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We present a general theory of pattern matching by adopting an extensional, geometric view of 

patterns. Representing the geometry of the pattern via a Grothendieck topology, the extension of the 

matching relation for a constant target and varying pattern forms a sheaf. We derive a generalized 

version of the Knuth-Morris-Pratt string-matching algorithm by gradually converting this exten- 

sional description into an intensional description, i.e., an algorithm. The generality of this approach 

is illustrated by briefly considering other applications: Earley’s algorithm for parsing, Waltz filtering 

for scene analysis, matching modulo commutativity, and the n-queens problem. 
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1. The geometry of matching 

The pattern-matching problem consists of finding occurrences of a pattern in 

a target. A pattern is usually given by a constant entity (e.g., the string “Charlie”), an 

exemplar (e.g., the expression E x E + E, with the variable E matching any expression), 

or, in general, a predicate (e.g., a connected graph with a prime number of edges). 

A target consists of an entity which is usually much larger than the pattern ~ hence, 

the possibility of multiple occurrences of the pattern ~ and which may spread out in 

space and time. Corresponding to the patterns above, some possible targets are a file 

representing a document, a syntax tree produced during compilation, and a graph 

representing a network. Usually, the pattern and the target are the “same kind” of 

entities: strings, graphs, bitmaps, etc. An occurrence is a piece of the target together 

with a correspondence with the pattern. If the pattern is a constant, this piece of the 

target should be the same as the pattern; if the pattern is an exemplar, the piece should 

have the same shape as the pattern; if the pattern is a predicate, the piece should satisfy 

the predicate. 

Pattern matching in graphs, and in any data structure more complex than graphs, is 

NP-complete. However, in most practical situations, and when data structures such as 

strings and trees are used, more efficient algorithms are possible. In particular, 

occurrences of a constant pattern string in a target string can be enumerated in linear 

time, as shown by the Knuth&Morris+Pratt string-matching algorithm 1221 (hereafter 

abbreviated as KMP). This algorithm uses some clever tricks to achieve this bound. 
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Fig. 1. Anatomy of an occurrence: example with graphs 

In this paper, we will analyze this algorithm by providing a derivation of a generalized 

version of the algorithm which works for any data structure (but not necessarily in 

linear time). 

In generalizing KMP to data structures- other than strings, the feature which 

acquires prominence is the piecing together of an occurrence from partial occurrences. 

We show an example of this phenomenon, using graphs, in Fig. 1: an occur- 

rence arrow p-+t is obtained by gluing together smaller arrows pi-‘tj. The 

notion of building an occurrence arrow by “gluing” together or “sewing” to- 

gether smaller arrows has a decidedly geometric flavor. The rest of this paper is de- 

voted to formalizing and exploiting this geometric nature of the pattern-matching 

problem. 

KMP has been generalized to data structures other than strings, such as trees 

[20,9], and two-dimensional arrays [3, 71. However, these generalizations are ad hoc 

in the sense that they do not provide a systematic way of obtaining a version of KMP 

for other data structures. This lack of generality arises from the lack of focus on the 

geometry of the problem. 

1.1. The Knuth-Morris-Pratt algorithm 

The KMP algorithm [22] is a fast pattern-matching algorithm for finding occur- 

rences of a constant pattern in a target string. It is linear in the sum of the sizes of the 

pattern and the target strings. KMP reduces the complexity of the naive algorithm for 

string matching (check for a match at every position in the target string) by avoiding 

comparisons whose results are already known (from previous comparisons). In 

particular, given a character mismatch after the pattern is partially matched, the next 

possible position in the target where the pattern can match can be computed by using 

the knowledge of the partial match. This “sliding” of the pattern on a mismatch is the 

most well-known aspect of KMP. We show below an example where there is 
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a mismatch at the last character of the pattern and the pattern can be slid three 

positions to the right: 

pattern ahcaba 

target abcahcahc 

matches \ \ v x x x 

slide - uhcaba 
The amounts by which to slide the pattern on possible mismatches can be precom- 

puted in time proportional to the size of the pattern. Thus, all occurrences can be 

enumerated in a single left-to-right scan of the target string without backing up. 

The table assigning the amount of sliding to each mismatch is called the failure 

function. We attack the problem of rigorously deriving such a function from a speci- 

fication of pattern matching. There are several derivations of KMP in the literature 

[12, 8, 38, 25, 271. However, all these derivations consider only pattern matching on 

strings. It is not apparent how to generalize these derivations because they crucially 

depend on properties of strings. We follow a more general approach of describing 

a match in terms of sub-matches; this description depends only on the geometry of the 

underlying data structure. We also explain the failure function as an instance of 

backtracking, a general strategy for searching. 

1.2. Outline 

In Section 2, we give definitions and examples of topologies and sheaves. In 

Section 3, we characterize the extension of the occurrence relation as a sheaf. In 

Section 4, we derive a generalized version of KMP starting from an occurrence sheaf. 

In Section 5, we show that the same derivation provides explanations for a variety of 

other algorithms. The appendix is devoted to results from category theory and sheaf 

theory, which form the formal basis of the derivation. 

1.3. Background 

The reader is assumed to have a working knowledge of category theory. The level of 

category theory required for a thorough understanding of the formal basis of the 

derivation in this paper precludes a short introduction here. However, the derivation 

of the pattern-matching algorithm can be understood at an intuitive level, by thinking 

of a category as a partially ordered collection of entities, a set-valued functor (and also 

a sheaf) as a multifunction, and a natural transformation as an indexed family of 

maps. We will extensively use natural transformations to represent compatible fami- 

lies of partial occurrences. 

Relevant concepts of category theory can be found in mathematics textbooks [23, 

17, 301 or computer-science-oriented introductions to category theory [28,29,5]. The 

notation used in this paper closely follows that used by Mac Lane [23]. 
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2. Topologies, sites, sheaves 

We formalize the geometry of patterns via Grothendieck topologies, which are 

more suited than general topology (point-set topology) to the finite structures which 

arise in computer science.’ Normally, a topology is a collection of open sets which is 

closed under arbitrary unions and finite intersections. A Grothendieck topology is 

a generalization in which the poset of open sets is replaced by a category. The 

topology itself is captured in the notion of a “cover,” which is a generalization of open 

covers. The definitive reference for Grothendieck topologies and sheaf theory is SGA4 

[2, Exposes I-IV]. Several other books have brief descriptions [16, 24, 30, 4, 211. 

2.1. Sites 

Definition 2.1 (Sieve). A sieve S on an object a in a category %? is a collection of arrows 

with codomain a which is closed under right composition, i.e., iff: b+a is in S, then for 

any arrow g : c-b, the composite f 0 g : c+a is in S. 

Definition 2.2 (Grothendieck topology). A Grothendieck topology J on a category %? is 

an assignment to each object a of 97, a set J(a) of sieves on a, called covering sieves (or 

just covers), satisfying the following axioms: 

(1) Identity cover. For any object a, the maximal sieve {fl codomain(f)=a} is in 

J(a); 
(2) Stability under change of base. If R E J(a) and b L a is an arrow of %?, then the 

sievef*(R)= {c -5 blj”og~R} is in J(b); 

(3) Local character. If REJ(~) and S is a sieve on a such that for each arrow 

b L a in R we havef*(S)EJ(b), then SEJ(U). 

Definition 2.3 (Site). A site is a category along with a Grothendieck topology. The site 

formed by a topology J on a category Q? will be denoted by (%‘, J). 

Explanation of axioms. The axioms of a topology’ are closure conditions on the 

collection of covers. Axiom 1 states that the sieve generated by the identity arrow is 

a cover. Axiom 2 states that, given a cover of an object and a sub-structure of that 

object, the restriction of the cover to the sub-structure is a cover of the sub-structure. 

Axiom 3 states that covers of covers are also covers. Specifically, given a cover of an 

object, and given a cover for each of the objects3 in the cover, the composed cover is 

‘See Section 6.2. 
’ From now on, we will drop the adjective “Grothendieck” when referring to Grothendieck topologies. 

3 Although, strictly speaking, the elements of a cover are arrows, we will frequently treat the domains of 

these arrows as the elements of the cover. 
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a (finer) cover of the original object. The axioms also imply that any sieve containing 

a covering sieve is itself a covering sieve. 

We now give a series of examples of topologies on data structures induced by 

considering the sub-structure relationship. Other examples of sites are given in 

Section 5. We will normally specify a covering sieve by providing a family of arrows 

which generates it; such a family is called a covering family. Similarly, we will specify 

a topology by giving a collection of covers which generates it - the generated topology 

is the least topology which contains the given covers and satisfies the closure axioms 

of Definition 2.2. 

Example 2.4 (Sets). Sets and functions form a category Set. A cover of a set S is 

a family of subsets of S, {Sj 4 S) ill}, whose union is S, i.e., Uitl So= S. 

Example 2.5 (Connected graphs). A graph is a pair of sets (N, E C_ N x N) called 

nodes and edges. A path from the node aI to the node ak in the graph G is a sequence 

ofnodes al,u2, . . . . ak such that each (ai, Ui+ 1 ) is an edge in G, for all 1 <i< k. A graph 

is connected if there is a path between any two nodes in the graph. The nodes and 

edges of a graph G will be denoted by N(G) and E(G). 

A graph morphismf: G-+H is a pair of functions 

<.h: N(G)*N(H), .fr: E(G)+E(H)) 

which map nodes and edges compatibly, i.e., 

v((a,h>~E(G) ~~(_(u,h))=(.f~(a),,~~(b)). 

Connected graphs and their morphisms form a category CGraph. A subgraph of 

a graph H is a graph G such that N(G) g N(H) and E(G) & E(H). A cover of a graph 

G is a family of subgraphs jGi 4 G 1 ill) such that 

g N(Gi)=N(G) and u E(G,)=E(G). 
ifI 

Example 2.6 (Trees). A tree is an undirected, connected, acyclic graph. The defini- 

tions of morphisms, subtrees, inclusions, and covers carry over from those of connec- 

ted graphs. We, thus, have a subcategory of CGraph called Tree. 

Example 2.7 (Strings). A string (unlabeled) is a pair (s, cs) consisting of a set s and 

a linear order cs on that set (i.e., a total, irreflexive, and transitive relation). A subset 

r c s of a string (s, cs) is said to be contiguous if, for all elements a, b in r and for all 

elements x in s, a cS x cS b * xEr. A morphism of strings is an order-preserving map 

whose image is contiguous. Strings and string morphisms form a category, String. 

A suhstring of (t,<,) is a string (s,<,) such that s c t is a contiguous subset oft and 

<b is the restriction of ct to s. A cover4 for a string (s, cs) is a collection of substrings, 

4The covers used [or KMP are different from these: see Definition 3.2 



Pattern matching and related problems 59 

the union of whose images is equal to s. For example, the families {“a”, “bc”} and 
{ “&,, “b”, “ 91 c > are covers for the string “abc”. 

