
Theoretical Computer Science 249 (2000) 313–324
www.elsevier.com/locate/tcs

Normal forms of quasiperiodic strings

Laurent Mouchard 1

Faculte des Sciences, ABISS-ESA 6037, Universit�e de Rouen, Pl. E Blondel,
F-76821 Mont Saint Aignan Cedex, France

Abstract

Here we consider the problem of computing normal forms of quasiperiodic strings. A string x
is quasiperiodic if it can be constructed by concatenation and superpositions of one of its proper
factor (cover). The notion of quasiperiodicity is a generalization of periodicity in the sense that
superpositions as well as concatenations are allowed to de�ne it. It is shown here that given a
quasiperiodic string x, there exists a unique factorization of x into roots of its shortest cover
and how we can e�ciently build such a factorization in linear time. These forms can be used,
for example, to test whether or not a string v covers xk for some integer k, where v covers x.
c© 2000 Elsevier Science B.V. All rights reserved.

Keywords: Regularity; Quasiperiodicity; Overlap; Seed; Cover; Normal form

1. Introduction

In recent study of repetitive structures of strings, generalized notions of periods
have been introduced. A typical regularity, the root u of a given string x, grasps the
repetitiveness of x since x is a pre�x of a string constructed by concatenations of u. A
substring w of x a-covers x, if x can be constructed by concatenations and superpositions
of w. We say that w is a cover of x and x is a-covered. A substring w of x is called
a seed of x, if there exists a superstring of x which is constructed by concatenations
and superpositions of w. In this case we say that x is covered. For example, ACG
is a period of ACGACGACGA, ACGA is a cover of ACGACGAACGA, and ACGA
is a seed of GACGACGAACG. The notions “cover” and “seed” are generalizations

E-mail address: laurent.mouchard@univ-rouen.fr (L. Mouchard).
1 Supported by Conseil R�egional de Haute-Normandie and C.N.R.S. program “Informatique et G�enome”.

0304-3975/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(00)00065 -7

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81111012?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

314 L. Mouchard / Theoretical Computer Science 249 (2000) 313–324

of periods in the sense that superpositions as well as concatenations are considered to
de�ne them, whereas only concatenations are considered for periods. A variant of the
covering problem [10] studied here, was shown to have applications to DNA sequencing
by hybridization using oligonucleotide probes.
In computation of covers, two problems have been considered in the literature. The

shortest-cover problem (also known as the superprimitivity test) is that of computing
the shortest cover of a given string of length n, and the all-covers problem is that of
computing all the covers of a given string. Apostolico et al. [2] introduced the notion
of covers and gave a linear-time algorithm for the shortest-cover problem. Breslauer
[7] presented a linear-time on-line algorithm for the same problem. Moore and Smyth
[15] presented a linear-time algorithm for the all-covers problem. In parallel computa-
tion, Breslauer [7, 8] gave two algorithms for the shortest-cover problem. The �rst one
is an optimal O(�(n) log log n)-time algorithm, where �(n) is the inverse Ackermann
function, and the second one is a non-optimal algorithm that requires O(log log n) time
and O(n log n) work. Breslauer [7, 8] also obtained an
(log log n) lower bound on
the time complexity of the shortest-cover problem from the lower bound of string
matching. Iliopoulos and Park [13] gave an optimal O(log log n)-time (thus work-time
optimal) algorithm for the shortest-cover problem.
Iliopoulos et al. [11] introduced the notion of seeds and gave an O(n log n)-time

algorithm for computing all the seeds of a given string of length n. For the same
problem Ben-Amram et al. [4] presented a parallel algorithm that requires O(log n)
time and O(n log n) work.
Apostolico and Ehrenfeucht [1] considered another variant of the covering problem;

in [1] they presented an O(n log2 n) algorithm for �nding all the maximal quasiperiodic
substrings (local covers) of a given string, i.e. �nd all the longest coverable substrings
of a string. Informally, quasiperiodic substring z is maximal, if no extension z could be
covered by either the same string w covering z or by an extension wa of w. The algo-
rithm in [1] shadows the Apostolico and Preparata [3] algorithm for detection of all the
squares in a string. It is not di�cult to see the association between the two problems:
the starting position of every quasiperiodic substring is also the starting position of a
square. Iliopoulos and Mouchard [12] presented an O(n log n)-time algorithm solving
the same problem. Here, we will rather focus on �nding normal forms of quasiperiodic
(and covered) strings after their covers or seeds have been found. This approach will
enable us to study the spread of quasiperiodicity under concatenation, and additionally
determine whether or not v is a seed of xk , when v is a seed of x.
For example, v=ATA is a seed of x=TATAATATATATAATAA and the string

