k’ @ kSt) can be simplified (some

of the four terms on the right-hand side become empty) if we systematically update the

sheaf bottom-up. We, thus, obtain the following algorithm, in which, for each in-

crement, say on a prime sieve Pi, we view the pattern cover as decomposed into Pi and

Pi and compute compatible families via a pullback. (Note the difference between this

and the pyramid algorithm of Section 4.7.1: there, a roughly equal split of the cover

would minimize the height of the decomposition tree.) For each increment, we also

update all partial families which may be affected.

(1) Initial condition. Start with an empty cache of partial occurrences.

(2) Up&e. Let the increment be over the prime sieve Pi.

(a) Install this increment into Nat(Pi, k’):

Nat(Pi, k’ @ k”)=Nat(P,, k’)uNat(Pi, k”).

(b) For each sub-pattern Il which includes Pi, let P; be the complement.

Compute Nat(I7,k’ @ kSr) by

Nat(I7, k’ @ k”‘)=Nat(U, k’)u(Nat(Pt, k’) @ Nat(Pi, k”‘)).

Pattern matching and related problems

pattern

/b\
a-c

b’\

target

1, \Lb3
a,_bAazA

c1 c2

traversed portion

occurrence
occurrence

Fig. 5. Incremental maintenance of a sheaf.

Figure 6 shows a trace of the above incremental algorithm on graphs; the mainten-

ance of the sheaf for the same example (step 6) is shown in Fig. 5.

4.9. Improving the incremental algorithm

The incremental algorithm given above is not very efficient: it saves and maintains

all partial occurrences. In particular, for strings, with pattern length IpJ and target

78 Y. V. Srinioas

Pattern Target with traversal order

States of the cache of partial occurrences:

1. albz

2. al&, ah

3. ah, ah, ah

4. alb2, a2b2, azb3, km, a&c2

5. alb2, ah, a&, b3c2, a&2, azcz, a&cza2, baczan, c&3, cza&n

6. albz, azbz, azbs, be?, azbm, am, &cm, bscm, cmbs. cmh
bm, czazbzcz, bmaz, cdwz, c2bm

7. alb2, azbz, azbs, b3c2, azbscz, asz, a&cm, lwm, cmb3, w&z,

bzcz > czazbm, km, czha2, czbm, albl

8. alb2, a2b2, azbs, bm, azbm, am, adwm, km, cmb3, cmh,
bm, c2ahc2, twm, czbm, czbzal, alh, hcl, alblcl

9. albz, adz, ah, bm, dwz, am azbma2, bmaz, czazb3, cmbn.
bm, czazbzcz, bmw czbm, c&al, aI&, hcl, alblcl,

clal, alclbl, clalbl, clalb2, alhclal

Fig. 6. Trace of incremental algorithm on graphs (cf. Fig. 5).

length 1 t 1, the complexity is lo@pl x 1 tl). To improve the algorithm, we have to reduce

the size of the cache of partial occurrences (i.e., the size of the sheaf Nat(-,h’)).

One way to reduce the size of the cache is to remove all partial occurrences in the

cache which have no potential of being expanded, as indicated by the traversal of the

target, e.g., reaching a leaf in a tree. For strings, assuming a left-to-right traversal,

there can be at most IpI - 1 partial matches which are potentially expandable (as

opposed to 2’Pl), thus reducing the complexity to P((pl x Iti). This optimization

depends on the data structure involved and on the traversal mechanism; we do not

consider it further here.

Another way to reduce the size of the cache is to exploit dependencies between

partial occurrences: if a partial occurrence can be “derived” from another, then it can

be removed from the cache (and regenerated later on, if necessary). Such an optimiza-

tion conforms to our overall heuristic of converting an extensional representation into

an intension: replace the extension of the cache by a generator.

These dependencies arise when a piece of the pattern occurs in the pattern itself. For

example, given a partial occurrence pi-+t and an arrow pj+pi between pieces of the

Pattern matching and related problems 79

pattern, we can immediately generate the partial occurrence pj’Pi+t by composition.

We say that the latter occurrence is subsumed by the former. In Section 4.11, we will

extend this subsumption relation to occurrences represented as compatible families.

This induces a partial order on occurrences. Using this partial order, we will represent

the cache of partial occurrences by its maximal elements; other elements are generated

by composition when required.

4.10. Generation qf elementary occurrences

We now consider the base case of the recursive algorithms presented until now,

namely, the generation of elementary occurrences of the form hom%(pi, tj). Normally,

there is a procedure which traverses the target and produces the pieces tj. The specifics

of generating elementary occurrences from these pieces depend on the particular data

structure forming the site and the definition of the occurrence relation. What we are

interested in here is a data-structure-independent feature, the generation of multiple
occurrences from the same target piece tj. In other words, a piece of the target can be

“parsed” in several ways as a piece of the pattern. Figure 7 shows an example using

labeled trees (the pattern pieces are numbered to distinguish them). In general, the

multiple parses so generated may be independent. However, for common cases of

pattern matching, the following property is true.

Subsumption property. If an atomic piece tj of the target generates multiple elemen-

tary occurrences (p, +tjI XEX}, then there is an occurrence Pi~tj in this set

through which each of the other occurrences factors: Px-‘Pi-‘tj.

If this property is true of a site, then we can generate alternative occurrences by

using information obtained by matching the pattern against itself. If not, we have to

rely on the particular features of the site; for example, in Waltz filtering [39] (see also

Section 5.6), the possible labelings of

properties of three-dimensional space.

pattern

+

target

+
1

/\
a f

2

/\
a b

/\
a +

a junction are obtained from the physical

multiple parses

l/+

3

/\
a +

. *

a ‘\ ‘I a

+

\

4
3

/
a

Fig. 7. Multiple parses of a piece of the target.