Example 2.8 (Labeled structures). Strings, trees, and graphs can be labeled. A labeling 

for a structure S is a function 1s: U(S)-+L assigning labels from a fixed set L to each 

element of the underlying set U(S) of the structure (for trees and graphs, we assume 

this set to be the nodes, thus yielding node-labeled trees and graphs). A labeled 

morphismf: (S, I,)+( T, IT) is an ordinary morphismf: S+ T which preserves labels, 

i.e., V SE U(S) &(f(s))= Is(s). These definitions yield the categories LString (labeled 

strings), LTree (labeled trees), and LCGraph (labeled, connected graphs), for which the 

definition of covers is as before. 

2.2. Sheaves 

Sheaf theory studies the global consequences of locally defined properties [31, 37, 

1.51. The notion of “local” is characterized using a topology. A map which assigns a set 

(e.g., a set of occurrences, a set of functions, etc.) to each object of a topology is called 

a sheaf if the map is defined “locally”, i.e., the value of the map on an object can be 

uniquely obtained from its values on any cover of that object. 

Besides mapping each object to a set, a sheaf maps each arrow in the topology to 

a “restriction” function in the opposite direction. In most of the examples we will 

consider, the objects in the topology are constraints of some kind, and the sets to 

which these objects are mapped are sets of entities satisfying the constraints (i.e., the 

denotations of the constraints). The contravariance of the sheaf arises from the fact 

that for any inclusion (in the topology) of a weaker constraint into a stronger 

constraint, there will be more entities satisfying the weaker constraint than the 

stronger one, thus inducing an inclusion of denotations in the opposite direction. For 

the case of pattern matching, an occurrence of a pattern can be treated as an entity 

that satisfies the constraint of “looking like the pattern”. A partial occurrence satisfies 

the weaker constraint of looking like a piece of the pattern. In general, there will be 

more partial occurrences than full occurrences, since not all partial occurrences need 

be extendible to full ones. 

The transition from locally defined properties to global consequences happens via 

a compatible family of elements over a cover of an object. A cover of an object can be 

viewed as providing a decomposition of that object into simpler objects. The sheaf 

assigns a set to each element of the cover (i.e., each piece of the original object). 

A choice of elements from these sets, one for each piece, forms a compatible family if 

the choice respects the mappings by the restriction functions and if the elements 

chosen agree whenever two pieces of the cover overlap. If such a locally compatible 

choice induces a unique choice for the object being covered (a global choice), then the 

condition for being a sheaf is satisfied. For pattern matching, a compatible family of 

partial occurrences uniquely extends to a full occurrence. 
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To formalize the intuitive description of sheaves given above, we need some 

preliminary definitions. 

Definition 2.9 (Contramriant horn-functor). For any object a of V, the contravariant 

horn-functor associated with u, horn, (-, a) : VP -Set, is defined by the following 

assignments: 

for any object h in ‘G, 

horn%,,-, u)(b) = homH (b, a) = the set of arrows from b to a in the category %; 

for any arrow .f: b-+c in ‘%, 

homC6 (-, a)(f): homK(c, u)+homC6(b, a) is defined by g ~gof: 

In Definition 2.1, we defined a sieve as a collection of arrows closed under right 

composition. A sieve has additional structure; this structure is highlighted by repre- 

senting a sieve as a collection of arrows indexed by their domains, i.e., as a functor. 

A sieve becomes a sub-functor of a horn-functor when we retain only those arrows 

which are present in the sieve. 

Jl 
Definition 2.10 (Sieve:,functor representation). A sieve R = {ui d a ( kZ} on an object 

u of a category % can be represented as a sub-functor of the horn-functor horn% (-, u) as 

follows: 

bH{flfER and domain(f)=b}, 

c*b~g*, where g*:f~f~y. 

The underlying structure of a sheaf is that of a multifunction. 

Definition 2.11 (Presheaf). A presheaf on a category % is a contravariant functor 

from % to the category of sets Set. 

A sheaf is a presheaf that satisfies an additional “gluing” condition, i.e., “local” 

information is sufficient to uniquely define the values in the codomain. 

Definition 2.12 (Sheqf). A sheaf on a site (%‘, J) is a presheaf F : W’P+Set such that, 

for every object u of VT and every covering sieve REJ(u), each morphism R+F in Set”“P 

has exactly one extension to a morphism horn% (-, u)-+F. 

The definition above implicitly treats the sieve R as a functor. A morphism t : R+F 
in the functor category Set ‘OP is a natural transformation, and is a concise way of 

representing a computible&nily,of elements on a cover R. Translating into elementary 

language, for a sieve R = (ui 2 u 1 iEl) on the object a, a compatible family of 

elements of F on the sieve R is a collection of elements {si~F(ui)) isI}, one for each 

arrow in the sieve R, which are compatible in the sense that, for any arrow u : Ui-‘aj in 

% for which,f;:=,fjo U, the function F(u) maps sj onto si. 
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Morphisms of the form hom%(-,a)-+F bijectively correspond, by the Yoneda 

lemma (see, for example, Mac Lane [23, Section III.2]), to elements of the set F(a). 

Thus, the sheaf condition states that there is a bijection between compatible families 

on any cover of a - families of locally defined entities ~ and elements of F(a) ~ globally 

defined entities. 

We give below a few examples of sheaves to illustrate locally defined properties and 

the sheaf condition. Example 3.3 gives an example of a sheaf of occurrences for trees. 

Other examples of sheaves are given in Section 5. 

Example 2.13 (Books in a library). Consider a site y in 

intervalsS and arrows are inclusions. An interval [s, t] is 

intervals { [si, ti] / iEZ) if Uit, [Si, ti] = [S, t]. With respect 

define a contravariant functor B : PP+Set as follows: 

For any interval [s, t], 

which objects are time 

covered by a family of 

to a particular library, 

B([s, t]) is the set of books which are present in the library throughout the interval 

cs, tl. 
For any inclusion of intervals f: [s, t] 4 [u, u], 

B(f) is the restriction function which maps each book onto itself. A book present in 

the library throughout the larger interval [u,u] is obviously present during the 

sub-interval [s, t]. 

This functor is a sheaf because, if { [si, ti] 1 ill} covers [s, t], and if a book is present in 

the library throughout each of the intervals [si, ti], then it is also present throughout 

cs, tl. 

The sheaf of library books illustrates the slogan 

if a property is locally true oVer a cover of an object, 

then it is true over the entire object, 

and shows how sheaves connect local and global properties. In the graph-coloring 

sheaf (Example 2.14), it is possible to connect the chromatic number of a graph (a 

global property) with colorings of subgraphs (local properties). 

Example 2.14 (Graph coloring). Consider the site of undirected, connected graphs 

described in Example 2.5. Let us confine our attention to a sub-category UCGraph, 

of UCGraph which contains all the objects but only inclusion arrows. Consider the 

task of coloring such graphs with at most k colors. Define a contravariant functor 

C: UCGraph”,P+Set as follows: 

For any graph G, 

C(G) is the set of all k-colorings of the graph G. 

For any graph inclusion f: G 4 H, 

C(f) is the function which restricts the colorings of H to G. If a graph H has 

a k-coloring, then each of its subgraphs also has a k-coloring. 

5 It does not matter whether these intervals are open, closed, or any mixture of these. 



62 Y. V. Sriniras 

This functor is a sheaf because, if (Gi 1 iel) covers G, and if {ciEC(Gi) 1 ill) is a family 

of colorings such that the colorings agree on intersections among the graphs Gi, then 

the Ci’s induce a unique coloring of the entire graph G. 

Example 2.15 (~heqfofjiinctions). Let D be a set (the domain). The powerset 9(D) 

forms a category with objects being subsets of D and arrows being inclusions. We 

obtain a site by defining a cover of a set X to be a family of sets {Xi 1 iEl} such that 

Ui~, Xi=X. Let R be another set (the range). Define a contravariant functor 

F: P(D)“p-tSet as follows: 

For any set X c_ D, 
F(X) is the set of all functions with domain X and range R. 

For any inclusion ,f: X 4 Y, 

F(f) is the map yt+glx(=g 3.f) which restricts the domain of a function. 

This functor is a sheaf because, extensionally, a function is defined by specifying its 

value for each element of the domain. Thus, if the family {Xi j ill} covers the set X, 

and {fi: Xi+R 1 iel) is a family of functions such that 

filX,nX,=fjlX,nX, for iJcl7 

then there is a unique function f: X-+R such that 

f(x)=fi(x) for any i such that X~Xi. 

Example 2.16 (Nonsheaves). To help the reader understand the mechanics of the 

sheaf condition, here are two examples of functors which are not sheaves. The 

examples show that sometimes local properties alone are not sufficient to determine 

global properties. 

For any site (%‘, J), the topology J can be viewed as a functor as follows (see axiom 

2 of a Grothendieck topology, Definition 2.2, for a definition off*): 

a~J(a) for uEObj(%), 

.f~f* for fEArr(%‘). 

.1; 
This functor is not a sheaf because, given a cover (ui - a 1 &I} of an object a, and 

a compatible family of covers {city ( iEl), there may be several covers on a which 

extend this family. 

For another example, consider the site of sets defined in Example 2.4, but only with 

finite sets and inclusion arrows. Denoting this sub-category by FinSet,, define 

a functor P : FinSet”,P+Set which maps each set to the set of all its permutations, and 

each inclusion arrow to a restriction function on permutations (e.g., the inclusion 

{a, h} 4 (a, b, c) induces the restriction bcact ba). This functor is obviously not 

a sheaf. 
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3. A specification for pattern matching 

We will model an occurrence of a pattern p in a target t as an arrow p-+t in some 

site. For the pattern-matching problem to be computationally tractable, and to 

simplify the derivation, we make some additional assumptions: 

(1) All objects in the site are finite. 

(2) A finest cover6 exists for each object and is finite. 

(3) Every arrow in the site is an occurrence arrow. 

(4) All covers are strict epimorphic families. 

The last assumption needs some explanation. An epimorphic family of arrows is 

a generalization of a family of functions which are collectively surjective. A strict 

epimorphic family satisfies the additional condition that all the information about the 

codomain is contained in the family: arrows defined on elements of a cover of an 

object determine a unique arrow on the object [2, Exposk I, lo]. 

Definition 3.1 (Strict epimorphic family). Let F= {ai-‘-, a 1 iE1) be a family’ of 

arrows. A family of arrows G = {Ui -% b 1 ill} is said to be compatible with F if, for 
every object c, every pair of indices i,jEI, and every pair of arrows u: c-+ai, v: c+aj, 

The family F is said to be a strict epimorphicfizmily (Fig. 2) if, for every family of arrows 

G which is compatible with F, there is a unique arrow h: a+b through which 

G factors, i.e., 

gi = h Ofi: for all iE1. 

The assignment of the unique arrow h to G, provided by the definition of a strict 

epimorphic family given above, will be called a “gluing” operation in the rest of this 

paper. Intuitively, a cover {Ui -& a 1 igl} provides a decomposition of the object a, 

Fig. 2. 

6 The collection of covers of any object is ordered by inclusion. The finest cover is the least element, i.e., 
a cover none of whose elements can be further decomposed via a cover. 

’ Strict epimorphic implies epimorphic. Hence, there is no need to add this condition in the definition. 
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and the arrow h can be viewed as being obtained by gluing together the domains of 

the gi’s. 