x can be written in the form x=T:ATA:AT:AT:AT:ATA:ATA:A: From this form, we
can easily derive that xk is covered by v for k¿1.
In Section 2, we present basic de�nitions as well as a few remarks on the new

de�nitions which will be useful for the results we will present. In Section 3, we
present left and right normal forms of a-covered (and covered) strings and an e�cient
algorithm to compute these forms. In Section 4, we present the concatenation of covered
strings. In Section 5, we conclude.

L. Mouchard / Theoretical Computer Science 249 (2000) 313–324 315

2. Preliminaries

A string is a sequence of zero or more symbols from an alphabet A. The set of all
strings over the alphabet A is denoted by A?. The set of all non-empty strings over
the alphabet A is denoted by A+.
A string of length n is represented by x1 : : : xn, where xi ∈A for 16i6n. A string v

is a factor of x if x= uvw for u; w∈A?; we equivalently say that the string v occurs
at position |u| + 1 of the string x. A string x is an extension of v if v is a factor
of x, that is x= uvw for u; v∈A?. A string u is a pre�x (or a left factor) of x if
x= uv for v∈A?. We also write u= x:v−1, for example, ATGCATG=ATGC:ATG
and therefore ATGC=ATGCATG:(ATG)−1i.
Similarly, v is a su�x (or a right factor) of x if x= uv for u∈A?. We also write

v= u−1:x, for example, ATGCATG=AT:GCATG and therefore GCATG= (AT)−1:
ATGCATG
The reversal of x= x1x2 : : : xn−1xn is x̃= xnxn−1 : : : x2x1.
The string xy is the concatenation of the two strings x and y.

Let X and Y denote two sets of words. The set X:Y is the set of all words obtained
by concatening a word of X and a word of Y . For example, if X = {ATA;TA} and
Y = {AT;TT}; X:Y = {ATAAT;ATATT;TAAT;TATT}.
X k is the set of all words obtained from (k − 1) concatenations of elements of X

(X k is the set of all words of length k over the alphabet X).
For example, if X = {AT;TA}, X 2 = {ATAT;ATTA;TAAT;TATA}.
The concatenations of k copies of x is denoted by xk and is called the kth power

of x. A string u is primitive if the condition u= vk implies v= u and k =1. For
example, ATAATAATA is the 3rd power of ATA and therefore is not primitive, but
ATATAATA is primitive.

Any decomposition w= v1:v2 : : : vk of a word w is called a factorization of w. A
factorization is sometimes the �nite sequence (v1; v2; : : : ; vk) itself.

A subset X of A? is a code if any string in X+ can be written uniquely as a
concatenation of strings in X, that is, has a unique factorization into strings in X. For
example, X1 = {AT;TA} is a code, since any string in X+

1 has a unique factorization
into {AT;TA}. X2 = {AT;ATA;TA} is not a code, since w=ATATA∈X+

2 can be
written w=AT:ATA=ATA:TA.

Therefore, the factorization of a string in X+
2 into strings in X2 is not unique.

For two strings x= x1 : : : xn and y=y1 : : : ym such that xn−i+1 : : : xn=y1 : : : yi for
some i¿1, the string s= x1 : : : xn−iy1 : : : ym= x1 : : : xnyi+1 : : : ym is a superposition of x
and y, in fact the superposition of x and y with i overlaps. For example, if s1 =ATA
and s2 =ATT then ATATT is the superposition of s1 and s2 with 1 overlap.
Despite this de�nition, the concatenation of x and y can be regarded in a certain

way as the superposition of x and y with 0 overlaps.

Let x be a string of length n.
An integer p ¿ 0 is a period of x i� ∀i∈ [1; n− p] xi= xi+p.

316 L. Mouchard / Theoretical Computer Science 249 (2000) 313–324

Fig. 1. Periodicity.

Fig. 2. ATA a-covers ATAATATATA.