80 Y. V. Srinivas

4.11. Matching the pattern against itself

The generation of multiple parses for a piece of the target can be extended to larger

pieces of the target. For example, if B is a compatible family on a sub-pattern IZ, then

we can derive other compatible families by using other parses for portions of 9:. Such

derived families are said to be subsumed by 5. Just as we have lifted the topology of

the underlying data structure to the level of covers, so can the subsumption relation

informally defined in Section 4.9 be lifted to sub-patterns and partial occurrences

represented by compatible families. This subsumption relation generates a structure

called the pattern-pattern ,finctor, which is a collection of sheaves, one for each

sub-pattern, and is defined below (this functor is very similar to the Yoneda embed-

ding of a category into its functor category).

Definition 4.7 (Subsumption). Given two sub-patterns II and Il’, a subsumption

arrow l7-+Il’ is a natural transformation,12 which is obtained as a compatible family

of occurrences of pieces of I7 in Il’.

Given two sub-patterns n and l7’, the sub-pattern Il’ is said to be subsumed by l7,

written as ll’ 5 lI, if there is a subsumption arrow n’-+n.

This relation can be extended to occurrences: a partial occurrence given by the

composition ll’+l7+k’ is said to be subsumed by the partial occurrence n-+h’.

Notation. Given a covering sieve P represented as a functor, we will denote by Sub(P)

the category of all sub-functors of P, with the arrows being inclusion natural

transformations.

Definition 4.8 (Pattern-pattern functor). The subsumption sheaf for a sub-pattern

17 of a pattern cover P is the functor yn: Sub(P)“P+Set defined by

17’ H {nf A n 1 s is a subsumption arrow},

f‘: n”+n’ H f* : Csp”(n’)+C4P”(n”), where f * =_3$

Let Jp denote the topology on sieves (Definition 4.3) restricted to Sub(P). The

pattern-pattern functor for a pattern cover P is the functor @: Sub(P)+

Shv(Sub(P),Jp) defined by

fl H Y”, the subsumption sheaf for n,

f: n+l7’ H Q(f): C4pUliyprr’, with each component given byf, =fo_.

The pattern-pattern functor allows us to generate all the subsumed occurrences of

a given occurrence. Such subsumed occurrences will be used to reduce the size of the

cache in the algorithm of Section 4.13.

I2 Remember that sub-patterns are sub-functors of the pattern cover represented as a functor.

Pattern matching and related problems 81

4.12. Computing the pattern-pattern functor

The pattern-pattern functor captures the occurrence relation among all sub-

patterns of a given pattern. In trying to find an algorithm for the pattern-matching

problem - find occurrences of a single pattern in a single target - we have reached the

problem of finding occurrences of multiple patterns in multiple targets (note the

similarity to the “RETE” algorithm [14]). This shows that precomputation for

a problem may be more complex than the problem itself: the trade-off is between

a complex precomputation (done once per pattern) and a simple matching algo-

rithm.i3 This also explains why precomputation is exponential for trees [20].

Here is a nonincremental, divide-and-conquer scheme to compute the pat-

tern-pattern functor. This is a reapplication of our derivation so far: each subsump-

tion sheaf 9” is built by passing via the sheaf condition from smaller arrows to bigger

ones (domain decomposition); each such sheaf is “seeded” by taking a colimit of

smaller sheaves (codomain decomposition).

(1) Base case. Seed the subsumption sheaf for any prime sieve Pi by installing the

values of homg(pj,pi) for all atomic pieces pj of the pattern. Sheafify.

(2) Induction. For any sub-pattern ll which is not a prime sieve, choose a binary

decomposition I7 = X7X @ 17, (pushout). Then the subsumption sheaf for II is given by

9’” = sh 0 (9’““- @ Y”y).

The pattern-pattern functor can also be generated incrementally by traversing the

pattern. In this case, we can also build the pattern cover along the way. This scheme is

obtained by distributing an increment to the pattern over the above nonincremental

scheme.

(1) Initial condition. Start with an empty pattern-pattern functor.

(2) Update. Let pi be the increment to the pattern, and let Pi be the corresponding

sieve.

(a) Subsumption sheaffor Pi. Seed the sheaf with values of homa(pj,pi) for

known atomic pattern pieces pj. Sheafify, again for known sub-patterns I7.

(b) Install new domains. Expand Sub(P) by adding Pi, and n u Pi for all known

sub-patterns Il. Install these new sub-patterns in each sheaf. Sheafify.

(c) Install new codomains. Install the new sub-patterns (computed above) in the

(domain category of the) pattern-pattern functor. For each new sub-pattern,

compute the subsumption sheaf as the colimit of the sheaves on a cover.

There are several optimizations possible (by recursively applying parts of the KMP

derivation) for computing the pattern-pattern functor and the subsumption sets

required by the algorithm in Section 4.13. We do not pursue these here, because our

primary goal is to show that the failure function of KMP can be explained as an

instance of backtracking.

I3 It is frequently mentioned in the literature (e.g., [3X]) that the precomputation and the matching parts
of KMP are fundamentally the same. Our generalization shows that this similarity is only apparent; it is an

accidental feature which is special to strings.

82

4.13. An algorithm using subsumption

In the previous few sections, we computed the dependencies between partial

occurrences. We will now exploit these dependencies to reduce the size of the cache of

partial occurrences maintained by the incremental matching algorithm. The sub-

sumption relation is a preorder on partial occurrences; by taking the quotient under

mutual subsumption, we obtain a partial order. The cache can then be represented by

its maximal elements (i.e., by removing all subsumed occurrences). Now, we have to

simulate the effect of the incremental algorithm of Section 4.8.1, which works on the

entire cache. The problem can be visualized as filling in the following diagram:

Nat((, 11’)

representation by
maximal elements

t R(-,h’)

update

I

? ‘,

representation by ?
Nat(_, h’ o h61) maximal elements

> R(-, h’ 0 h&l)

To deduce the update function on the optimized cache, we exploit the fact that

expanding a partial occurrence preserves subsumption, i.e.,

where 7c, n’, 4, and 4’ are partial occurrences, and the expansions on the right are

assumed to exist.