The notion of a strict epimorphic family is similar to, but weaker than, the notion of 

a colimit. Whereas a colimit requires universality with respect to a given diagram, the 

definition of a strict epimorphic family requires universality only with respect to the 

entire sieve generated by the family. 

Example 3.2 (Strict coversfor strings). In all the sites defined in Section 2.1 (except the 

site of strings, Example 2.7) the covers are strict epimorphic families. We now redefine 

the covers for strings so as to make them strict. 

Given a string (s, cs> and two elements X, YES, we say that x and y are adjacent in 

s if the string “xy” is a substring of s. A cover of a string s is a family of substrings 

{si 4 s 1 iEl} such that, for any pair of elements X, y which are adjacent in s, there is 

a substring si in the cover in which x and y are adjacent. Thus, for the string “abed”, 

the following families are covers: {“abed”}, {“abc”, “bed”}, { “ab”, “bc”, “cd”). How- 

ever, (“ah”, “cd “3 is not a cover because b and c are adjacent in “abed” but they are 

not adjacent in any element of the cover. To understand the requirement about 

adjacency, observe that the cover has to not only cover the elements of a string but 

also cover the total order of the string. 

A string can alternatively be considered to be a simple, acyclic path in a graph (i.e., 

all the nodes in the path are distinct). The definition of cover for strings is then 

a specialization of that for graphs. 

3.1. Tke spec$cation 

Using the vocabulary introduced until now, we can abstractly characterize pattern 

matching as follows. 

A pattern-matching problem consists of the following: 

A data structure 

A site (%, J) satisfying the assumptions outlined at the beginning of 

Section 3. 

The input-output relation 

Given a pattern p and a target t, with p, tEObj(??), 

find the set of occurrences of p in t, i.e., compute horn% (p, t). 

We will represent the occurrence relation as a collection of sheaves of the form 

hom%(-, t), one for each target t. The fact that the horn-functors are sheaves trivially 

follows from our assumption that all covers are strict epimorphic families. The sheaf 

condition for these sheaves allows us to find occurrences of a pattern by decomposing 

the pattern, finding occurrences of the pieces, and gluing the partial occurrences. 

In Section 5, we will consider variants of our derivation which can be applied to 

sheaves other than horn-functors. The definition of such sheaves then becomes part of 

the problem specification. 
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pattern, p cover for pattern, P 

underlying site, LTree 

\a c/ 

n 

bz- q ----+ c3 

See example 3.3 

Fig. 3. Sheaf of occurrences: example with labeled trees. 

Given that horn-functors are automatically sheaves, to specify a pattern-matching 

problem in this framework, we only have to specify the topology of the data structure 

involved. This entails defining the underlying category and the collection of covers 

satisfying the assumptions of finiteness, strictness, etc. A constructive proof that covers 

are strict will yield the gluing operation used to build a full occurrence from a compat- 

ible family of partial occurrences. 

Example 3.3 (An occurrence sheaf). In Fig. 3, we show an example of the sheaf of 

occurrences of a pattern tree in a target tree. The underlying site LTree, of labeled 



66 Y. V. Srinivas 

trees, is defined in Examples 2.6 and 2.8. In the figure, we show a specific target tree t, 

a specific pattern tree p, the finest cover P for the pattern, and a part of the sheaf of 

occurrences, homLTree(-, t). The pattern cover is represented as a functor, but only the 

codomain of this functor is shown. The subscripts on the labels in the target tree are 

not part of the tree; they are a convenient notation for representing occurrence arrows. 

A sample-compatible family of partial occurrences is shown with bold arrows. Dotted 

arrows indicate partial occurrences which do not give rise to any compatible families. 

4. Derivation of a pattern-matching algorithm 

We now present a derivation of a generalized version of the KMP algorithm. We 

follow the genera1 heuristic of converting the extensional description of the occurrence 

relation as a sheaf into an intensional description (an algorithm). The algorithm 

results from a synergy of four very general program synthesis/transformation 

techniques: 

(1) Divide and conquer. Exploit the sheaf condition; assemble a full occurrence by 

gluing together partial occurrences. 

(2) Finite diferencing. Collect and update partial occurrences incrementally while 

traversing the target. 

(3) Backtracking. Instead of saving all partial occurrences, save just one; when this 

partial occurrence cannot be extended, fail back to another. 

(4) Partid ev&ation. Precompute pattern-based (and, therefore, constant) 

computations. 

The formal basis of the implementation strategies and transformations we use is 

given in the appendix. A rigorous derivation, with the theories represented using 

algebraic specification, is given in the author’s dissertation [36]. 

Notation. For the rest of this section, we assume a site (%?,J) satisfying the assump- 

tions of Section 3. The horn-functor horn&, t) will be written sometimes as h’. The 

category of presheaves on the category %? will be denoted by PreShv(W), and the 

category of sheaves on the site (%?, J) by Shv(V, J). When a cover is denoted by 

a family of arrows such as (pi+pf, the index varies over the arrows; hence, if there are 

two different arrows q 2 p from q into p, these will be denoted by pi4p and pjAp> with 

i#j and pi=pj=q. 

4.1. Decomposing the pattern 

We first exploit the sheaf condition on the occurrence sheaf horn&, t) to produce 

a problem reduction strategy [35] for enumerating the occurrences of a pattern in 

a target: 

(1) Decompose. Choose a cover {pi-p) for the pattern p. 



Pattern matching and related problems 67 

(2) Soloe sub-problems. Find occurrences of elements of the cover, i.e., find partial 

occurrences pi+t of the pattern. 

(3) Compose. Glue together partial occurrences to obtain full occurrences p+t. 

(4) Base case. For indecomposable pieces pi of the pattern, decompose the target; 

see Section 4.2. 

We can simplify solving the sub-problems by using the stability of covers under 

refinement (the third axiom of a Grothendieck topology) and by choosing the finest 

cover for the decomposition. This choice eliminates the recursion in step 2; other 

choices are possible, provided the topology is “nice” [36]. The gluing operation of 

step 3 is the constructive version of the bijection given by the sheaf condition (the 

notation ; indicates an arrow which is an isomorphism), 

Nat(P, h’)Gh’(p), 

where P is the chosen cover of the pattern. Since we have chosen the occurrence sheaf 

to be a horn-functor, the above gluing operation can be obtained from the definition of 

a strict epimorphic family. The unique arrow provided by the latter definition is 

ultimately obtained from the definition of the data structure which forms the site. 

4.2. Decomposing the target 

The problem has been reduced to enumerating occurrences of pieces of the pattern. 

We solve this problem by decomposing the target; however, we have to be careful, 

because occurrences may be split among pieces of the target (consider the occurrence 

“bed” 4 “abcde” when the target is split into “abc” and “cde”). Thus, the appropriate 

structure to decompose is the entire sheaf. We can decompose the sheaf hom%(-,t) 

using a problem reduction strategy, based on the fact that the functor 

&<%,J>. . % -5 PreShv(%‘) sh Shv(%‘, J) 

carries covers to epimorphic families (Theorem A.3); y is the Yoneda embedding and 

sh is the sheafification functor. Intuitively, a decomposition of the target induces 

a decomposition of the corresponding sheaves. Here is the strategy: 

(1) Decompose. Choose a cover {tj--‘t} for the target t. 

(2) Solve sub-problems. Build the occurrence sheaves horn&, tj) for each piece of 

the target. 

(3) Compose. Combine these sheaves to produce the occurrence sheaf horn&, t). 

(4) Base case. For indecomposable pieces tj of the target, see Section 4.3. 

The above composition operation can be expressed as 

horn&, t) = C* horn&, tj), 

provided we choose arrows in the cover (tj+t) to be monies (see Theorem A.4 and the 

discussion before it). The colimit above is taken in the category of sheaves Shv(%T, J). 
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Using the fact that the sheafification functor is a left adjoint (see Theorems A.2 and 

AS), we can reduce the colimit to 

horn% (-, t) = sh (1 Cz homH (-, tj), 

where the colimit is now in the category of presheaves PreShv(%), and can be 

computed pointwise (roughly, by computing the union homx(pi, tI)u horn&pi, t,)u... 

for each pi). 

4.3. Building occurrence arrows .from pieces 

Combining the schemes for decomposing the pattern and the target, we see that we 

only need the values of homK(pi, t), which in turn depend on the values of 

homv(pi,tj).8 We can now compute hom%(p,t), which is our goal, in two ways: (i) 

sheafify the colimit of the horns-(-, tj))S obtained above and read off the value 

horny, (p, t), or (ii) only compute the part of the colimit which gives the values of 

horn, (pi, t), and pass via the sheaf condition to the value of horn&p, t). We will follow 

the (apparently simpler) latter approach here; we will return to the former in 

Section 4.8. 

(1) Decompose. Choose the finest cover { pi-‘p} for the pattern p, and any manic 

cover (tj H I} for the target 1. 

(2) Solve sub-problems. Find the elementary occurrences pi+tj, thus filling in the 

values of homcd(pi, fj) in the functors hom%(-, tj). 

(3) Compose. 

(a) Codomain. Combine the partially filled functors horn% (-, fj) (via a colimit of 

presheaves) to obtain a partially filled functor homK(-, t), i.e., fill in the values of 

hom,(pi,r) by composing the elementary occurrences pi+tj with the arrows in 

the cover tj ++ t. 

(b) Domain. Glue together the partial occurrences pi+t [via the sheaf condition 

on horn% (-, t)] to obtain full occurrences p+t. 

(4) Base case. Generation of elementary occurrences Pi~tj is dependent on the 

underlying site/data structure; see also Section 4.10. 

This strategy for computing occurrences is a formalization of the intuitive descrip- 

tion of matching given in Section 1 and Fig. 1. Figure 4 informally represents the 

process for strings. 

4.4. The abstract pattern-matching problem 

The computing of occurrences by decomposing the pattern and the target has 

not changed the computational aspect of the problem significantly (enumerating 

‘Since colimits in Preshv(%) are computed pointwise, and because we have assumed that the pattern 
pieces pi come from the finest cover, sheafification will not modify the values of homH(pi,t,). 
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glue via 
sheaf 

condition 

pattern, p hom(p,t) target, t 

Fig. 4. Building occurrence arrows from pieces. 

compatible families of partial occurrences is the real problem; see Section 4.5). 

However, the strategy has a descriptive advantage: we have abstracted away the 

specific data structures involved by using the device of Grothendieck topologies. The 

problem has now been recast as follows: 

Find occurrences of the graph of the pattern cover in the graph of the 

occurrence sheaf. 

This description is now in the language of categories, functors, and natural trans- 

formations, abstract mathematical structures which have been studied extensively. 

Moreover, this description has the advantage that such graphs can be decomposed 

and manipulated in more convenient ways than Grothendieck topologies (see 

Example 4.2). Thus, our approach can be seen as a generic method for pattern 

matching, parameterized by a Grothendieck topology. 