Fig. 3. ATA covers ATAATATAAT (since ATA a-covers ATAATATAATA).

If we consider p¿n, [1; n − p] is empty, and according to the above de�nition, p
is a period of x, therefore p is a period of all the strings whose lengths are smaller
than p. So, a non-empty string has at least one period, its length.
The shortest period is the period of x. Let p be the period of a non-empty string x.

The string x is periodic if and only if p6b|x|=2c. It means that x=(uv)ku with |uv|=p
and k¿1. For example, s=ATAATAATA has periods 3; 6; 8; 9 and p¿9. The period
of s is 3 (see Fig. 1).
We say that a pre�x x1 : : : xp; 16p6n of x is a root of x, if xi+p= xi for all

16i6n− p.
The root of a string x is the shortest root of x.
For example, s=ATAATAATAA has roots ATA, ATAATA, ATAATAATA,

ATAATAATAA.
A string b is a border of x if b is a pre�x and a su�x of x. The empty string � and

x itself are trivial borders of x. For example, s=ATAATATAATATA has non-trivial
borders (or proper borders) A, ATA and ATAATATA.

Fact 1. A string u 6= � is a root of x= ub i� b is a border of x.
For example, ATA is a root of s=ATAATAAT and therefore ATAAT is a border

of s=ATAATAAT (see Fig. 2).
Given a string x and v a proper factor of x, v a-covers x i� x can be constructed

by concatenations and superpositions of v (a-cover stands for aligned-cover: ASC —
aligned string covering [11]). We say that such a v is a cover of x. The shortest cover
is the cover. Note that all covers of x are borders and therefore the cover is unique.
We say that u is quasiperiodic. A string is superprimitive if it is not quasiperiodic. For
example, ATAAATA is superprimitive (see Fig. 3).
Given a string x and v a proper factor of x, v covers x if and only if an extension

of x can be constructed by concatenations and superpositions of v (GSC — general
string covering [11]). We say that v is a seed of x.

L. Mouchard / Theoretical Computer Science 249 (2000) 313–324 317

3. Normal forms

In this section we present the underlying idea which leads to the normal forms. Con-
sider the string S =ATATA, which is quasiperiodic since it is a-covered by s=ATA.
We can decompose S in the following two di�erent forms: S=ATA:TA or S =AT:ATA
The �rst of these two forms can be viewed as the concatenation of s and one of its

su�xes and the second one can be viewed as the concatenation of a pre�x of s and s.
But considering any su�x of a cover for decomposing S is meaningless, for example
S ′=ATA:A is not a-covered by s=ATA although A is a su�x of s.
Informally, consider a string w which has at least one proper border u, i.e. there

exist two non-empty strings t and v such that w= tu and w= uv. Now consider the
superposition of w with itself with |u| overlaps (tuv). This superposition can be written
s=w:u−1:w, and it can be viewed in two di�erent ways (see the above de�nition
of superposition) s=wv= tw where v= u−1:w and t=w:u−1. Formally, we have the
following de�nitions.

De�nition 2. Consider the string u.
The longest proper border of u will be denoted by Border(u). The set of all borders

of Border(u) (including the trivial borders of Border(u)) will be denoted by B(u).
Furthermore, let

L(u)= {u:(B(u))−1}= {v | vw= u for w∈B(u)};

i.e. the set of pre�xes of u obtained by cutting o� an element of B(u) from the
rightmost end of u (L(u) is the set of all roots of u).
Similarly, let

R(u)= {(B(u))−1:u}= {v |wv= u for w∈B(u)};

i.e. the set of su�xes of u obtained by cutting o� an element of B(u) from the leftmost
end of u.