Thus, given an elementary occurrence, we try to expand each partial occurrence in

the cache; for any partial occurrence which cannot be expanded, we generate its

immediately subsumed occurrences and try to expand them, and so on. This proced-

ure guarantees that all partial occurrences which would have been generated in the

unoptimized cache are represented in the optimized cache as actual partial occur-

rences or as partial occurrences subsumed by others. In other words, we extend the

representation of the cache just enough to accommodate all partial occurrences

generated by the new increment.

The technique above is succinctly expressed by Hirschberg and Larmore [19]:

The principle of failure functions is disarmingly simple: when searching for an

extremal value within a sequence, it suffices to consider only the subsequence of

items, each of which is the first feasible alternative of its predecessor.

Dijkstra formalizes the same principle in his linear search theorem [12]: to search

for the largest element in a linear order which satisfies a given predicate, start from the

maximum and search in decreasing order. Our update function is a generalization

which works for any poset. Given some value, its immediately subsumed values (“first

feasible alternatives”) are the least upperbounds of the connected components in the

poset of all subsumed values.

Pattern matching and r&red prohlerns 83

4.13.1. Binary decomposition: incremental version with suhsumption

Here is the algorithm which represents the cache by its maximal elements, with

a modified update function to handle subsumed occurrences. The modified update

function can be systematically obtained from the algorithm which updates the entire

cache (Section 4.8.1) by using the definition of subsumption; we omit the details

because they are tedious.

(1) Initial condition. Start with an empty cache of partial occurrences.

(2) Update. Let the increment to the target be tj. For each partial occurrence 7~ (i.e.,

a compatible family on some sub-pattern n) in the cache, do the following:

(a) Expand. For each elementary occurrence I! (over the sieve Pi) generated by

the increment, if 1’ is compatible with 7-r (i.e., the restrictions of v and n to 17 n Pi

are equal), then add the expanded occurrence n @ v to the partial occurrences

on FTuPi, and continue with the next X; otherwise, backtrack.

(b) Backtrack. Generate all immediately subsumed occurrences of 7~. Repeat the

expansion procedure above for each. If there are no subsumed occurrences, goto 3.

(3) Unconsumed increments. If the increment tj did not participate in any expansion

in the previous item, add all unsubsumed elementary occurrences generated by tj to

the cache.

Replacing occurrences by subsumed occurrences is picturesquely called “sliding”

the pattern. If we view the algorithm of Section 4.8.1 as search in a space where the

states are partial occurrences, and the operations are expansion by elementary

occurrences arising from traversing the target, the above scheme is an instance of

dependency-directed backtracking. See [36] for a formal representation of the above

algorithm as search.

Figure 8 shows a trace of the above algorithm on graphs; the example is the same as

in Figs. 6 and 5. The trace incorporates two further optimizations: (1) a full occur-

rence can be discarded (after outputting it), and (2) if the traversal of the target

indicates that there will be no further opportunities to expand a particular partial

occurrence, then that occurrence can be discarded (the “traversal dead-end filter”). In

both cases, to maintain the invariant that the cache contains the maximal elements of

the full cache in the corresponding state, discarded occurrences have to be replaced by

immediately subsumed ones.

Complexity. The above algorithm is a generalized version of the KMP algorithm.

The complexity of the nonincremental algorithm of Section 4.7 arose from the fact

that each piece of the target can generate multiple occurrence arrows. If we use the

subsumption relation, then only one occurrence arrow need be generated; the others

are subsumed and can be regenerated later, if necessary. Thus, for strings, the above

algorithm for enumerating occurrences is linear in the size of the target.

4.14. Instantiation for strings

We briefly outline the instantiation of our derivation of a generalized KMP

algorithm to strings. The underlying category, LString, of labeled strings is defined in

84 Y. V. Sriniwis

Pattern Target with traversal order

States of the cache of partial occurrences:

1. albz

2. alb2, a&

3. albz, azbz, azb3

4. albz, azbz, azbscz -expand a2ba

5. albz, wzbz, azbsw2 -expand azbz and azbzc2

-filter the full occurrence a2b3czaz

--replace it by subsumed occurrences: a2b3c2, b3c2a2, c2a2b3

6. alb2, al&z, cmh, a&m, bsczaz, cza& -expand c2azbz and albz

-eliminate czazbzcz, azbscz, b3cza2, caazbz, albzcz

-using traversal dead-end filter

7. albz, albl

8. albz, alblcl -expand al bl

9. alb2, alblclal, clalbz -expand alblcl and albz

-end of algorithm

--traversal dead-end filter removes all partial occurrences

Fig. 8. Trace of generalized KMP on graphs (cf. Figs. 5 and 6).

Examples 2.7 and 2.8. We impose the additional restrictions that all the strings in the

site are finite, and all arrows are manic. We choose the topology defined in Example

3.2 to make the covers strict epimorphic families. This site satisfies the assumptions of

Section 3 and enables us to instantiate the derivation for strings.

For the incremental algorithm, we choose a left-to-right traversal of the target

string (other choices are possible; this choice leads to the standard KMP algorithm).

Observe that, in view of our definition of string covers, this traversal has to enumerate

pairs of elements of the target string. l4 The left-to-right traversal has the property that

14A cover is a set; the requirement of strictness forces the representation of the linear order of a string via

overlapping pairs. The standard KMP algorithm can be modeled by adding a linear order to covers, which
provides a unique gluing with the simpler cover consisting of single elements of the string. Rather than

generalize the definition of cover, we prefer to add this detail as an optimization to the final algorithm.

Pattern matching and related problems 85

we need only save those partial occurrences which touch the right edge of the portion

of the target already traversed; other partial occurrences have no potential of being

expanded and can be deleted. Such partial occurrences are just occurrences of all

prefixes of the pattern. This reduces the number of partial occurrences, in the worst

case, for a pattern p of length 1~1, from 2’Pi to 1 pi. The incremental algorithm of Section

4.8.1 is then the naive fi(lpl x Itl) algorithm.