Example 4.1. We show how the strategy of Section 4.3 can be instantiated for the tree 

occurrence sheaf shown in Fig. 2. The pattern p is decomposed into the finest cover 

P as shown; this cover consists of single nodes or single edges. The target t is 

decomposed likewise; this decomposition occurs implicitly when the target is tra- 

versed and each new edge is encountered. Traversing the target generates elementary 

occurrences - homr,rree(pi, fj) - sue h as al-b,, b,-c,, etc. The colimit of the functors 

hom&,tj) is just a pointwise union; so, these elementary occurrences are used to 

populate the part of the sheaf shown in the figure. Once the requisite part of the sheaf 

is filled, we obtain full occurrences ~ horn L~ree(p, t) ~ using the sheaf condition. This is 
done by enumerating compatible families on the pattern cover - a sample family is 

shown with bold arrows - and gluing them together. The gluing operation for trees is 

straightforward: combine a collection of partial functions on p to obtain a total 

function on p. The reader may note that compatible families are just occurrences of the 

graph of the pattern cover in the graph of the occurrence sheaf. 
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4.5. Enumerating compatible families 

In the problem reduction strategy described above, finding elementary occurrences, 

Pi~tj, is the “base case”, and is usually trivial (e.g., identity arrows), or dependent on 

the particular data structures and occurrence relation used. We will consider certain 

data-structure-independent aspects in Section 4.10. 

The most complex part of the strategy above is using the sheaf condition, and 

consists of two steps: 

(1) Enumerate compatible families of partial occurrences, Nat(P, II’), where P is the 

chosen cover of the pattern. 

(2) Glue together such families to obtain full occurrences. 

The gluing operation is dependent on the site and we do not consider it further. 

There are several ways to compute compatible families. A simple procedure is to 

use the definition of a natural transformation; this yields a generate-and-test algor- 

ithm. Another way is to exploit the connection with limits (see SGA4 [2, ExposC I, 

Section 3.51): 

Nat(P, h’) z Lim k’(pj), 

where g/P is the cover P represented as a comma category. The above limit can be 

computed via products and equalizers [23, p. 109, 29, p. 821 (the latter has an 

algorithm). 

Since we are interested in arriving at the KMP algorithm, we follow a different 

strategy: just as the matching problem has been “lifted” to that of graph matching, so 

can the topology be lifted to a topology on the covers themselves. This allows us to 

decompose the pattern cover into pieces and build compatible families piecemeal. 

Compatible families Nat(P, h’) form a functor as P varies: 9 

Nat(-, h’): PreShv(‘G)“P+Set 

P F+ Nat(F, k’) 

T 
I I 

_ 55 

G +-+ Nat(G, k’) 

For the case of pattern covers, T is usually an inclusion of a piece of the pattern cover, 

and -0 T is the restriction of a compatible family (over the entire pattern cover) to that 

piece. 

Let the pattern cover be decomposed via a colimit (“shared union”) 

P = Colim P,. 
- 

‘A cover is a sieve and, hence. a functor and an object of PreShv(%). 
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Since the functor Nat(-, h’) carries colimits to limits,” we have 

Nat(P, h’) = Lim Nat(P,, h’). 
- 

If we choose the topology on covers to be that defined in Section 4.6, then the functor 

Nat(-, h’) actually forms a sheaf: 

The situation at the base level is mirrored in the functor category. 

4.5.1. Why ascend to functor categories? 

One may ask why we should be dealing with functor categories and topologies on 

covers; why not use an appropriate topology at the base level? This is indeed possible, 

if the underlying site provides enough decompositions to enable occurrences to be 

computed easily. Sometimes, intermediate covers may not exist, thus not providing 

“stepping stones” in between elementary occurrences and full occurrences. Trees are 

an example. 

Example 4.2. Consider the tree pattern on the left below, in the site LTree (see 

Example 2.8): 

a + a + 

I \ I\ 
b c b c 

When the target is traversed depth-first, and occurrences are assembled bottom-up, it 

is possible to have a partial occurrence of the kind shown on the right above, which is 

obviously not a tree. A similar situation arises when assembling occurrences 

of connected graphs: partial occurrences during intermediate stages need not be 

connected. 

In examples such as those above, we can rectify the lack of decomposition oppor- 

tunities for objects by expanding the underlying category of the site and altering the 

topology accordingly. Rather than do this on a site-by-site basis, our approach using 

a topology on covers shows a systematic and general way of accomplishing this. 

4.6. Decomposition of covers 

We will now define a topology on covers which makes Nat(-, h’) a sheaf, and which 

provides more flexible decompositions than those given by the covers in the under- 

lying site. 

lo This is true of all contravariant horn-functors [23, p. 1121; “Nat” is just the name of the homsets in the 

category Preshv(W) of functors and natural transformations. 
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Definition 4.3 (A topology on sieves). Given two functors F, G : V’P+Set on a category 

w, an inclusion of functors F t G is a natural transformation, each of whose compon- 

ents is an inclusion arrow, i.e., for each object CE%, F(c) G G(c). Consider the category 

of all sieves in % together with the sub-functor relation. A cover for F is a family 

IF, ~5 F} of sub-functors such that 

u Fx=F, i.e., V’CE% u F,(c)=F(c). 
J x 

The collection of all sub-functors of a sieve S (or sub-sieves of S) forms a poset. The 

union of two sub-sieves, written as Xu Y, is just the pointwise union of the two 

functors, or the union of the arrows in each of the sieves. The intersection Xn Y is 

similarly defined pointwise. 

Definition 4.4 (Prime urrow, prime she). Given a sieve S in a category F?‘, an arrow 

YES is said to be prime (in S) if it cannot be factored, i.e., $(IIES, gEArr(%))f= h n g. 

A sub-sieve R c S is said to be prime (in S) if it is generated by a prime arrowf‘ES, i.e., 

R = { fo g 1 gEArr(+Z) and codomain(g)=domain(f)}. 

The intent of Definition 4.4 is to specify the lifting of covers from a site to its functor 

category. Let (?Z, J) be a site, p a pattern, and P its finest cover. Let { pi+p) be the 

collection of prime arrows in P. Then the collection of prime sieves generated from the 

arrows pi (the corresponding prime sieves will be denoted by Pi) covers the sieve P in 

the functor category (in fact, it is the finest cover, if P is). 

The following definition of complement will be useful for decomposing covers into 

two pieces. 

Definition 4.5 (Complement of a siece). Given a pair of sieves R s S, the complement 

of R with respect to S, written as S- R, is defined to be the sieve generated by S-R 

(set difference). When the sieve S is clear from the context, the complement of R will be 

written as R’. 

Note that the intersection of complementary sieves need not be empty. Com- 

plementary sieves yield the following pushout: 

RnR’-R’ 

The purpose of lifting covers to the functor category was to allow decompositions of 

the pattern cover. The following definition provides the pieces. 
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Definition 4.6 (Sub-pattern). Given a pattern p and its finest cover P, a sub-pattern is 
the union of any collection of prime sieves in P. 

Note that, since sub-patterns are defined at the functor category level, there need 
not exist an actual object corresponding to the sub-pattern in the underlying site (cf. 
the disconnected tree of Example 4.2). 

4.7. Building compatible families from pieces 

The derivation until now has left us with the task of computing compatible families 
Nat(P, h’). Using the topology on covers described above, this reduces to computing 
a limit: 

P=Colim P, * Nat(P, h’)= Lim Nat(P,, h’). 
- - 

We do not seem to have made any progress, because we again have to compute a limit, 
which is equivalent to the problem of enumerating compatible families (see the 
beginning of Section 4.5). However, we can now simplify this limit to a pullback if the 
decomposition of P into Px’s consists of only two pieces (along with their intersection); 
the topology defined on covers guarantees that this can always be done (see 
Section 4.6). Pullbacks in Set can be easily computed: the pullback of A L C &- B 

is given by 

A~B=((x,y)EAxBIf(x)=g(y)j= u (f-‘(4xg-1(c)), 
CSC 

with the arrows into A and B being the two projections from the product. 

4.7.1. Binary decomposition: pyramid algorithms 

At each stage, we decompose the pattern cover into two pieces, yielding a binary 
tree of decompositions. We obtain the following divide-and-conquer strategy [32]: 

(1) Decompose. Split the pattern cover P into two pieces, P,, P,,, and their intersec- 
tion Pxy, as in the following pushout: 

P, - P 

(2) Recursive invocation. Compute compatible families on the pieces, Nat(P,, h’) 
and so on, together with the restriction functions corresponding to the inclusions 
PxY G P, and PxY 4 PY. 
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(3) Compose. Join compatible families via the following pullback: 

Nat(P,,., 11’) c-----Nat(P,, h’) 

I 7 
Nat(P,, 11~) - Nat(P, 11’) 

(4) Base case. For indecomposable pieces of the cover, i.e., prime sieves, Pi, the 

compatible families are obtained from horn% (pi, t) and their restrictions. These values 

are, in turn, computed from elementary occurrences homK(p,, tj) by decomposing the 

target (Section 4.3). Ultimately, elementary occurrences depend on the underlying site. 

The recursive invocation terminates because the pattern cover P is finite and, hence, 

the decomposition tree is finite. We, thus, obtain a top-down nonincremental algo- 

rithm. Such an algorithm could be implemented on a SIMD-style machine, a tree 

machine, or a data flow machine. The key observation is that the locality in the 

definition of a sheaf can be fruitfully mapped into the locality required by parallel 

machines. 

Complexity. The worst-case complexity of the above algorithm for strings, with 

pattern length /p / and target length 1 t (, is L’ (1 p( x 1 t I). The reason is that pieces of the 

pattern may occur within the pattern itself, thus necessitating multiple copies of 

elementary occurrences. We will later see how to avoid the generation of multiple 

copies. 

The binary decomposition algorithm works when the partial occurrences pi-t are 

all available at once. We now investigate how to make this algorithm incremental, i.e., 

compute occurrences assuming that the target is traversed sequentially. This choice 

will ultimately lead us to the KMP algorithm. We will assume that traversing the 

target produces increments which are compatible families over some prime sieve of the 

pattern cover (see Section 4.10 for how these increments are generated). 

Considering the expression for compatible families again, 

P=Cohm P_, + Nat(P,h’)= Lim Nat(P,,h’), 
__f - 

and choosing a binary decomposition operation (pushout), we see that, to compute 

compatible families on P, given families on P,, we need the families on the comp- 

lement P:. Compatible families on P_k can be computed by the same expression, but 

this time we need families on the complements with respect to Pi. Continuing this 

reasoning, and considering that an increment can be a compatible family on any’ prime 

sieve, we see that we need families on all combinations of prime sieves. Using 

Definition 4.6, this means that we need compatible families on every sub-pattern. 
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To update the compatible families Nat(ZZ,h’) for any sub-pattern I7, given in- 

crements on prime sieves Pi, we will use the technique of finite differencing [26]. 

Notation. To simplify the presentation, we will use the notation ~ 0 _ for pushouts 

and ~ @ _ for pullbacks. This notation omits the third object and the two arrows 

required for pushouts and pullbacks. These should be evident from the context: the 

third object is usually the intersection, and the two arrows are inclusions. Also, we will 

assume the result of such an operation is not just an object, but also a pair of arrows; 

these arrows are required to compute subsequent pushouts or pullbacks! 

Consider the following expression for the occurrence sheaf h’ (see Section 4.2): 

horny, ((, t) = sk c Colim homK(-, tj), 
- 

where {tj H t) is a manic cover for the target t, and sk is the sheafification functor. 