For example, for s=AATAA, we have Border(s)=AA, B(s)= {�;A;AA}, L(s)=
{AAT;AATA;AATAA} and R(s)= {TAA;ATAA;AATAA}.
Note that � is not an element of L(s)∪R(s), since s does not appear in B(s).
Once we have de�ned these sets, we can easily represent any possible superposition

of s with itself (eventually with no overlap, that is concatenation) as the concate-
nation of an element of L(s) and s, or s and an element of R(s). In the above
example, we can build the set of all possible superpositions of s with itself as the set
S1(s)=L(s): s= s:R(s). For example

S1(AATAA) = {AAT:AATAA;AATA:AATAA;AATAA:AATAA}
= {AATAA:TAA;AATAA:ATAA;AATAA:AATAA}
= {AATAATAA;AATAAATAA;AATAAAATAA}:

318 L. Mouchard / Theoretical Computer Science 249 (2000) 313–324

Next we focus on the maximal length of the overlap of the superposition of a string
u with itself. Given a string u, the maximal length of the overlap can be as long as
(|u| − 1) symbols for u= an for example. But in the case of superprimitive strings
(strings which are not a-covered by one of their proper factors), we obtain a di�erent
result:

Proposition 3. If u is superprimitive then |Border(u)|6b|u|=2c.

Proof. Suppose that |Border(u)|¿b|u|=2c. Since Border(u) is both pre�x and su�x of
u, Border(u) a-covers u (contradiction).

Remark 4. If u is superprimitive then

min
w∈L(u)

{|w|}= min
w∈R(u)

{|w|}¿b|u|=2c:

A straightforward proof follows the de�nition of L(u), R(u) and Proposition 3.
For example, s=AATAA, B(s)= {�;A;AA}, L(s)= {AAT;AATA;AATAA} and

R(s)= {TAA;ATAA;AATAA}:
minw∈L(s){|w|}= minw∈R(s){|w|}= |AAT|= |TAA|=3¿2= b|s|=2c:

Remark 5. If u is superprimitive then L(u)∩R(u)= {u}.

The proof follows by contradiction:
Assume that there exists a string v 6= u in L(u)∩R(u).
Then v is both pre�x of u (v∈L(u)) and su�x of u (v∈R(u)). From Remark 4,

it follows |v|¿b|u|=2c, therefore u is a-covered by v. It contradicts u is superprimitive.

3.1. Normal forms of a quasiperiodic string

The de�nition of the set L(u) for a given string u will enable us to build all
possible superpositions of u with itself. Step by step, we can consider that all strings
obtained by two successive superpositions of u can be written in the form u′:u′′:u
with u′; u′′ ∈L(u). We will denote by S2(s) the set of all strings obtained by two
successive superpositions of u (that is the language L(u):L(u):u itself).
For example, s=ATA, B(s)= {�;A}, L(s)= {AT;ATA},

S2(s) = {AT:AT:ATA;AT:ATA:ATA;ATA:AT:ATA;ATA:ATA:ATA}
= {ATATATA;ATATAATA;ATAATATA;ATAATAATA}:

Given a quasiperiodic string x and its cover u, it can be interesting to obtain a fac-
torization of x into words of L(u), but if we want a unique factorization, we have to
answer the following question: When is L(u) a code?

L. Mouchard / Theoretical Computer Science 249 (2000) 313–324 319

Proposition 6. If u is periodic then L(u) and R(u) are not codes.

Let s=ATAATAA, then B(s)= {�;A;ATAA};L(s)= {ATA;ATAATA; s} and
R(s)= {TAA;TAATAA; s} which are obviously not codes since ATAATA= (ATA)2
and TAATAA=(TAA)2.

Proof. Given a periodic string w=(uv)ku for k¿1, we have Border(w)= (uv)k−1u.
Therefore, B(w)k {(uv)iu | 06i¡k}= {u(vu)i | 06i ¡ k}.
We have L(w)k {(uv)j | 16j6k} and since k¿1, uv and (uv)2 are elements of

L(w), therefore L(w) is not a code.

If L(u) or R(u) is a code then u is not periodic.

Proposition 7. If u is superprimitive then L(u) and R(u) are codes.

Proof. A pre�x (resp. su�x) set S is a set of words such that given v; w in S, if v
is a pre�x (resp. su�x) of w then v=w. Pre�x and su�x sets are well-known to be
codes [5].
We will prove that if u is superprimitive then L(u) (resp. R(u)) is a su�x (resp.

pre�x) set and therefore prove that if u is superprimitive then L(u) (resp. R(u)) is a
code.

Given two words v and w in L(u) such that v is a su�x of w. We will prove that
if we assume that v 6=w it contradicts u is superprimitive.
Since v and w are elements of L(u), there exist two words x and y such that vy= u

and wx= u and moreover |w| − |v|=(|u| − |x|)− (|u| − |y|)= |y| − |x|.