Next, we can eliminate all but one partial occurrence, using the subsumption

relation. When specialized to strings, subsumption is just the substring relation

on the domains of occurrence arrows: p-ft subsumes q-+t if and only if q is a

substring of p. When combined with the optimization above of retaining only

expandable partial occurrences, the subsumption relation can be further specialized to

the suffix relation on the domains of occurrence arrows. Here is the appropriate

picture:

pattern abcabcabc

a (subsumed occurrence)

a b c a (subsumed occurrence)

a b c a b c a (partial occurrence)

target abcabcabcaaab

The precomputation of the pattern-pattern functor is also simplified. Given that we

are saving only occurrences of prefixes of the pattern, the subsumption relation

assigns to each prefix of the pattern all prefixes which are also suffixes (this is the

prefix-suffix problem). The subsumption relation (let us denote this by C) can be

incrementally computed using the following distributive law:

C(x.i)=(y. i(yGC(x) A prefix(y.i,p)},

where the dot denotes concatenation of strings, p is the pattern, x is a sub-pattern (a

prefix of p), and i is the increment produced by traversing the pattern. This computa-

tion can be further optimized to yield only the immediately subsumed string for each

sub-pattern (this is the maximal prefix-suffix problem).

The above computation captures the essence of the standard KMP algorithm. Once

the subsumption relation has been precomputed, we can optimize the incremental

algorithm which updates the cache of partial occurrences. There is only one active

partial occurrence at any time, because all other potentially expandable partial

occurrences (which are suffixes of the current partial occurrence) are subsumed. If the

current partial occurrence cannot be expanded, the algorithm backtracks to the next

subsumed partial occurrence, and continues doing so until the current increment has

been consumed.

86 Y. V. Srinkas

5. Related algorithms

Our derivation of a generalized KMP algorithm works for sheaves other than

occurrence sheaves, because we have not used properties which are specific to

matching; in fact, we only defined occurrences to be arrows in some category. Here are

some other problems which can be described using sheaves, and for which the KMP

derivation (or parts of it) can be applied. Some of these problems are closely related to

matching; others, such as the n-queens problem, are quite remote. However, all these

problems share the common characteristic of attempting to satisfy a local/y defined

collection of constraints (see, especially. Waltz filtering and the n-queens problem),

a concept which is nicely captured by a sheaf.

5. I. Multiple putterns

Given two patterns p and q, we say that the pattern p V q occurs in a target if either

p occurs or q occurs. If the two patterns do not intersect with each other, then finding

occurrences of p V q is straightforward: take the union of the occurrences of p and

occurrences of q. If the two patterns do intersect, we can obtain the sheaf of

occurrences for p V q as a pushout (more generally, a colimit, if there are more than

two patterns):

hOmsubcc,,(-~ f) - hOmsubcp v c&, t)

In the diagram, Sub(() denotes the poset of sub-patterns of a pattern. The above

scheme essentially corresponds to the algorithm of Aho and Corasick for multiple

string patterns [l].

5.2. Patterns ,rith curicrhles

Labeled data structures in which some of the labels are variables are easy to handle:

just define the site appropriately. Here is an example with variable labels in trees.

Example 5.1 (Expression trees). Let G be a signature, i.e., a collection of sort names

and a collection of operation names defined on these sorts. Each operation ,f is

associated with a rank, sl,sZ, s,+s. The collection of expressions over the signa-

ture C is defined inductively as follows:

(1) The distinguished symbol c (for “variable”) is an expression of sort s, for every

sort s in C.

(2) If c: +s is a constant of sort s, then c is an expression of sort s.

Pattern matching and related problems 87

(3) Iff: Si,SJ, . ..) s,-+s is an operation, and e,, ez, .., e,, are expressions of sorts

si, s2, . , s,, then f(e, , e2, . . , e,) is an expression of sort s.

Expressions can be represented as rooted, ordered, labeled trees. A morphism of

expression trees is a tree morphism (see Example 2.6) which is injective on nodes,

preserves the order on the children of a node, and preserves labels (except U, which

may map on to a node with any label).

A cover of an expression e is a family of morphisms (ei+e 1 ill} such that for each

sub-expression e’ of e, there is at least one ei such that root(ei)= root(e’). The intent of

this restriction is to ensure that not all of the ei’s are variables, which essentially

contain no information about covering. For example, the expression f(a, g(b, c)) is

covered by f(a, v) and g(b, c).

Variable patterns are somewhat more interesting. Consider the site of strings

(Example 2.7). We can postulate a pattern V which matches any string; thus, this

pattern is an initial object in the site. We can also have typed variable patterns, e.g.,

a pattern L,,, may match only strings whose length is 10. Variables may be embedded

in strings, yielding patterns such as aX b which matches any string starting with the

letter a and ending with the letter b. Such patterns can be handled by changing the site

appropriately (e.g., add an arrow from uXb to each string it matches). However, they

complicate the generation of elementary occurrences (which is the base case of the

divide-and-conquer step of our derivation). This is to be expected because variables

are entities which are algebraically defined: sites only capture the geometry of the

patterns, the algebra is represented in the codomain of a sheaf.

5.3. Commutative/associative matching

Matching modulo commutativity or associativity, or both, can be handled, again by

using an appropriate site. The procedure for generating elementary occurrences has to

account for these axioms.

Example 5.2 (Expression trees, morphisms module commututivity). The site defined in

the previous example can be extended to incorporate commutativity. Let f be an

operation in the signature which is commutative, i.e., Vu, b f(u, b)=f(b,u). A mor-

phism is defined as before, except that the ordering on the children of a node labeled

byfneed not be preserved. The definition of cover is the same. This definition of

morphism represents matching modulo commutativity. The definition can be obvi-

ously extended to several commutative operations, to associative operations, and to

any mixture of these.

5.4. Nonlocal properties, approximate matching

Occurrence arrows may be constrained by some nonlocal properties, such as being

a manic, or containing at most k mismatches. The former is a “moderately” nonlocal

88

a compatible family

Y. V. Srinivas

1 b

a /

\ 2
b

I

glue

a- b------l

Fig. 9. An example showing that being manic is a nonlocal property

property and can be handled by making the topology a little coarser. The latter is

a truly global property of an occurrence and yields only a separated presheaf; I5 hence,

compatible families have to be filtered (by a predicate which determines whether the

number of mismatches is <k) before they can be glued.

