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A b s t r a c t - - O n e  of the intriguing problems of interpolation theory posed by ErdSs in 1961 is the 
problem of finding a set of interpolation nodes in [-1, 1] minimizing the integral In of the sum of 
squares of the Lagrange fundamental polynomials. The guess of ErdSs that the optimal set corre- 
sponds to the set F of the Fekete nodes (coinciding with the extrema of the Legendre polynomials) 
was disproved by Szabados in 1966. 

Another aspect of this problem is to find a sharp estimate for the minimal value I* of the integral. 
It was conjectured by ErdSs, Szabados, Varma and Vertesi in 1994 that asymptotically I~ - In(F) = 
o(1/~). 

In the present paper, we use a numerical approach in order to find the solution of this problem. 
By applying an appropriate optimization technique, we found the minimal values of the integral 
with high precision for n from 3 up to 100. On the basis of these results and by using Richardson's 
extrapolation method, we found the first two terms in the asymptotic expansion of I~, and thus, 
disproved the above-mentioned conjecture. Moreover, by using some heuristic arguments, we give an 
analytic description of nodes which are, for all practical purposes, as useful as the optimal nodes. 

K e y w o r d s - - L a g r a n g e  interpolation, Fundamental polynomials, Extremal problem. 

1. I N T R O D U C T I O N  

One of  the  mos t  i m p o r t a n t  p rob lems  in in t e rpo la t ion  t h e o r y  is the  p rob lem of  d e t e r m i n i n g  an  

o p t i m a l  set  of  i n t e rpo la t ion  nodes.  Accord ing  to  the  numer ica l  analys is  approach ,  the  error  of 

a p p r o x i m a t i o n  is r epresen ted  in t he  Lagrang ian  form 

f(n)(~)  n 
f ( x )  -- i n - l ( X )  = n! H ( x  - xk) ,  ~ • [--1, 1], 

k=l 

and  the  set  of i n t e rpo la t i on  nodes  {xk}'~=t in [ - 1 ,  1] is called an op t ima l  set  if the  sup -no rm 

of  t he  po lynomia l  t e r m  in t he  above r ep resen ta t ion  is minimal .  As  is well known, t he  op t ima l  

set  of  nodes  in t he  above  sense is the  set  of  the  roo ts  of the  Chebyshev  po lynomia l  of  the  first 

k ind  Tn(z ) .  

Accord ing  to  t he  funct ional  analys is  approach ,  the  c r i t e r ia  for o p t i m a l i t y  are  expressed  in t e rms  

of  t h e  Lag range  fundamen ta l  po lynomia l s  

f i  x - x j  lk(x)  . . . .  , k = 1 , 2 , . . .  , n .  
j=l  xk  - -  x j  
jy£k 
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In 1932, Fejer [1] considered the following extremal problem. Find a set of nodes X = 
{Xl, x2,..., xn} in [-I, 1] minimizing 

n 

M . ( X )  := max a n ( X ; x ) : =  max ~--~l~(X;x). (1) 
--l__x<C1 - l < x < l  

k = l  

Fejer proved that Mn (X)  is minimal if and only if X -- F,  the set of the Fekete nodes (coinciding 
with the roots of the integral of the Legendre polynomial f x I Pn-1(t)  dr). He also showed that 
M,*, := minx M n ( X )  = Mn(F)  = 1. 

A revival of interest in the above-mentioned extremal problem was motivated by the develop- 
ment in the sixties of the statistical theory of design of experiments. Thus, in the monograph of 
Karlin and Studden [2], a whole chapter is devoted to the extremal problem (1) and its generaliza- 
tions to weighted interpolation, interpolation in infinite intervals, and trigonometric interpolation. 
It should be mentioned that the proofs of Karlin and Studden are based on deep techniques of 
convex analysis and game theory. In 1979, Balkzs [3] found an elementary proof (based on stan- 
dard arguments of approximation theory) of the result of Karlin and Studden concerning optimal 
weighted interpolation. 

In 1961, Erd6s [4] posed a problem similar to (1), where the sup-norm in the criterion of 
optimality was replaced by the integral norm 

By analogy with the solution of (1), Erd6s conjectured that the F-set of nodes provides an 
optimal solution of (2). This conjecture was disproved by Szabados [5] in 1966, and since then 
the problem of determining an optimal set of points has been considered to be one of the difficult 
open problems in approximation theory. 