Since v is an element of L(u), v is a pre�x of u and a su�x of w and moreover a
border of w. From Fact 1, it follows that |w| − |v| is a period of w.
So, there exists an occurence of y ending in every interval]k; k + (|w| − |v|)] for

|y|6k6|w| − (|w| − |v|).
It follows that y a-covers u1 : : : uj with |v|¡j6|w| (k = |v|).
Therefore, y a-covers u1 : : : uj with |v|6j6|w| and u|v|+1 : : : u|u|=y, that is y a-

covers u which contradicts the hypothesis u is superprimitive.
If u is superprimitive then L(u) is a su�x set and moreover a code.
Similarly, if u is superprimitive then R(u) is a pre�x set and moreover a code.
The following proposition gives a broader approach to quasiperiodic strings.

320 L. Mouchard / Theoretical Computer Science 249 (2000) 313–324

Proposition 8 (Left and right normal form of a quasiperiodic string). Let v be a
string that a-covers x. If v is superprimitive then there exists a unique factorization
into words of L(v) v= u1:u2 : : : uk with ui ∈L(v) for 16i6k. This factorization will
be named the left normal form of v and will be denoted by LNFv(x).
If v is superprimitive then there exists a unique factorization into words of R(v)

v=w1:w2 : : : wk with wi ∈R(v) for 16i6k. This factorization will be named the right
normal form of v and will be denoted by RNFv(x).

Proof. De�nition 2 insures the existence, and Proposition 7 proves the unicity.

For example, S =AATAATAAATAATAAAATAATAATAA is a-covered by s=
AATAA which is superprimitive.
Therefore it can be written in the unique forms:

LNFAATAA(S)=AAT:AATA:AAT:AATAA:AAT:AAT:AATAA;

RNFAATAA(S)=AATAA:TAA:ATAA:TAA:AATAA:TAA:TAA:

Fact 9. There exist strings x and v such that x is a-covered by v; v is quasiperiodic
and there exists a unique factorization into words of L(v) (resp. words of R(v)).

For example, consider the Fibonacci words over the binary alphabet {A;T} (we
recall that F1 =T; F2 =A and Fi+2 =Fi+1Fi for i¿1).
F8 =ATAATATAATAATATAATATA is a-covered by F6 =ATAATATA,
B(F6)= {�;A;ATA},
L(F6)= {ATAAT;ATAATAT; F6} and
R(F6)= {ATATA;TAATATA; F6}.
F6 is quasiperiodic (a-covered by F4 =ATA) but there exists a unique form
F8 =ATAATATA:ATAAT:ATAATATA∈ (L(F6))?;
and a unique form F8 =ATAATATA:ATAATATA:ATATA∈ (R(F6))?.
These propositions and facts lead to an important result:

Theorem 10. Given a quasiperiodic string w over an alphabet A.
There exists a unique factorization of w into roots of its shortest cover.

The proof is the direct consequence of Proposition 8.

3.2. Determining normal forms

We present an algorithm to determine the right normal form, which operates from
left to right. The left normal form operates on x̃ and L̃(u) using the same methodology
(we will use x=AATAATAAATAATAAAATAATAATAA to illustrate the main steps
of the algorithm).
The main steps of the algorithm are as follows:

(1) Compute the shortest cover u of x. This can be done in O(|x|) time using [2, 7, 15].
u=AATAA

L. Mouchard / Theoretical Computer Science 249 (2000) 313–324 321

Fig. 4. The minimal automaton recognizing (R(AATAA))∗.

(2) Construction of the set R(u). This can done in O(|u|) time by computing the
borders of u using the failure function of Knuth-Morris-Pratt’s algorithm [14].
R(u)= {TAA;ATAA;AATAA}.

(3) Construct a Deterministic Finite Automaton Mu that accepts the language (R(u))∗.
The construction of Mu requires O(|u| log |A|) time adapting [6, 9] (see Fig. 4).

(4) Decompose the string x using the automaton Mu. This requires |x| steps, for fol-
lowing the transitions of the automaton; a factor of the normal form is obtained
each time that a �nal state is reached:

RNFu(x)=AATAA:TAA:ATAA:TAA:AATAA:TAA:TAA:

Proposition 11. The normal form of a quasiperiodic string of length n can be com-
puted in O(n) time.