Now, assume that we already have computed the sheaf for the portion t of the target, 

and we incrementally traverse a little more, &, such that we have the following 

pushout for the traversed portion of the target: 

t -t@& 

The new portion of the target, at, yields new elementary occurrences of the form 

homK(pi, &t) for some pieces pi of the pattern. Applying the above equation, we get 

hornrb (-, t @ 6t) = sk 3 (horn% ((, t) 0 homx((, 6t)). 

The standard formula for sheafification involves a colimit over covers (see Theorem 

A.2). Since we are not interested in the entire sheaf, we can use the following 

isomorphism l1 given by the sheaf condition: 

homx((,r 0 &)(p)zNat(P, k’O k”‘), 

where p is the pattern, and P is the chosen pattern cover. The problem now is to 

update the compatible families Nat(P. 11’) as k’ changes. k’@ k”’ is a colimit of 

functors, which is computed pointwise; therefore, values of k’@ k” are given as set 

unions. Hence, we can use the distributive law of Lemma A.6. 

The sheaf Nat(-, k’) is given by the following: 

(1) Base case. For a prime sieve Pi, Nat(Pi, k’) is derived from the values k’(pi) and 

their restrictions. 

(2) Induction. For a sub-pattern Il which is not a prime sieve, let it be decomposed 

as the pushout Il, @ l7,. Then, 

Nat(I7, k’)=Nat(U,, kc) 0 Nat(I7,,, k’). 

‘I To get an equality, rather than an isomorphism, the compatible families on the right have to be glued. 
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We can now distribute the increment k” over the definition above, yielding the 

following: 

(1) Buse case. For a prime sieve Pi, Nat(Pi, k’ @ k”) is derived from (k’ @ k”‘)(pi), 

which is given by 

(k’O k”)(pi)=k’(pi)Uk”‘(pi). 

(2) Induction. For a sub-pattern Il which is decomposed as the pushout 177, @ KIY, 

Nat(l7, k’ @ k6’)= Nat(fl,, k’ @ kar) 0 Nat(I&, k’ 0 khr) 

=(Nat(H,, k’) 0 Nat(H,, k’))u(Nat(I7,, k’) 0 Nat(II,, kbf)) 

u(Nat(n,, k”) 0 Nat(U,, k’)) 

u(Nat(l7~ x> k6’) 0 Nat(n y 3 k”)). 

As discussed at the beginning of this section, the entire sheaf Nat(-, k’) has to be 

updated, because we can get new elementary occurrences for any piece pi of the 

pattern and, therefore, new compatible families on any prime sieve Pi; the constraint 

of a binary decomposition then requires all partial occurrences to be maintained. 

Figure 5 shows the incremental maintenance of a sheaf as new elements are added 

to it. A sheaf spreads out in two dimensions, with increments in one dimension, and 

the pattern pieces in another. The distributive law on which the incremental mainten- 

ance is based exploits the fact that additions to the sheaf in the two dimensions are 

independent. 

4.8.1. Binaq3 decomposition: incremental version 

The expression given above for computing Nat(D, k’ @ kSt) can be simplified (some 

of the four terms on the right-hand side become empty) if we systematically update the 

sheaf bottom-up. We, thus, obtain the following algorithm, in which, for each in- 

crement, say on a prime sieve Pi, we view the pattern cover as decomposed into Pi and 

Pi and compute compatible families via a pullback. (Note the difference between this 

and the pyramid algorithm of Section 4.7.1: there, a roughly equal split of the cover 

would minimize the height of the decomposition tree.) For each increment, we also 

update all partial families which may be affected. 

(1) Initial condition. Start with an empty cache of partial occurrences. 

(2) Up&e. Let the increment be over the prime sieve Pi. 

(a) Install this increment into Nat(Pi, k’): 

Nat(Pi, k’ @ k”)=Nat(P,, k’)uNat(Pi, k”). 

(b) For each sub-pattern Il which includes Pi, let P; be the complement. 

Compute Nat(I7,k’ @ kSr) by 

Nat(I7, k’ @ k”‘)=Nat(U, k’)u(Nat(Pt, k’) @ Nat(Pi, k”‘)). 
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pattern 

/b\ 
a-c 

b’\ 

target 

1, \Lb3 
a,_bAazA 

c1 c2 

traversed portion 

occurrence 
occurrence 

Fig. 5. Incremental maintenance of a sheaf. 

Figure 6 shows a trace of the above incremental algorithm on graphs; the mainten- 

ance of the sheaf for the same example (step 6) is shown in Fig. 5. 

4.9. Improving the incremental algorithm 

The incremental algorithm given above is not very efficient: it saves and maintains 

all partial occurrences. In particular, for strings, with pattern length IpJ and target 
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Pattern Target with traversal order 

States of the cache of partial occurrences: 

1. albz 

2. al&, ah 

3. ah, ah, ah 

4. alb2, a2b2, azb3, km, a&c2 

5. alb2, ah, a&, b3c2, a&2, azcz, a&cza2, baczan, c&3, cza&n 

6. albz, azbz, azbs, be?, azbm, am, &cm, bscm, cmbs. cmh 
bm, czazbzcz, bmaz, cdwz, c2bm 

7. alb2, azbz, azbs, b3c2, azbscz, asz, a&cm, lwm, cmb3, w&z, 

bzcz > czazbm, km, czha2, czbm, albl 

8. alb2, a2b2, azbs, bm, azbm, am, adwm, km, cmb3, cmh, 
bm, c2ahc2, twm, czbm, czbzal, alh, hcl, alblcl 

9. albz, adz, ah, bm, dwz, am azbma2, bmaz, czazb3, cmbn. 
bm, czazbzcz, bmw czbm, c&al, aI&, hcl, alblcl, 

clal, alclbl, clalbl, clalb2, alhclal 

Fig. 6. Trace of incremental algorithm on graphs (cf. Fig. 5). 

length 1 t 1, the complexity is lo@pl x 1 tl). To improve the algorithm, we have to reduce 

the size of the cache of partial occurrences (i.e., the size of the sheaf Nat(-,h’)). 

One way to reduce the size of the cache is to remove all partial occurrences in the 

cache which have no potential of being expanded, as indicated by the traversal of the 

target, e.g., reaching a leaf in a tree. For strings, assuming a left-to-right traversal, 

there can be at most IpI - 1 partial matches which are potentially expandable (as 

opposed to 2’Pl), thus reducing the complexity to P((pl x Iti). This optimization 

depends on the data structure involved and on the traversal mechanism; we do not 

consider it further here. 

Another way to reduce the size of the cache is to exploit dependencies between 

partial occurrences: if a partial occurrence can be “derived” from another, then it can 

be removed from the cache (and regenerated later on, if necessary). Such an optimiza- 

tion conforms to our overall heuristic of converting an extensional representation into 

an intension: replace the extension of the cache by a generator. 

These dependencies arise when a piece of the pattern occurs in the pattern itself. For 

example, given a partial occurrence pi-+t and an arrow pj+pi between pieces of the 
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pattern, we can immediately generate the partial occurrence pj’Pi+t by composition. 

We say that the latter occurrence is subsumed by the former. In Section 4.11, we will 

extend this subsumption relation to occurrences represented as compatible families. 

This induces a partial order on occurrences. Using this partial order, we will represent 

the cache of partial occurrences by its maximal elements; other elements are generated 

by composition when required. 

4.10. Generation qf elementary occurrences 

We now consider the base case of the recursive algorithms presented until now, 

namely, the generation of elementary occurrences of the form hom%(pi, tj). Normally, 

there is a procedure which traverses the target and produces the pieces tj. The specifics 

of generating elementary occurrences from these pieces depend on the particular data 

structure forming the site and the definition of the occurrence relation. What we are 

interested in here is a data-structure-independent feature, the generation of multiple 
occurrences from the same target piece tj. In other words, a piece of the target can be 

“parsed” in several ways as a piece of the pattern. Figure 7 shows an example using 

labeled trees (the pattern pieces are numbered to distinguish them). In general, the 

multiple parses so generated may be independent. However, for common cases of 

pattern matching, the following property is true. 

Subsumption property. If an atomic piece tj of the target generates multiple elemen- 

tary occurrences (p, +tjI XEX}, then there is an occurrence Pi~tj in this set 

through which each of the other occurrences factors: Px-‘Pi-‘tj. 

If this property is true of a site, then we can generate alternative occurrences by 

using information obtained by matching the pattern against itself. If not, we have to 

rely on the particular features of the site; for example, in Waltz filtering [39] (see also 

Section 5.6), the possible labelings of 

properties of three-dimensional space. 

pattern 
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Fig. 7. Multiple parses of a piece of the target. 
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4.11. Matching the pattern against itself 

The generation of multiple parses for a piece of the target can be extended to larger 

pieces of the target. For example, if B is a compatible family on a sub-pattern IZ, then 

we can derive other compatible families by using other parses for portions of 9:. Such 

derived families are said to be subsumed by 5. Just as we have lifted the topology of 

the underlying data structure to the level of covers, so can the subsumption relation 

informally defined in Section 4.9 be lifted to sub-patterns and partial occurrences 

represented by compatible families. This subsumption relation generates a structure 

called the pattern-pattern ,finctor, which is a collection of sheaves, one for each 

sub-pattern, and is defined below (this functor is very similar to the Yoneda embed- 

ding of a category into its functor category). 

Definition 4.7 (Subsumption). Given two sub-patterns II and Il’, a subsumption 

arrow l7-+Il’ is a natural transformation,12 which is obtained as a compatible family 

of occurrences of pieces of I7 in Il’. 

Given two sub-patterns n and l7’, the sub-pattern Il’ is said to be subsumed by l7, 

written as ll’ 5 lI, if there is a subsumption arrow n’-+n. 

This relation can be extended to occurrences: a partial occurrence given by the 

composition ll’+l7+k’ is said to be subsumed by the partial occurrence n-+h’. 

Notation. Given a covering sieve P represented as a functor, we will denote by Sub(P) 

the category of all sub-functors of P, with the arrows being inclusion natural 

transformations. 

Definition 4.8 (Pattern-pattern functor). The subsumption sheaf for a sub-pattern 

17 of a pattern cover P is the functor yn: Sub(P)“P+Set defined by 

17’ H {nf A n 1 s is a subsumption arrow}, 

f‘: n”+n’ H f* : Csp”(n’)+C4P”(n”), where f * =_3$ 

Let Jp denote the topology on sieves (Definition 4.3) restricted to Sub(P). The 

pattern-pattern functor for a pattern cover P is the functor @: Sub(P)+ 

Shv(Sub(P),Jp) defined by 

fl H Y”, the subsumption sheaf for n, 

f: n+l7’ H Q(f): C4pUliyprr’, with each component given byf, =fo_. 

The pattern-pattern functor allows us to generate all the subsumed occurrences of 

a given occurrence. Such subsumed occurrences will be used to reduce the size of the 

cache in the algorithm of Section 4.13. 