Why is being a manic a nonlocal’6 property? Consider the example in the site of

graphs shown in Fig. 9. The problem is that the topology (in which a graph can be

covered by its set of edges) is too fine to detect the incompatibility between two maps

whose domains are equivalent. This can be fixed by altering the topology so that two

edges which can potentially be mapped onto the same edge are never split up in

a cover. We can also solve the problem by only building compatible families which

yield a manic after gluing.

5.5. Context-free parsing: EarleJl’s algorithm

Earley’s algorithm for context-free parsing [13] scans the input string from left-

to-right, accumulating partial parses (left contexts) of the input seen so far. For each

input increment, some partial parses in the current set of parses are expanded, and

some are discarded, depending upon the compatibility of the increment with the

parses. We will represent this by a sheaf in which a parse is obtained by gluing

together partial parses. Here are the definitions.

Definition 5.3 (Partial parse). A partial parse of a string w is a derivation of the form

S g r +z w, where S is the start symbol of the grammar, s is the reflexive, transitive

closure of the derivation relation, and M is a sentential form. Thus, a partial parse, in

addition to deriving NJ, may derive other elements to its left and to its right.

r5 In a separated presheaf, the correspondence F(a)+Nat(R, P) is an injection, rather than a bijection, as

in a sheaf.

r6 The proper phrase is “not obviously local”, or not local on the obvious topology. Locality is always

defined with respect to a topology. We later define a coarser topology which makes the property of being

a manic local.

Pattern matching and related problems 89

Example 5.4 (Parse sheaf). Partial parses produce a sheaf. The underlying site is the

site of labeled strings with inclusion arrows, and strict epimorphic families as covers.

The functor @ assigns to each string the set of its partial parses:

@ : LStringoP-+Set

WH{S 3 CXGW}

i
I T _ 0 i, i.e., (S d /3 + u)i-+(S 25 /3 + u 4 w)

UH{S~j?~U}

We can get an exact parse of a target t using the above sheaf, by enclosing the target

in two new symbols distinct from the vocabulary of the grammar, -f t k, and adding

a new start symbol S’ with the production S’+ S k.

We can obtain a divide-and-conquer algorithm from the above parse sheaf by

choosing a cover for the target, enumerating partial parses of the pieces, and gluing

the partial parses. However, there can be an infinite number of partial parses for each

piece; hence, this set has to be represented intensionally. The grammar provides the

requisite intension: we say that a parse 7c subsumes a parse 4 if 4 can be obtained by

applying additional productions to z (see [6] for a more sophisticated scheme which

uses equivalence classes of derivations).

Earley’s algorithm uses a left-to-right traversal of the target. This restricts partial

parses to only those which start with terminals. Now consider a grammar which

generates the language (a + b)+:

S-rXIXS,

X-mlb.

Consider a target string “aau”, covered by (“au “, “au”}. The first “au” will generate

the following partial parses (all other parses being subsumed):

S&u, S&zuS.

The second “au” also generates the same partial parses. Now, when we try to find

compatible families of parses, we do not succeed, and we have to backtrack (i.e.,

generate subsumed parses). Here are the subsumed parses for the second “au”:

S&zuu, SSuuuS.

Next, we enumerate compatible families of partial parses, thus eliminating some

parses (e.g., S&U). The resultant parses, after gluing the compatible families, are:

S&au, S&uaS.

The key observation here is that, for any increment to the target, we always have to

backtrack until we produce parses which extend the left context. Thus, we might as

well expand the current left context rather than try to parse the new increment: this

90 Y. V. Sriniwu

corresponds to the “predict” step of Earley’s algorithm (the collections of unsubsumed

partial parses are the “items”). Here are possible predictions, given parses for the

first “uu”:

SSaaa,

SSaah,

SZ-aad.

SSaahS.

Some of these predictions have to be rejected because they are not parses of the second

“au”: this is the “verify” step of Earley’s algorithm. This characterization of Earley’s

algorithm shows its close connection with the KMP algorithm, and also the connec-

tion between KMP and LR-parsing.

5.6. Constrairlt propugation: Wultz Jiltering

Relaxation algorithms for constraint propagation can be described by sheaves

when the constraints are local. An example is Waltz filtering [39], an algorithm which

assigns three-dimensional interpretations to two-dimensional line drawings of scenes.

The underlying site is that of undirected, connected graphs with a different notion of

cover.

Example 5.5 (Graphs, junction covers). We now define a coarser topology on graphs

(cf. Example 2.5) which is suitable for Waltz filtering. A junction in a graph is

a subgraph consisting of a node together with all its adjacent nodes (two nodes are

adjacent if they are connected by an edge). A junction cover of a graph is the collection

of all junctions in that graph; these are the finest covers in the site.

These graphs represent (parts of) line drawings of three-dimensional scenes. The

algorithm assigns labels to each edge in the drawing, labels such as shadow edge,

concave edge, convex edge, obscuring edge, etc. The possible combinations of labels

for commonly occurring junctions, such as L-junctions, T-junctions, forks, etc., are

precomputed by using physical properties of three-dimensional space.

The algorithm works by choosing the junction cover for the given line drawing,

assigning the precomputed label combinations to each junction, and eliminating

inconsistent combinations of labels: when two junctions share an edge, the edge

should be assigned a unique label. Thus, the Waltz filtering algorithm can be obtained

by applying the KMP derivation to the sheaf of labelings of graphs (this sheaf is

similar to the graph-coloring sheaf of Example 2.14).

5.7. Emmerating ,functions

Consider the sheaf of functions of Example 2.15, and consider the problem of

enumerating all functions of the formf‘: D+R. Such functions can be built from pieces

by decomposing the domain and using the sheaf condition. If we choose the finest

Pattern matching and related problems 91

cover for D, the base case for the problem reduction strategy of Section 4.1 is to

enumerate all functions from a singleton set {x} c D to the range R. By the definition

of function, there is one such function for each element of R. This algorithm has been

encoded as a “global-search” theory by Smith [33], and has been used to derive

several algorithms in the KIDS program synthesis/transformation system [34], for

example, the n-queens problem [normally, the set hom(D, R) is filtered after enumer-

ation to satisfy the conditions imposed by a specific problem]. We give below

a different derivation for the n-queens problem.