3.3. Normal forms of a covered string

We present now the left and right normal forms of covered strings, which is less
intuitive than a-covered strings, since we are considering seeds, instead of covers.
Therefore, the left (right) normal form of quasiperiodic strings can be extended by
adding a left and right context to adapt to covered string. This idea leads to the
following proposition:

Proposition 12 (Left and right normal form of a covered string). Let v is a seed of
the string x. If v is superprimitive then there exists a unique form

LNFv(x)= PREFv(x):Qv(x) :SUFFv(x);

where Qv(x) is the largest (quasiperiodic) factor of x a-covered by v, PREFv(x) is a
su�x of an element of L(v) and SUFFv(x) is a pre�x of an element of R(v).
If v is superprimitive then there exists a unique form

RNFv(x)= PREF
′
v(x):Q

′
v(x):SUFF

′
v(x);

where Q′
v(x) is the largest (quasiperiodic) factor of x a-covered by v; PREF

′
v(x) is a

su�x of an element of L(v) and SUFF′v(x) is a pre�x of an element of R(v).

322 L. Mouchard / Theoretical Computer Science 249 (2000) 313–324

Proof. Since an extension of the covered string x is quasiperiodic (and a-covered by
v), the form exists. The unicity is due to the maximality of the quasiperiodic factor
a-covered by v.

Fact 13. From the above de�nitions; we have the following equalities:

PREFv(x)= PREF
′
v(x);

Qv(x)=Q′
v(x);

SUFFv(x)= SUFF
′
v(x):

Note that Qv(x)=Q′
v(x) but their factorizations may di�er.

For example, s=AATAA is a seed of S =ATAAATAAATAATAAAATA and s
is superprimitive therefore there exist a unique left normal form and a unique right
normal form:

LNFs(S)=ATA:AATA:AAT:AATAA:AATA;

RNFs(S)=ATA:AATAA:ATAA:TAA:AATA;

where

PREFv(x)= PREF
′
v(x)=ATA;

Qv(x)=AATA:AAT:AATAA=AATAA:ATAA:TAA=Q′
v(x);

SUFFv(x)= SUFF
′
v(x)=AATA;

4. Concatenation of covered strings

Proposition 14. Let v be superprimitive and a seed of both strings x and y. The string
v is a seed of xy if and only if there exist z1; z2 ∈B(v) such that z1:SUFFv(x):PREFv(y):z2
is a-covered by v or SUFFv(x):PREFv(y)= �.

Proof. A straighforward proof is based the facts that Qv(x) and Qv(y) are both a-
covered by v and the de�nition of SUFFv(x) and PREFv(y).

For example, consider S =ATAAATAAATAATAAAATA, s=AATAA is super-
primitive and is a seed of S. We have B(s)= {�;A;AA},

L(s)= {AAT;AATA; s}; LNFs(S)=ATA:AATA:AAT:AATAA:AATA;

R(s)= {TAA;ATAA; s}; RNFs(S)=ATA:AATAA:ATAA:TAA:AATA;

PREFs(S)=ATA and SUFFs(S)=AATA:

Thus, SUFFs(S):PREFs(S)=AATAAATA and ∃�;A∈B(s) | �:SUFFs(S):PREFs(S). A=
AATAAATAA is a-covered by s. Therefore we can conclude that S k is covered by s
for k¿1.

L. Mouchard / Theoretical Computer Science 249 (2000) 313–324 323

On the other hand, consider S =TAAATAAATAATAAAATA. We have

LNFs(S)=TA:AATA:AAT:AATAA:AATA with PREFs(S)=TA;

RNFs(S)=TA:AATAA:ATAA:TAA:AATA and SUFFs(S)=AATA:

Now we have SUFFs(S):PREFs(S)=AATATA and ∀z1; z2 ∈B(s); z1:SUFFs(S):PREFs(S):z2 =
z1:AATATA:z2 is not a-covered by s=AATAA. Therefore Sk is not covered by s for
k¿2.

Fact 15. Let u; x et y be words of A∗ and k be a non-negative integer.
(1) If u is a cover of x then u is a cover of xk .

(PREFu(x)= SUFFu(x)= �):

(2) If u is a seed of x and u is a cover of b1:SUFFu(x):PREFu(x):b2 for some b1; b2 ∈B(u)
then u is a seed of xk .