Another aspect of this problem is to find a sharp estimate for the minimal value I~ of the 
integral In(X) .  In his paper of 1968, Erd6s [6] claimed (without proof) that the following estimate 
holds: 

However, the efforts of Hungarian mathematicians to "reproduce" the "proof" of Erd6s were 
unsuccessful, and in a recent paper, Erd6s, Szabados, Varma and Vertesi [7] proved the following 
weaker result: 

I~ > 2 -  O (l°--g~n). (4) 

On the other hand, they conjectured that asymptotically 

I~, = 2  - -1 - o  ( 1 ~ ,  n--~ oo, (5) 
n \ h i  

which, in view of the well-known formula (see, e.g., [8]) 

(6) In(F)  = 2 2n - 1 n 

means that I * -  In (F) = o(1/n).  This conjecture appears also in a more recent paper of Erd6s [9]. 
In the present paper, we treat this problem numerically. By applying an appropriate optimiza- 

tion technique, we found the minimal values of the integral with high precision for n from 3 up 
to 100. On the basis of these results and by using Richardson's extrapolation method, we found 
the first two terms in the asymptotic expansion of I~, and thus, disproved the above-mentioned 
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conjecture. Moreover, by using some heuristic arguments, we give an analytic description of the 
A-nodes which are, for all practical purposes, as useful as the optimal nodes. 

The paper is organized as follows. Section 2 deals with the evaluation of Mn and In for 
some important sets of interpolation nodes. Special attention is given to the so-called extended 
Chebyshev nodes which play an important role in the optimal norm interpolation (see, e.g., [10]). 

In Section 3, we present the results of numerical computations and apply them to the analysis 
of the asymptotic behavior of I,~ and In(A).  

2. T H E  E V A L U A T I O N  O F  M n  A N D  In  

F O R  S P E C I F I C  S E T S  O F  I N T E R P O L A T I O N  N O D E S  

We start  by noting that,  for some sets of interpolation nodes, explicit expressions for M n ( X )  
and I n ( X )  may be found in the book of Turetskii [8]. However, in proving these results for 
different sets of nodes, Turetskii used different arguments. In the following, we derive a general 
formula for an(X;  x), valid for an arbitrary set of interpolation points which is the main key in 
evaluating M n ( X )  and In (X) .  

THEOREM 2.1. Let X = { x l , x 2 , . . . , X n }  w h e r e - 1  < xn < ""  < x2 < xl  <_ 1, and let 
wn(z)  = wn(X;  x) = (x - x l ) ( x  - xg.)...  (x - xn). Then the function an(X;  x) defined by (1) has 
the following representation: 

an(X) = an(X;  x) = 1 + w2(x) 
W~ (xk) 1 

~=1 [~" (xk)]  3 x - x~ (7) 

PROOF. Since an(Xk) = 1 (k = 1,2 . . . .  , n), an(X) may be represented in the form 

an(x) = 1 + wn(x)qn-2(x) ,  (8) 

where qn-2(x) is a polynomial of degree at most n - 2. Differentiation of (8) yields 

n 

2 Z lj(x)l~(x) = w~(x)qn-2(x) + wn(x)q~_2(x ), 
j = l  

from which it follows for x = xk, 

! 
2t~(xk)  = ~ ,  (xk)  q , _ ~  ( x k ) .  

Taking into account the well-known formula (see, e.g., [11, p. 24]) 

~ " ( x ~ )  
l~ (xk)  = , , 

2 w n ( x k )  

we find 

~" (xk)  k = 1 , 2 , . . . ,  n.  (9) qn-2 (xk) = [w~(xk)] 2, 

tt t 2 Let Yk = Wn(Xk)/[wn(Xk)]. Then, qn-2(x) is the interpolating polynomial for the table 
{xk, Yk}~=l, and since qn-2(x) is of degree at most n - 2, its (n - 1) th divided difference vanishes: 

qn-2 [xl, x2 , . . .  , xn] = ~ y_...___.~_k = O. 