I2 Remember that sub-patterns are sub-functors of the pattern cover represented as a functor. 
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4.12. Computing the pattern-pattern functor 

The pattern-pattern functor captures the occurrence relation among all sub- 

patterns of a given pattern. In trying to find an algorithm for the pattern-matching 

problem - find occurrences of a single pattern in a single target - we have reached the 

problem of finding occurrences of multiple patterns in multiple targets (note the 

similarity to the “RETE” algorithm [14]). This shows that precomputation for 

a problem may be more complex than the problem itself: the trade-off is between 

a complex precomputation (done once per pattern) and a simple matching algo- 

rithm.i3 This also explains why precomputation is exponential for trees [20]. 

Here is a nonincremental, divide-and-conquer scheme to compute the pat- 

tern-pattern functor. This is a reapplication of our derivation so far: each subsump- 

tion sheaf 9” is built by passing via the sheaf condition from smaller arrows to bigger 

ones (domain decomposition); each such sheaf is “seeded” by taking a colimit of 

smaller sheaves (codomain decomposition). 

(1) Base case. Seed the subsumption sheaf for any prime sieve Pi by installing the 

values of homg(pj,pi) for all atomic pieces pj of the pattern. Sheafify. 

(2) Induction. For any sub-pattern ll which is not a prime sieve, choose a binary 

decomposition I7 = X7X @ 17, (pushout). Then the subsumption sheaf for II is given by 

9’” = sh 0 (9’““- @ Y”y ). 

The pattern-pattern functor can also be generated incrementally by traversing the 

pattern. In this case, we can also build the pattern cover along the way. This scheme is 

obtained by distributing an increment to the pattern over the above nonincremental 

scheme. 

(1) Initial condition. Start with an empty pattern-pattern functor. 

(2) Update. Let pi be the increment to the pattern, and let Pi be the corresponding 

sieve. 

(a) Subsumption sheaffor Pi. Seed the sheaf with values of homa(pj,pi) for 

known atomic pattern pieces pj. Sheafify, again for known sub-patterns I7. 

(b) Install new domains. Expand Sub(P) by adding Pi, and n u Pi for all known 

sub-patterns Il. Install these new sub-patterns in each sheaf. Sheafify. 

(c) Install new codomains. Install the new sub-patterns (computed above) in the 

(domain category of the) pattern-pattern functor. For each new sub-pattern, 

compute the subsumption sheaf as the colimit of the sheaves on a cover. 

There are several optimizations possible (by recursively applying parts of the KMP 

derivation) for computing the pattern-pattern functor and the subsumption sets 

required by the algorithm in Section 4.13. We do not pursue these here, because our 

primary goal is to show that the failure function of KMP can be explained as an 

instance of backtracking. 

I3 It is frequently mentioned in the literature (e.g., [3X]) that the precomputation and the matching parts 
of KMP are fundamentally the same. Our generalization shows that this similarity is only apparent; it is an 

accidental feature which is special to strings. 
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4.13. An algorithm using subsumption 

In the previous few sections, we computed the dependencies between partial 

occurrences. We will now exploit these dependencies to reduce the size of the cache of 

partial occurrences maintained by the incremental matching algorithm. The sub- 

sumption relation is a preorder on partial occurrences; by taking the quotient under 

mutual subsumption, we obtain a partial order. The cache can then be represented by 

its maximal elements (i.e., by removing all subsumed occurrences). Now, we have to 

simulate the effect of the incremental algorithm of Section 4.8.1, which works on the 

entire cache. The problem can be visualized as filling in the following diagram: 

Nat((, 11’) 

representation by 
maximal elements 

t R(-,h’) 

update 

I 

? ‘, 

representation by ? 
Nat(_, h’ o h61) maximal elements 

> R(-, h’ 0 h&l) 

To deduce the update function on the optimized cache, we exploit the fact that 

expanding a partial occurrence preserves subsumption, i.e., 

where 7c, n’, 4, and 4’ are partial occurrences, and the expansions on the right are 

assumed to exist. 

Thus, given an elementary occurrence, we try to expand each partial occurrence in 

the cache; for any partial occurrence which cannot be expanded, we generate its 

immediately subsumed occurrences and try to expand them, and so on. This proced- 

ure guarantees that all partial occurrences which would have been generated in the 

unoptimized cache are represented in the optimized cache as actual partial occur- 

rences or as partial occurrences subsumed by others. In other words, we extend the 

representation of the cache just enough to accommodate all partial occurrences 

generated by the new increment. 

The technique above is succinctly expressed by Hirschberg and Larmore [19]: 

The principle of failure functions is disarmingly simple: when searching for an 

extremal value within a sequence, it suffices to consider only the subsequence of 

items, each of which is the first feasible alternative of its predecessor. 

Dijkstra formalizes the same principle in his linear search theorem [12]: to search 

for the largest element in a linear order which satisfies a given predicate, start from the 

maximum and search in decreasing order. Our update function is a generalization 

which works for any poset. Given some value, its immediately subsumed values (“first 

feasible alternatives”) are the least upperbounds of the connected components in the 

poset of all subsumed values. 
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4.13.1. Binary decomposition: incremental version with suhsumption 

Here is the algorithm which represents the cache by its maximal elements, with 

a modified update function to handle subsumed occurrences. The modified update 

function can be systematically obtained from the algorithm which updates the entire 

cache (Section 4.8.1) by using the definition of subsumption; we omit the details 

because they are tedious. 

(1) Initial condition. Start with an empty cache of partial occurrences. 

(2) Update. Let the increment to the target be tj. For each partial occurrence 7~ (i.e., 

a compatible family on some sub-pattern n) in the cache, do the following: 

(a) Expand. For each elementary occurrence I! (over the sieve Pi) generated by 

the increment, if 1’ is compatible with 7-r (i.e., the restrictions of v and n to 17 n Pi 

are equal), then add the expanded occurrence n @ v to the partial occurrences 

on FTuPi, and continue with the next X; otherwise, backtrack. 

(b) Backtrack. Generate all immediately subsumed occurrences of 7~. Repeat the 

expansion procedure above for each. If there are no subsumed occurrences, goto 3. 

(3) Unconsumed increments. If the increment tj did not participate in any expansion 

in the previous item, add all unsubsumed elementary occurrences generated by tj to 

the cache. 

Replacing occurrences by subsumed occurrences is picturesquely called “sliding” 

the pattern. If we view the algorithm of Section 4.8.1 as search in a space where the 

states are partial occurrences, and the operations are expansion by elementary 

occurrences arising from traversing the target, the above scheme is an instance of 

dependency-directed backtracking. See [36] for a formal representation of the above 

algorithm as search. 

Figure 8 shows a trace of the above algorithm on graphs; the example is the same as 

in Figs. 6 and 5. The trace incorporates two further optimizations: (1) a full occur- 

rence can be discarded (after outputting it), and (2) if the traversal of the target 

indicates that there will be no further opportunities to expand a particular partial 

occurrence, then that occurrence can be discarded (the “traversal dead-end filter”). In 

both cases, to maintain the invariant that the cache contains the maximal elements of 

the full cache in the corresponding state, discarded occurrences have to be replaced by 

immediately subsumed ones. 

Complexity. The above algorithm is a generalized version of the KMP algorithm. 

The complexity of the nonincremental algorithm of Section 4.7 arose from the fact 

that each piece of the target can generate multiple occurrence arrows. If we use the 

subsumption relation, then only one occurrence arrow need be generated; the others 

are subsumed and can be regenerated later, if necessary. Thus, for strings, the above 

algorithm for enumerating occurrences is linear in the size of the target. 

4.14. Instantiation for strings 

We briefly outline the instantiation of our derivation of a generalized KMP 

algorithm to strings. The underlying category, LString, of labeled strings is defined in 
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Pattern Target with traversal order 

States of the cache of partial occurrences: 

1. albz 

2. alb2, a& 

3. albz, azbz, azb3 

4. albz, azbz, azbscz -expand a2ba 

5. albz, wzbz, azbsw2 -expand azbz and azbzc2 

-filter the full occurrence a2b3czaz 

--replace it by subsumed occurrences: a2b3c2, b3c2a2, c2a2b3 

6. alb2, al&z, cmh, a&m, bsczaz, cza& -expand c2azbz and albz 

-eliminate czazbzcz, azbscz, b3cza2, caazbz, albzcz 

-using traversal dead-end filter 

7. albz, albl 

8. albz, alblcl -expand al bl 

9. alb2, alblclal, clalbz -expand alblcl and albz 

-end of algorithm 

--traversal dead-end filter removes all partial occurrences 

Fig. 8. Trace of generalized KMP on graphs (cf. Figs. 5 and 6). 

Examples 2.7 and 2.8. We impose the additional restrictions that all the strings in the 

site are finite, and all arrows are manic. We choose the topology defined in Example 

3.2 to make the covers strict epimorphic families. This site satisfies the assumptions of 

Section 3 and enables us to instantiate the derivation for strings. 

For the incremental algorithm, we choose a left-to-right traversal of the target 

string (other choices are possible; this choice leads to the standard KMP algorithm). 

Observe that, in view of our definition of string covers, this traversal has to enumerate 

pairs of elements of the target string. l4 The left-to-right traversal has the property that 

14A cover is a set; the requirement of strictness forces the representation of the linear order of a string via 

overlapping pairs. The standard KMP algorithm can be modeled by adding a linear order to covers, which 
provides a unique gluing with the simpler cover consisting of single elements of the string. Rather than 

generalize the definition of cover, we prefer to add this detail as an optimization to the final algorithm. 
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we need only save those partial occurrences which touch the right edge of the portion 

of the target already traversed; other partial occurrences have no potential of being 

expanded and can be deleted. Such partial occurrences are just occurrences of all 

prefixes of the pattern. This reduces the number of partial occurrences, in the worst 

case, for a pattern p of length 1~1, from 2’Pi to 1 pi. The incremental algorithm of Section 

4.8.1 is then the naive fi(lpl x Itl) algorithm. 

Next, we can eliminate all but one partial occurrence, using the subsumption 

relation. When specialized to strings, subsumption is just the substring relation 

on the domains of occurrence arrows: p-ft subsumes q-+t if and only if q is a 

substring of p. When combined with the optimization above of retaining only 

expandable partial occurrences, the subsumption relation can be further specialized to 

the suffix relation on the domains of occurrence arrows. Here is the appropriate 

picture: 

pattern abcabcabc 

a (subsumed occurrence) 

a b c a (subsumed occurrence) 

a b c a b c a (partial occurrence) 

target abcabcabcaaab 

The precomputation of the pattern-pattern functor is also simplified. Given that we 

are saving only occurrences of prefixes of the pattern, the subsumption relation 

assigns to each prefix of the pattern all prefixes which are also suffixes (this is the 

prefix-suffix problem). The subsumption relation (let us denote this by C) can be 

incrementally computed using the following distributive law: 

C(x.i)=(y. i( yGC(x) A prefix(y.i,p)}, 

where the dot denotes concatenation of strings, p is the pattern, x is a sub-pattern (a 

prefix of p), and i is the increment produced by traversing the pattern. This computa- 

tion can be further optimized to yield only the immediately subsumed string for each 

sub-pattern (this is the maximal prefix-suffix problem). 