5.8. The n-queens problem

The n-queens problem is to place n queens on an n x n chessboard such that no two

queens are in conflict, i.e., no two queens share the same row, column, or diagonal.

This problem is typically solved by a backtracking algorithm [40, 11, 341. We show

how to use a divide-and-conquer strategy. The obvious scheme of decomposing the

chessboard does not work. The correct entity to decompose is the conjunction

defining the problem: this conjunction can be realized by achieving each conjunct

separately. Here is the appropriate sheaf.

Example 5.6 (Sheaffor n-queens). The underlying site is the poset of subgraphs of

a complete (i.e., fully connected) graph with n nodes. This graph is the constraint

graph, representing the potential interaction between the queens. A configuration of

queens corresponding to a graph G is a function assigning a position on an n x n

chessboard to each node in the graph G. We define a contravariant functor assigning

the set of valid configurations of queens to each graph: a valid configuration is one in

which queens do not conflict along the edges of the graph.

Config: Sub(K,)Op-+Set

Gt-+J(G)~ Board) V eEE(G) ok(c, e))

i
1 I-

Oi

Hk+{N(H)-L Board 1 VeEE(H) ok(d, e)}

K, is the complete graph with n nodes, Sub(&) is the poset of subgraphs of K,, N(-)

and E(() denote the nodes and edges of a graph, Board = { (x, y) (1 G x 6 n, 1 ,< y d n},

and ok(c, e) is a predicate stating that the positions in the configuration c of the two

queens connected by the edge e are not in conflict. The sheaf condition is satisfied

because pieces of a cover always intersect in at least one node, and the queen

represented by that node will rule out conflicts between subconfigurations.

We can apply the KMP derivation to this sheaf. We start with a problem reduction

strategy, choosing the finest cover for the graph K,. The base case is to enumerate all

92 Y. V. Sriniras

pairs of queens which do not conflict. We can switch to an incremental algorithm

which generates queen-pairs incrementally and maintains partial configurations. We

can add a subsumption relation: a configuration cr subsumes a configuration c2 if

c2 E cr. Now, if an increment cannot extend a configuration, we have to test it against

subsumed configurations: this is the backtracking step.

6. Concluding remarks

We have given a sheaf-theoretic characterization of pattern matching. We defined

an occurrence to be an arrow in a category. This category is equipped with a Grothen-

dieck topology to allow the decomposition of patterns and targets. The extension of

the occurrence relation can be described by a sheaf on this topology. We derived

a generalized version of the Knuth-Morris-Pratt pattern-matching algorithm from

such a sheaf. The derivation uses limits and colimits to decompose various parts of the

problem:

(1) The pattern is decomposed via a cover in the topology. Correspondingly, partial

occurrences are glued together via a limit.

(2) The target is decomposed via another cover. The sheaves generated by the

pieces of the target are combined via a colimit.

(3) When increments to the target are given sequentially, the collection of partial

occurrences is updated via sheafification (the process of completing a functor into

a sheaf). This can be viewed as computing a colimit in time.

We explained the failure function of KMP in terms of a subsumption relation.

Using subsumption, the cache of partial occurrences can be minimally represented by

deleting all subsumed occurrences. This representation makes the algorithm efficient,

by reducing the amount of work to be done. Updating such a cache sometimes

necessitates the regeneration of subsumed occurrences; this regeneration corresponds

to backtracking in the space of partial occurrences.

In view of the minimal assumptions we have made regarding the underlying data

structures and the occurrence relation, our derivation works for sheaves other than

those generated by an occurrence relation. Hence, we have a general derivation for the

problem of

enumerating a collection of locally defined morphisms.

Besides extensions to KMP, such as multiple patterns, patterns with variables, and

commutative matching, several other algorithms fit this characterization: Earley’s

algorithm for context-free parsing, Waltz filtering for scene analysis, enumerating

functions, and the n-queens problem. Common to these algorithms is the satisfaction

of locu[l~ defined constraints. Moreover, these algorithms are a combination of some

form of decomposition applied to the domain (geometry) and some form of search

applied to the codomain (algebra). Such a combination of geometry and algebra is

indeed the purpose of sheaf theory.

Pattern matching anti related problems 93

6.1. In defence of abstract nonsense

In this paper, we have attempted to separate the “abstract nonsense” of pattern

matching from the specific features of a data structure or an occurrence relation. Such

a separation is inevitable in any field into which category theory is introduced. We

quote Peter Hilton [18]:

Category theory provides a language for discussing very significant mathematical

ideas, it provides a unifying medium, and it isolates the “general abstract nonsense”
_ in Saunders Mac Lane’s vivid phrase - from the hard “concrete” mathematics.

The abstract nonsense of pattern matching is the notion that occurrences are built

out of pieces, with elementary occurrences either being trivially defined or dependent

on the particular data structure. Such a characterization, together with general

implementation strategies such as divide-and-conquer, finite differencing, and search

(these could be called the abstract nonsense of algorithm design), yields the structure

for a general class of algorithms, with a surprising variety of examples. This leads to

the speculation that category theory, together with a little geometry, provides a good

foundation for studying the abstract structure of algorithms.

6.2. Why Grothendieck topologies?

The arrows in the covers of all the sites defined in this paper are monies. Hence, it

may be argued that the machinery of Grothendieck topologies is too general for

describing the problem of pattern matching. So, we give below an example of a site in

which covers contain nonmonic arrows.

Example 6.1 (Expressions with sharing). Consider the site of expression trees defined

in Example 5.1. We can modify this site so that expressions are represented by

directed, acyclic graphs, thus allowing sharing of some sub-expressions. The mor-

phisms are accordingly modified to correspond to morphisms of graphs (see Example

2.5). We define a cover to be an epimorphic family of arrows in which the domain of

every arrow is a tree.