Thus, we obtained, as a by-product, the following identity valid for an arbitrary set of nodes: 

" 

~,  (xk)  = o. (10)  
k=l [~" (zk)f 
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Moreover, qn-~(x) may be represented in the Lagrangian form 

~ w~(Xk) 1 (11) 
qn-2(x) = ~;~ (xk) ~.(~) = ~n(~) [~" (~k)] 3 (~ - xk)" 

k--1 [W~ (Xk)] 20'ffn (X-"~='~ "-" Xk) k=l 

Substitution of (11) in (8) yields the desired result. | 

Next, we apply this general formula to the the set T of the Chebyshev roots in order to find a 
new representation for an(T; x). 

THEOREM 2.2. Let X = T := {~(n) = cos[(2k - lfir/(2n)]}~=l. Then [or n >_ 2, the following 
representations hold: 

an(T; x) = 1 + lun_2(x)Tn(x) 2n - 1 n = 2 ~  + U2n-2(x), (12) 

where Un (x) is the Chebyshev polynomial of the second kind of degree n. 

PROOF. Note first that  for the Chebyshev roots wn(T;x) = 2-(n-1)Tn(x), and therefore, (7) 
yields 

an(T;x) = 1 + T2(x) ~ 3 
k.1 [T/n (,(kn))] (X--'(n)) " 

Further, by using the differential equation of the Chebyshev polynomials 

(1 - x2) T"(x)  - xT" (x) + n2Tn(x) = O, 

we find 

T~(~ (n)) 1 _ (~(n)) 2' 

~/ [¢(n)~ 2 
and since TIn(~ (n)) ---- ( - -1)k-In /  1 -- ~sk J , we have 

2 n 
an(T;x)=l+~Z :(n) 

n k = :  ~ _  :k(n) " 

Thus, in order to prove the first representation in (12), we have to verify that  the following 
identity holds: 

Un_2 ( x ) 1 ~ - ~  ~ n )  (13) 

But Un-2(x)/Tn(x) has the unique partial fraction decomposition of the form 

:]n-2(X) = ck 
= -?p), 

where ck is defined by the formula for the residue at the simple pole as follows: 

u_,(<: °,) =<,,o, 

This proves the first representation in (12). Finally, the second formula in (12) follows from the 
first by using 2Un-2(x)Tn(x) = U2n-2(x) - 1. | 
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Note, that  by applying (12), one can easily derive the following well-known formulas (see, 
e.g., [8]): 

1 
M , ( T )  = 2 - - ,  (14) 

n 
2 2 

In (T )  = 2 2n-----~ -{- n (2n  - 1)" (15) 

Now let us consider the set T of the extended Chebyshev nodes obtained from the T-set by a 
linear transformation which maps the first and the last nodes to +1, namely T = cos[ (2k-  1)Tr)/ 
(2n)]/cos[~r/(2n)]. Note that  in the minimum norm interpolation problem, this set of nodes is 
a very good approximation to the optimal set (see, e.g., [3]). It will be shown shortly that  the 
extended Chebyshev nodes are of special importance in our study as well. 

THEOREM 2.3. For n > 2, the following es t imates  hold: 

Aim T _<~ 1-~n  ' (16) 

( )  2 (17)  In :F = 2  2 n - l "  

PROOF. We start by proving (16). It may be easily verified that  

an ;x  = a n  , where ~ n) = cos ~n, 

and hence, 

--l<z<l .¢:('~) < ' - /e( - )  

Thus, by applying the representation (12), we find 

= 2----~ + ~n  max U2n-2(x) .  (19) ~=(n)<._le(n) 
--'bl -'~-~I 

Next, 
]U,(x)  I = [s in (n+  1)arccosx I ~ 1 

~/1 - x2 1 ~ _  x2, x e ( -1 ,  i), 

with equality only at the points x = cos[(2k - 1)~r/(2n + 2)], k = 1 , 2 , . . . n  + 1. Therefore, 
denoting the roots of Un(x)  by {~/(k ") = c o s [ k r / ( n  + 1)]}~=1, we have 

1 
max U2n-2(x) = max V2n-2(x) _< 

n3 "-x~n2 1-  ~(22n_2) 2 (20) 
i 1 

= sin(2, /2n - 1) <- ( 2 n  - 1).  

Substitution of (20) in (19) completes the proof of the estimate (16). 
Let us turn to the proof of (17). By using representation (12), once again we get 

= - -  U2n-2 x ~  n) dx  = - -  + - -  U2n-2(z)  dz. 