The above computation captures the essence of the standard KMP algorithm. Once 

the subsumption relation has been precomputed, we can optimize the incremental 

algorithm which updates the cache of partial occurrences. There is only one active 

partial occurrence at any time, because all other potentially expandable partial 

occurrences (which are suffixes of the current partial occurrence) are subsumed. If the 

current partial occurrence cannot be expanded, the algorithm backtracks to the next 

subsumed partial occurrence, and continues doing so until the current increment has 

been consumed. 
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5. Related algorithms 

Our derivation of a generalized KMP algorithm works for sheaves other than 

occurrence sheaves, because we have not used properties which are specific to 

matching; in fact, we only defined occurrences to be arrows in some category. Here are 

some other problems which can be described using sheaves, and for which the KMP 

derivation (or parts of it) can be applied. Some of these problems are closely related to 

matching; others, such as the n-queens problem, are quite remote. However, all these 

problems share the common characteristic of attempting to satisfy a local/y defined 

collection of constraints (see, especially. Waltz filtering and the n-queens problem), 

a concept which is nicely captured by a sheaf. 

5. I. Multiple putterns 

Given two patterns p and q, we say that the pattern p V q occurs in a target if either 

p occurs or q occurs. If the two patterns do not intersect with each other, then finding 

occurrences of p V q is straightforward: take the union of the occurrences of p and 

occurrences of q. If the two patterns do intersect, we can obtain the sheaf of 

occurrences for p V q as a pushout (more generally, a colimit, if there are more than 

two patterns): 

hOmsubcc,,(-~ f) - hOmsubcp v c&, t) 

In the diagram, Sub(() denotes the poset of sub-patterns of a pattern. The above 

scheme essentially corresponds to the algorithm of Aho and Corasick for multiple 

string patterns [l]. 

5.2. Patterns ,rith curicrhles 

Labeled data structures in which some of the labels are variables are easy to handle: 

just define the site appropriately. Here is an example with variable labels in trees. 

Example 5.1 (Expression trees). Let G be a signature, i.e., a collection of sort names 

and a collection of operation names defined on these sorts. Each operation ,f is 

associated with a rank, sl,sZ, . . . . s,+s. The collection of expressions over the signa- 

ture C is defined inductively as follows: 

(1) The distinguished symbol c (for “variable”) is an expression of sort s, for every 

sort s in C. 

(2) If c: +s is a constant of sort s, then c is an expression of sort s. 
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(3) Iff: Si,SJ, . ..) s,-+s is an operation, and e,, ez, .., e,, are expressions of sorts 

si, s2, . , s,, then f(e, , e2, . . , e,) is an expression of sort s. 

Expressions can be represented as rooted, ordered, labeled trees. A morphism of 

expression trees is a tree morphism (see Example 2.6) which is injective on nodes, 

preserves the order on the children of a node, and preserves labels (except U, which 

may map on to a node with any label). 

A cover of an expression e is a family of morphisms (ei+e 1 ill} such that for each 

sub-expression e’ of e, there is at least one ei such that root(ei)= root(e’). The intent of 

this restriction is to ensure that not all of the ei’s are variables, which essentially 

contain no information about covering. For example, the expression f(a, g(b, c)) is 

covered by f(a, v) and g(b, c). 

Variable patterns are somewhat more interesting. Consider the site of strings 

(Example 2.7). We can postulate a pattern V which matches any string; thus, this 

pattern is an initial object in the site. We can also have typed variable patterns, e.g., 

a pattern L,,, may match only strings whose length is 10. Variables may be embedded 

in strings, yielding patterns such as aX b which matches any string starting with the 

letter a and ending with the letter b. Such patterns can be handled by changing the site 

appropriately (e.g., add an arrow from uXb to each string it matches). However, they 

complicate the generation of elementary occurrences (which is the base case of the 

divide-and-conquer step of our derivation). This is to be expected because variables 

are entities which are algebraically defined: sites only capture the geometry of the 

patterns, the algebra is represented in the codomain of a sheaf. 

5.3. Commutative/associative matching 

Matching modulo commutativity or associativity, or both, can be handled, again by 

using an appropriate site. The procedure for generating elementary occurrences has to 

account for these axioms. 

Example 5.2 (Expression trees, morphisms module commututivity). The site defined in 

the previous example can be extended to incorporate commutativity. Let f be an 

operation in the signature which is commutative, i.e., Vu, b f(u, b)=f(b,u). A mor- 

phism is defined as before, except that the ordering on the children of a node labeled 

byfneed not be preserved. The definition of cover is the same. This definition of 

morphism represents matching modulo commutativity. The definition can be obvi- 

ously extended to several commutative operations, to associative operations, and to 

any mixture of these. 

5.4. Nonlocal properties, approximate matching 

Occurrence arrows may be constrained by some nonlocal properties, such as being 

a manic, or containing at most k mismatches. The former is a “moderately” nonlocal 



88 

a compatible family 

Y. V. Srinivas 

1 b 

a / 

\ 2 
b 

I 

glue 

a- b------l 

Fig. 9. An example showing that being manic is a nonlocal property 

property and can be handled by making the topology a little coarser. The latter is 

a truly global property of an occurrence and yields only a separated presheaf; I5 hence, 

compatible families have to be filtered (by a predicate which determines whether the 

number of mismatches is <k) before they can be glued. 

Why is being a manic a nonlocal’6 property? Consider the example in the site of 

graphs shown in Fig. 9. The problem is that the topology (in which a graph can be 

covered by its set of edges) is too fine to detect the incompatibility between two maps 

whose domains are equivalent. This can be fixed by altering the topology so that two 

edges which can potentially be mapped onto the same edge are never split up in 

a cover. We can also solve the problem by only building compatible families which 

yield a manic after gluing. 

5.5. Context-free parsing: EarleJl’s algorithm 

Earley’s algorithm for context-free parsing [13] scans the input string from left- 

to-right, accumulating partial parses (left contexts) of the input seen so far. For each 

input increment, some partial parses in the current set of parses are expanded, and 

some are discarded, depending upon the compatibility of the increment with the 

parses. We will represent this by a sheaf in which a parse is obtained by gluing 

together partial parses. Here are the definitions. 

Definition 5.3 (Partial parse). A partial parse of a string w is a derivation of the form 

S g r +z w, where S is the start symbol of the grammar, s is the reflexive, transitive 

closure of the derivation relation, and M is a sentential form. Thus, a partial parse, in 

addition to deriving NJ, may derive other elements to its left and to its right. 

r5 In a separated presheaf, the correspondence F(a)+Nat(R, P) is an injection, rather than a bijection, as 

in a sheaf. 

r6 The proper phrase is “not obviously local”, or not local on the obvious topology. Locality is always 

defined with respect to a topology. We later define a coarser topology which makes the property of being 

a manic local. 
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Example 5.4 (Parse sheaf). Partial parses produce a sheaf. The underlying site is the 

site of labeled strings with inclusion arrows, and strict epimorphic families as covers. 

The functor @ assigns to each string the set of its partial parses: 

@ : LStringoP-+Set 

WH{S 3 CXGW} 

i 
I T _ 0 i, i.e., (S d /3 + u)i-+(S 25 /3 + u 4 w) 

UH{S~j?~U} 

We can get an exact parse of a target t using the above sheaf, by enclosing the target 

in two new symbols distinct from the vocabulary of the grammar, -f t k, and adding 

a new start symbol S’ with the production S’+ S k. 

We can obtain a divide-and-conquer algorithm from the above parse sheaf by 

choosing a cover for the target, enumerating partial parses of the pieces, and gluing 

the partial parses. However, there can be an infinite number of partial parses for each 

piece; hence, this set has to be represented intensionally. The grammar provides the 

requisite intension: we say that a parse 7c subsumes a parse 4 if 4 can be obtained by 

applying additional productions to z (see [6] for a more sophisticated scheme which 

uses equivalence classes of derivations). 

Earley’s algorithm uses a left-to-right traversal of the target. This restricts partial 

parses to only those which start with terminals. Now consider a grammar which 

generates the language (a + b)+: 

S-rXIXS, 

X-mlb. 

Consider a target string “aau”, covered by (“au “, “au”}. The first “au” will generate 

the following partial parses (all other parses being subsumed): 

S&u, S&zuS. 

The second “au” also generates the same partial parses. Now, when we try to find 

compatible families of parses, we do not succeed, and we have to backtrack (i.e., 

generate subsumed parses). Here are the subsumed parses for the second “au”: 

S&zuu, SSuuuS. 

Next, we enumerate compatible families of partial parses, thus eliminating some 

parses (e.g., S&U). The resultant parses, after gluing the compatible families, are: 

S&au, S&uaS. 

The key observation here is that, for any increment to the target, we always have to 

backtrack until we produce parses which extend the left context. Thus, we might as 

well expand the current left context rather than try to parse the new increment: this 
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corresponds to the “predict” step of Earley’s algorithm (the collections of unsubsumed 

partial parses are the “items”). Here are possible predictions, given parses for the 

first “uu”: 

SSaaa, 

SSaah, 

SZ-aad. 

SSaahS. 

Some of these predictions have to be rejected because they are not parses of the second 

“au”: this is the “verify” step of Earley’s algorithm. This characterization of Earley’s 

algorithm shows its close connection with the KMP algorithm, and also the connec- 

tion between KMP and LR-parsing. 

5.6. Constrairlt propugation: Wultz Jiltering 

Relaxation algorithms for constraint propagation can be described by sheaves 

when the constraints are local. An example is Waltz filtering [39], an algorithm which 

assigns three-dimensional interpretations to two-dimensional line drawings of scenes. 

The underlying site is that of undirected, connected graphs with a different notion of 

cover. 

Example 5.5 (Graphs, junction covers). We now define a coarser topology on graphs 

(cf. Example 2.5) which is suitable for Waltz filtering. A junction in a graph is 

a subgraph consisting of a node together with all its adjacent nodes (two nodes are 

adjacent if they are connected by an edge). A junction cover of a graph is the collection 

of all junctions in that graph; these are the finest covers in the site. 

These graphs represent (parts of) line drawings of three-dimensional scenes. The 

algorithm assigns labels to each edge in the drawing, labels such as shadow edge, 

concave edge, convex edge, obscuring edge, etc. The possible combinations of labels 

for commonly occurring junctions, such as L-junctions, T-junctions, forks, etc., are 

precomputed by using physical properties of three-dimensional space. 

The algorithm works by choosing the junction cover for the given line drawing, 

assigning the precomputed label combinations to each junction, and eliminating 

inconsistent combinations of labels: when two junctions share an edge, the edge 

should be assigned a unique label. Thus, the Waltz filtering algorithm can be obtained 

by applying the KMP derivation to the sheaf of labelings of graphs (this sheaf is 

similar to the graph-coloring sheaf of Example 2.14). 

5.7. Emmerating ,functions 

Consider the sheaf of functions of Example 2.15, and consider the problem of 

enumerating all functions of the formf‘: D+R. Such functions can be built from pieces 

by decomposing the domain and using the sheaf condition. If we choose the finest 
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cover for D, the base case for the problem reduction strategy of Section 4.1 is to 

enumerate all functions from a singleton set {x} c D to the range R. By the definition 

of function, there is one such function for each element of R. This algorithm has been 

encoded as a “global-search” theory by Smith [33], and has been used to derive 

several algorithms in the KIDS program synthesis/transformation system [34], for 

example, the n-queens problem [normally, the set hom(D, R) is filtered after enumer- 

ation to satisfy the conditions imposed by a specific problem]. We give below 

a different derivation for the n-queens problem. 