Such nonmonic covers also arise when we consider matching modulo a set of

equations (e.g., commutativity and identity).

Quite apart from allowing nonmonic covers, Grothendieck topologies have the

advantage of defining the topology directly in terms of covers; it is this feature

that makes them convenient for our derivation. Most of the data structures used

in pattern matching are not closed under union or intersection (e.g., strings,

connected graphs, etc.), thus precluding a direct characterization in terms of ordinary

topologies.

94 Y. V. Srinicus

Appendix. A formal basis for KMP-style algorithms

We present some results from category theory and sheaf theory, mostly from SGA4

[2], which form the basis of the derivation of the pattern-matching algorithm given in

the paper. These results arise purely from the definitions of categories, topologies, and

sheaves and, thus, are not specific to a particular problem or data structure. Yet, they

yield enough information to synthesize an abstract algorithm.

Every presheaf can be minimally “completed” into a sheaf. This process is called

“sheafification”, and is carried out in two stages, converting a presheaf into a separ-

ated presheaf and then into a sheaf. Roughly speaking, for a presheaf F: VP+Set, this

is done by comparing the set F(X) and the set of compatible families over covers of X:

extra elements in F(x) are deleted, and distinct elements corresponding to the same

compatible family are identified; in all, the correspondence between compatible

families and members of F(x) is forced to be bijective.

Lemma A.1 (Ordering on covers, Artin et al. [2, ExposC II, Section 1.1.11). In any site

(VZ“, J), ,for uny object x, the collection of covering sieves J(X) jbrms a cojiltered poser

under inclusion of covers.

Theorem A.2 (Sheafification, Artin et al. 12, Expost: II, Section 31). Given a presheaf

F :W’*+Sef, the functor LF :WoP+Set is dt$ned by setting

LF(x) = Colim Nat (R, F),
__f
ReJ(x)

with the colimit taken over the poset J(x). For an arrow g : x+y, LF(g) is defined using

the change-qf-base ,functor g* : J(y)-+J (x), which transfers covers from y to x. The

assignment above of F H LF can be extended to arrows, yielding a ,functor

L: PreShv(W)+Preshv(%).

For any presheaf F, the presheaf LF is always a separated presheaf If F itself is

a separated presheaf, then LF is a sheaj: These properties of L produce an adjunction

Preshv(%) i sh Shv (%?, J),

where i is the inclusion, and sh is the “associated-sheaf” or “sheaj$cation” functor,

dejned by icsh=LLL.

For the next result, we need a definition. Let E(%,~) denote the composition of the

following functors:

&<U,Jj. G5 -L Preshv(%) -% Shv (%‘, J),

where y is the Yoneda embedding and sh is the sheafification functor. The subscript in

c(<d,Jj will be dropped when it is evident from the context.

Pattern matching and related problems 95

Theorem A.3 (Lifting of covers, Artin et al. [2, Expose II, Section 4.41). Zf(fi: x!+x}

is a cooeringfumilyfor x in (W,J), then {8(fi):E(Xi)-+&(X)} is an epimorphicfumily in

Shv(%?, J).

The result follows from the facts that covers can be lifted into Preshv(+?), and the

above adjunction.

We would like to use the above result to decompose the target into pieces tj+t,

build the occurrence sheaves hom(-, tj) for these pieces, and combine these sheaves to

produce the occurrence sheaf hom(-, t) for the target. To do this, we need a construc-

tive method to build the codomain of an epimorphic family. This is possible in any

topos.

Theorem A.4 (Epimorphic families in a topos). In any topos, if {gi: yi~y} is an

epimorphic family, then

y=Colim image(gi),

where “image” denotes the image of an arrow, and the colimit is taken over the poset of

subobjects of y.

We can apply this result to Shv (%7, J) because it is a topos. Moreover, if we choose

a cover tpt for the target which has only manic arrows, then the two results above

combine to give

hom(-, t) s Colim hom(-, tj).
-

We next exploit the properties of an adjunction

colimit of sheaves required for decomposing the

being a left adjoint, preserves colimits.

to obtain a nice expression for the

target. The sheafification functor,

Theorem A.5 (Colimits of sheaves, Artin et al. [2, Expose II, Section 4.11). Let

F : ~-+Shv(~, J) be a diagram of sheaves. Then, the colimit of this diagram is given by

Colim F=sh(% ioF),

.F .3

where i is the inclusion functor from sheaves to presheaves, and sh is the shea33cation
functor.

Recalling the definition of sheafification, the above expression allows us to compute

occurrences using two colimits: one over pieces of the target, and one over the set of

covers of the pattern. The latter translates to incremental computation of partial

occurrences, when combined with the distributive law below.

96 Y. V. Srinivas

Lemma A.6 (Distributing limits, Mac Lane [23, p. 2121). In Set, colimits are universal,
i.e., the pullback of a colimit cone is a colimit cone. In particular, for coproducts we yet

This can be extended to several coproducts (the subscripts for the pullbacks are omitted):

Acknowledgment

This work was done as part of my Ph.D. dissertation at the University of California,

Irvine, and was supported in part by the National Science Foundation CER grant

CCR-8521398. I thank my advisor, Peter Freeman, for encouraging me to pursue this

research; David Rector, for introducing me to sheaf theory and answering many

questions about category theory, topology, and algebraic specification; a fellow

graduate student, Ira Baxter, for listening to my half-baked ideas, asking probing

questions, and pointing out the connection of my work to Waltz filtering; and Doug

Smith, for providing constructive comments on a previous version of this paper. The

preparation of this paper was supported by the Office of Naval Research grant

NO00 14-9 1 -J- 1924.

References

111

121

131

[41
I51
[61

171
PI

[91

[lOI

1111

Cl21

A.V. Aho and M.J. Corasick, Efficient string matching: an aid to bibliographic search, Comm. ACM 18

(1975) 333-340.