(3) If u is a cover of x and y then u is a cover of xy.

(PREFu(x)= SUFFu(x)= PREFu(y)= SUFFu(y)= �):

(4) If u is a cover of a left extension of x and a cover of y then u is a cover of a
left extension of xy :

(SUFFu(x)= PREFu(y)= SUFFu(y)= �):

(5) If u is a cover of x and u is a cover of a right extension of y then u is a cover
of a right extension of xy.

(PREFu(x)= SUFFu(x)= PREFu(y)= �):

(6) If u is a cover of a left extension of x and a cover of a right extension of y then
u is a seed of xy.

5. Conclusion

Here we presented, right and left normal forms of quasiperiodic strings together with
a linear algorithm for computing such forms. Furthermore, normal forms of covered
strings were presented. Additionally, we showed the criteria required for preserving the
seeds of covered strings under concatenation. The key open question is whether these
criteria lead to a linear algorithm for computing all seeds of a given string.

References

[1] A. Apostolico, A. Ehrenfeucht, E�cient detection of quasiperiodicities in strings, Theoret. Comput. Sci.
119 (2) (1993) 247–265.

324 L. Mouchard / Theoretical Computer Science 249 (2000) 313–324

[2] A. Apostolico, M. Farach, C.S. Iliopoulos, Optimal superprimitivity testing for strings, Inform. Process.
Lett. 39 (1) (1991) 17–20.

[3] A. Apostolico, F.P. Preparata, Optimal o�-line detection of repetitions in a string, Theoret. Comput.
Sci. 22 (3) (1983) 297–315.

[4] A. Ben-Amram, O. Berkman, C.S. Iliopoulos, K. Park, The subtree max gap problem with application
to parallel string covering, 5th ACM-SIAM Ann. Symp. on Discrete Algorithms, Arlington, VA, 1994,
pp. 501–510.

[5] J. Berstel, D. Perrin, Theory of Codes, Academic Press, Orlando, FL, 1985.
[6] A. Blumer, J. Blumer, A. Ehrenfeucht, D. Haussler, M.T. Chen, J. Seiferas, The smallest automaton

recognizing the subwords of a text, Theoret. Comput. Sci. 40 (1) (1985) 31–55.
[7] D. Breslauer, An on-line string superprimitivity test, Inform. Process. Lett. 44 (6) (1992) 345–347.
[8] D. Breslauer, Testing string superprimitivity in parallel, Report CUCS-053-92, Computer Science

Department, Columbia University, NY, 1992.
[9] M. Crochemore, E. Rytter, Text Algorithms, Oxford University Press, Oxford, 1994.
[10] A.M. Duval, W.M. Smyth, Covering a circular string with substrings of �xed length, Internat. J. Found.

Comput. Sci. (1998), (to appear).
[11] C.S. Iliopoulos, D.W.G. Moore, K. Park, Covering a string, in: A. Apostolico, M. Crochemore,

Z. Galil, U. Manber (Eds.), Proc. 4th Ann. Symp. on Combinatorial Pattern Matching, Lecture Notes
in Computer Science, Vol. 684, Padova, Italy, Springer, Berlin, 1993, pp. 54–62.

[12] C.S. Iliopoulos, L. Mouchard, An o(nlogn) algorithm for computing all maximal quasiperiodicities in
strings, in: C.S. Calude, M.J. Dinneen (Eds.), Combinatorics, Computations and Logic. Proc. DMTCS’99
and CATS’99, (vol. 21) Lecture Notes in Computer Science, Auckland, New-Zealand, Springer-Verlag,
Singapore, 1999, pp. 262–272.

[13] C.S. Iliopoulos, K. Park, An optimal o(loglogn)-time algorithm �r parallel superprimitivity testing,
J. Korea Inform. Sci. Soc. 21 (8) (1994) 1400–1404.

[14] D.E. Knuth, J.H. Morris Jr., V.R. Pratt, Fast pattern matching in strings, SIAM J. Comput. 6 (1) (1977)
323–350.

[15] D. Moore, W.F. Smyth, An optimal algorithm to compute all the covers of a string, Inform. Process.
Lett. 50 (5) (1994) 239–246.