5.8. The n-queens problem 

The n-queens problem is to place n queens on an n x n chessboard such that no two 

queens are in conflict, i.e., no two queens share the same row, column, or diagonal. 

This problem is typically solved by a backtracking algorithm [40, 11, 341. We show 

how to use a divide-and-conquer strategy. The obvious scheme of decomposing the 

chessboard does not work. The correct entity to decompose is the conjunction 

defining the problem: this conjunction can be realized by achieving each conjunct 

separately. Here is the appropriate sheaf. 

Example 5.6 (Sheaffor n-queens). The underlying site is the poset of subgraphs of 

a complete (i.e., fully connected) graph with n nodes. This graph is the constraint 

graph, representing the potential interaction between the queens. A configuration of 

queens corresponding to a graph G is a function assigning a position on an n x n 

chessboard to each node in the graph G. We define a contravariant functor assigning 

the set of valid configurations of queens to each graph: a valid configuration is one in 

which queens do not conflict along the edges of the graph. 

Config: Sub(K,)Op-+Set 

Gt-+J(G)~ Board ) V eEE(G) ok(c, e)) 

i 
1 I- 

Oi 

Hk+{N(H)-L Board 1 VeEE(H) ok(d, e)} 

K, is the complete graph with n nodes, Sub(&) is the poset of subgraphs of K,, N(-) 

and E(() denote the nodes and edges of a graph, Board = { (x, y) ( 1 G x 6 n, 1 ,< y d n}, 

and ok(c, e) is a predicate stating that the positions in the configuration c of the two 

queens connected by the edge e are not in conflict. The sheaf condition is satisfied 

because pieces of a cover always intersect in at least one node, and the queen 

represented by that node will rule out conflicts between subconfigurations. 

We can apply the KMP derivation to this sheaf. We start with a problem reduction 

strategy, choosing the finest cover for the graph K,. The base case is to enumerate all 
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pairs of queens which do not conflict. We can switch to an incremental algorithm 

which generates queen-pairs incrementally and maintains partial configurations. We 

can add a subsumption relation: a configuration cr subsumes a configuration c2 if 

c2 E cr. Now, if an increment cannot extend a configuration, we have to test it against 

subsumed configurations: this is the backtracking step. 

6. Concluding remarks 

We have given a sheaf-theoretic characterization of pattern matching. We defined 

an occurrence to be an arrow in a category. This category is equipped with a Grothen- 

dieck topology to allow the decomposition of patterns and targets. The extension of 

the occurrence relation can be described by a sheaf on this topology. We derived 

a generalized version of the Knuth-Morris-Pratt pattern-matching algorithm from 

such a sheaf. The derivation uses limits and colimits to decompose various parts of the 

problem: 

(1) The pattern is decomposed via a cover in the topology. Correspondingly, partial 

occurrences are glued together via a limit. 

(2) The target is decomposed via another cover. The sheaves generated by the 

pieces of the target are combined via a colimit. 

(3) When increments to the target are given sequentially, the collection of partial 

occurrences is updated via sheafification (the process of completing a functor into 

a sheaf). This can be viewed as computing a colimit in time. 

We explained the failure function of KMP in terms of a subsumption relation. 

Using subsumption, the cache of partial occurrences can be minimally represented by 

deleting all subsumed occurrences. This representation makes the algorithm efficient, 

by reducing the amount of work to be done. Updating such a cache sometimes 

necessitates the regeneration of subsumed occurrences; this regeneration corresponds 

to backtracking in the space of partial occurrences. 

In view of the minimal assumptions we have made regarding the underlying data 

structures and the occurrence relation, our derivation works for sheaves other than 

those generated by an occurrence relation. Hence, we have a general derivation for the 

problem of 

enumerating a collection of locally defined morphisms. 

Besides extensions to KMP, such as multiple patterns, patterns with variables, and 

commutative matching, several other algorithms fit this characterization: Earley’s 

algorithm for context-free parsing, Waltz filtering for scene analysis, enumerating 

functions, and the n-queens problem. Common to these algorithms is the satisfaction 

of locu[l~ defined constraints. Moreover, these algorithms are a combination of some 

form of decomposition applied to the domain (geometry) and some form of search 

applied to the codomain (algebra). Such a combination of geometry and algebra is 

indeed the purpose of sheaf theory. 
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6.1. In defence of abstract nonsense 

In this paper, we have attempted to separate the “abstract nonsense” of pattern 

matching from the specific features of a data structure or an occurrence relation. Such 

a separation is inevitable in any field into which category theory is introduced. We 

quote Peter Hilton [18]: 

Category theory provides a language for discussing very significant mathematical 

ideas, it provides a unifying medium, and it isolates the “general abstract nonsense” 
_ in Saunders Mac Lane’s vivid phrase - from the hard “concrete” mathematics. 

The abstract nonsense of pattern matching is the notion that occurrences are built 

out of pieces, with elementary occurrences either being trivially defined or dependent 

on the particular data structure. Such a characterization, together with general 

implementation strategies such as divide-and-conquer, finite differencing, and search 

(these could be called the abstract nonsense of algorithm design), yields the structure 

for a general class of algorithms, with a surprising variety of examples. This leads to 

the speculation that category theory, together with a little geometry, provides a good 

foundation for studying the abstract structure of algorithms. 

6.2. Why Grothendieck topologies? 

The arrows in the covers of all the sites defined in this paper are monies. Hence, it 

may be argued that the machinery of Grothendieck topologies is too general for 

describing the problem of pattern matching. So, we give below an example of a site in 

which covers contain nonmonic arrows. 

Example 6.1 (Expressions with sharing). Consider the site of expression trees defined 

in Example 5.1. We can modify this site so that expressions are represented by 

directed, acyclic graphs, thus allowing sharing of some sub-expressions. The mor- 

phisms are accordingly modified to correspond to morphisms of graphs (see Example 

2.5). We define a cover to be an epimorphic family of arrows in which the domain of 

every arrow is a tree. 

Such nonmonic covers also arise when we consider matching modulo a set of 

equations (e.g., commutativity and identity). 

Quite apart from allowing nonmonic covers, Grothendieck topologies have the 

advantage of defining the topology directly in terms of covers; it is this feature 

that makes them convenient for our derivation. Most of the data structures used 

in pattern matching are not closed under union or intersection (e.g., strings, 

connected graphs, etc.), thus precluding a direct characterization in terms of ordinary 

topologies. 
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Appendix. A formal basis for KMP-style algorithms 

We present some results from category theory and sheaf theory, mostly from SGA4 

[2], which form the basis of the derivation of the pattern-matching algorithm given in 

the paper. These results arise purely from the definitions of categories, topologies, and 

sheaves and, thus, are not specific to a particular problem or data structure. Yet, they 

yield enough information to synthesize an abstract algorithm. 

Every presheaf can be minimally “completed” into a sheaf. This process is called 

“sheafification”, and is carried out in two stages, converting a presheaf into a separ- 

ated presheaf and then into a sheaf. Roughly speaking, for a presheaf F: VP+Set, this 

is done by comparing the set F(X) and the set of compatible families over covers of X: 

extra elements in F(x) are deleted, and distinct elements corresponding to the same 

compatible family are identified; in all, the correspondence between compatible 

families and members of F(x) is forced to be bijective. 

Lemma A.1 (Ordering on covers, Artin et al. [2, ExposC II, Section 1.1.11). In any site 

(VZ“, J), ,for uny object x, the collection of covering sieves J(X) jbrms a cojiltered poser 

under inclusion of covers. 

Theorem A.2 (Sheafification, Artin et al. 12, Expost: II, Section 31). Given a presheaf 

F :W’*+Sef, the functor LF :WoP+Set is dt$ned by setting 

LF(x) = Colim Nat (R, F), 
__f 
ReJ(x) 

with the colimit taken over the poset J(x). For an arrow g : x+y, LF(g) is defined using 

the change-qf-base ,functor g* : J( y)-+J (x), which transfers covers from y to x. The 

assignment above of F H LF can be extended to arrows, yielding a ,functor 

L: PreShv(W)+Preshv(%). 

For any presheaf F, the presheaf LF is always a separated presheaf If F itself is 

a separated presheaf, then LF is a sheaj: These properties of L produce an adjunction 

Preshv(%) i sh Shv (%?, J), 

where i is the inclusion, and sh is the “associated-sheaf” or “sheaj$cation” functor, 

dejned by icsh=LLL. 

For the next result, we need a definition. Let E(%,~) denote the composition of the 

following functors: 

&<U,Jj. G5 -L Preshv(%) -% Shv (%‘, J ), 

where y is the Yoneda embedding and sh is the sheafification functor. The subscript in 

c(<d,Jj will be dropped when it is evident from the context. 
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Theorem A.3 (Lifting of covers, Artin et al. [2, Expose II, Section 4.41). Zf(fi: x!+x} 

is a cooeringfumilyfor x in (W,J), then {8(fi):E(Xi)-+&(X)} is an epimorphicfumily in 

Shv(%?, J). 

The result follows from the facts that covers can be lifted into Preshv(+?), and the 

above adjunction. 

We would like to use the above result to decompose the target into pieces tj+t, 

build the occurrence sheaves hom(-, tj) for these pieces, and combine these sheaves to 

produce the occurrence sheaf hom(-, t) for the target. To do this, we need a construc- 

tive method to build the codomain of an epimorphic family. This is possible in any 

topos. 

Theorem A.4 (Epimorphic families in a topos). In any topos, if {gi: yi~y} is an 

epimorphic family, then 

y=Colim image(gi), 

where “image” denotes the image of an arrow, and the colimit is taken over the poset of 

subobjects of y. 

We can apply this result to Shv (%7, J) because it is a topos. Moreover, if we choose 

a cover tpt for the target which has only manic arrows, then the two results above 

combine to give 

hom(-, t) s Colim hom(-, tj). 
- 

We next exploit the properties of an adjunction 

colimit of sheaves required for decomposing the 

being a left adjoint, preserves colimits. 

to obtain a nice expression for the 

target. The sheafification functor, 

Theorem A.5 (Colimits of sheaves, Artin et al. [2, Expose II, Section 4.11). Let 

F : ~-+Shv(~, J) be a diagram of sheaves. Then, the colimit of this diagram is given by 

Colim F=sh(% ioF), 

.F .3 

where i is the inclusion functor from sheaves to presheaves, and sh is the shea33cation 
functor. 

Recalling the definition of sheafification, the above expression allows us to compute 

occurrences using two colimits: one over pieces of the target, and one over the set of 

covers of the pattern. The latter translates to incremental computation of partial 

occurrences, when combined with the distributive law below. 
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Lemma A.6 (Distributing limits, Mac Lane [23, p. 2121). In Set, colimits are universal, 
i.e., the pullback of a colimit cone is a colimit cone. In particular, for coproducts we yet 

This can be extended to several coproducts (the subscripts for the pullbacks are omitted): 
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