M. Artin, A. Grothendieck and J.L. Verdier, ThPorie drs Topos et Cohomologir Eta/e des Sch&ms,
Lecture Notes in Mathematics, Vol. 269 (Springer, Berlin, 1972); SGA4, Seminaire de Gtometrie

Algebrique du Bois-Marie, 1963-1964.

T. Baker, A technique for extending rapid exact string matching to arrays of more than one

dimension, SIAM J. Comput. 7 (1978) 533-541.

M. Barr and C. Wells, Toposes, Triples and Theories (Springer, New York, 1985).

M. Barr and C. Wells, Category Theoryfor Computing Science (Prentice-Hall, New York, 1990).

D.B. Benson, The basic algebraic structures in categories of derivations, Inform. and Control 28 (1975)

l-29.
R. Bird, Two dimensional pattern matching, It$orm. Process. Left. 6 (1977) 168-170.

R.S. Bird, J. Gibbons and G. Jones, Formal derivation of a pattern matching algorithm, Sci. Comput.
Programming 12 (1989) 93-104.
J. Burghardt, A tree pattern matching algorithm with reasonable space requirements, in: Proc. CAAP
‘88, Lecture Notes in Computer Science, Vol. 299 (Springer, Berlin, 1988) l-15.
M. Demazure, Topologies et faisceaux, in: M. Demazure and A. Grothendieck, eds., PropriPtk
GPnPrales des Sch&nas en Groupes, Lecture Notes in Mathematics, Vol. 151 (Springer, Berlin, 1970);
Expose IV of SGA 3 (Seminaire de Geomttrie Algebrique du Bois-Marie, 1962164).

E.W. Dijkstra, Notes on structured programming, in: O.J. Dahl, E.W. Dijkstra and C.A.R. Hoare,

eds., Srrucrured Programming (Academic Press, New York, 1972) l-81.

E.W. Dijkstra, A Discipline of Programming (Prentice-Hall, Englewood Cliffs, NJ, 1976).

Pattern matching and related problems 97

[13] J. Earley, An efficient context-free parsing algorithm, Comm. ACM 13 (1970) 944102.

1141 CL. Forgy, Rete: a fast algorithm for the many pattern/many object pattern match problem, Arr$cial

InteNigence 19 (1982) 17-37.
[15] M.P. Fourman, C.J. Mulvey and D.S. Scott, App/ications ofSheaves, Lecture Notes in Mathematics,

Vol. 753 (Springer, Berlin, 1979).
[16] R. Goldblatt, Topoi: The Categorial Analysis of Logic (North-Holland, Amsterdam, 1984).

[17] H. Herrlich and G.E. Strecker, Category Theory: An Introduction (Allyn & Bacon, Boston, 1973).

1181 P. Hilton, Lectures on Category Theory (Colgate University, Hamilton, NY, 1972).
1191 D.S. Hirschberg and L.L. Larmore, New applications of failure functions, J. Assoc. Comput. Mach. 34

(1987) 616-625.
1201 CM. Hoffmann and M.J. O’Donnell, Pattern matching in trees, J. Assoc. Cornput. Mach. 29 (1982)

68-95.
1211 P.T. Johnstone, Topos Theory (Academic Press, London, 1977).

[22] D.E. Knuth, J.H. Morris, Jr. and V.R. Pratt, Fast pattern matching in strings, SIAM J. Comput.
6 (1977) 3233350.

1231 S. Mac Lane, Categories,for the Working Mathematician (Springer, New York, 1971).

1241 M. Makkai and G.E. Reyes, First Order Categorical Logic, Lecture Notes in Mathematics, Vol. 611

(Springer, Berlin, 1977).

[25] J.M. Morris, Programming by expression refinement: the KMP algorithm, in: W.H.J. Feijen et al.,

eds., Beauty is Our Business: A Birthday) Salute to Edsger IV. Dijkstra (Springer, New York, 1990)

327-338.

1261 R. Paige and S. Koenig, Finite differencing of computable expressions, ACM Trans. Prog. Lang.
Systems 4 (1982) 402-454.

[27] H.A. Partsch and N. Volker, Another case study on reusability of transformational developments:

pattern matching according to Knuth, Morris, and Pratt, Tech. Report, KU Nijmegen, 1990.
[ZS] B.C. Pierce, Basic Category Theory far Computer Scientists (MIT Press, Cambridge, MA, 1991).

[29] D. Rydeheard and R.M. Burstall, Computational Category Theory (Prentice-Hall, Englewood Cliffs,

NJ, 1988).

1301 H. Schubert, Categories (Springer, Berlin, 1972).

1311 J.A. Seebach. Jr., L.A. Seebach and L.A. Steen, What is a sheaf?, Amer. Math. Monthly 77 (1970)
681-703.

[32] D.R. Smith, Top-down synthesis of divide-and-conquer algorithms, Artijcial Intelligence 27 (1985)
43396.

[33] D.R. Smith, The structure and design of global search algorithms, Tech. Report KES.U.87.12, Kestrel

Institute, Palo Alto, California, 1988; Acta Inform. (to appear).

[34] D.R. Smith, KIDS: a semiautomatic program development system, IEEE Trans. Software Engrg. 16
(1990) 1024-1043.

1351 D.R. Smith, Structure and design of problem reduction generators, in: B. Mbller, ed., Constructing
Programs from Specifications (North-Holland, Amsterdam, 1991) 91-124.

1361 Y.V. Srinivas, Pattern matching: a sheaf-theoretic approach, Ph.D. Dissertation, Univ. of California,

Irvine, 1991; Tech. Report 91-41, Dept. of ICS.

[37] B.R. Tennison, Sheaf Theory (Cambridge University Press, Cambridge, 1975).

1381 J. van der Woude, Playing with patterns, searching for strings, Sci. Camput. Programming 12 (1989)
177-190.

[39] D. Waltz, Understanding line drawings of scenes with shadows, in: P.H. Winston, ed., The Psychology
of Computer Vision (McGraw Hill, New York, 1975) 19-91.

1401 N. Wirth, Program development by stepwise refinement, Comm. ACM 14 (1971) 221-227.