$4:12-B* 
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But as is well known, f Un(x)dx = Tn+l(X)/(n + 1), and therefore, 

T2n-1 (~  n) ) 
In(T) - 2n-l_ 

n - -  + ~ n ) n ( 2 n -  1)" 

It remains to note that  T2n-1 ( ~ ) )  = _~n)  and the result follows. I 

REMARK. Comparison of (6) and (17) leads to the following surprising identity: 

In(:~') =In(F), n = 2 , 3 , . . . .  (21) 

Figure 1 illustrates the equality of integrals of two different functions for the special case n -- 6. 
It should also be mentioned that  the estimate (16) is a bit conservative and Mn(T) is very close 
to the minimal value 1. Finally, it is worthwhile to emphasize that,  from a practical point of 
view, it is much more convenient to work with the extended Chebyshev nodes rather than with 
the Fekete ones, since for these nodes, we have an explicit and simple representation. 
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Figure 1. The functions a6(T; z) (solid curve) and a6(F; x) (dashed curve). 

3. N U M E R I C A L  R E S U L T S  A N D  A S Y M P T O T I C  
B E H A V I O R  OF In* 

It  is clear that  the extremal problem (2) may be treated as the following constrained optimiza- 
tion problem. Minimize 

1 

I,~ (zl ,  x2 , . . . ,  z , )  = f_  ~rn (Xl, z2 , . . . ,  Zn, X) dx, (22) 
1 

where 

fi k=l j=z \ Xk - xj ] 

under the constraints 
- l < x l  < x 2 < ' " < X n _ < l -  (24) 
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Our approach consists in applying an appropriate optimization technique in order to find the 
optimal values of the integral I*, as well as the optimal sets of nodes X~ numerically. Unfor- 
tunately, the optimization problem we are dealing with is a nonstandard, difficult problem due 

to the fact the integral In(xt ,x2 . . . .  ,xn) is a complicated rational function of the nodes. To 
overcome this difficulty, at the first stage of our study, the simple direct search method of Hooke 
and Jeeves [12] was applied in order to find the optimal solution numerically for small values 
of n (up to 16). Since the integrand a,~(Xl, x2 , . . . ,  xn, x) in (22) is a polynomial of degree 2 n -  2 
with respect to x, for numerical evaluation of the integrals, the Gaussian quadrature formula was 
used with the number of nodes sufficiently large to guarantee that  the evaluation of the integral 
is exact (see, e.g., [13]) To make the results more reliable, the initial vector (x~ °), x(2°),..., X(n °)) 
was chosen randomly. The numerical results obtained strongly suggest tha t  the solution of the 
extremal problem (22)-(24) is unique, the optimal nodes are symmetric on [-1,  1], and include 
the end-points of the interval. 

At the second stage, our purpose was to find the optimal solution for large values of n and 
with great precision. To this end, taking into account that  In(x1, x2 , . . . ,  xn) is a smooth function 
of the nodes, the second-order Newton method was used. In numerical computations, explicit 
analytic expressions for the gradient and the Hessian of O'n(Xl,  X 2 , . . .  , Xn, 2?) have been used along 
with the Gaussian quadrature formula. The set of the extended Chebyshev nodes was used as 
an initial guess. It should be mentioned that  theoretical results concerning the convergence of 
the Newton method (see, e.g., [14]) are based on the assumption that  the minimizing function is 
convex. To verify the convexity of In (x t, x2, • • •, xn) numerically, the Cholesky decomposition was 
used in solving the corresponding linear systems. The numerical experiment strongly suggests 
that ,  at least in the neighborhood of the optimal solution, the integral I n ( X l , : C 2 , . . .  , X n )  is a 
convex function of the nodes. 

The computations have been performed on a supercomputer Cray J92 using code written in 
C + +  with 30 decimal digit accuracy. In all the cases, the tolerance of 10 -28 was achieved after 
a few iterations. We ran the program for degrees from 3 to 50 and found the optimal values of 
the integral I~* with at least 25 correct digits. 

These numerical values have been used in order to verify an asymptotic behavior of I~. To this 
end, we assume that  

I,~ = 2 - Cl c2 (25) 
n n 2 

and define the sequence d~(n = 1 ,2 , . . .  ) by 

d* := (2 - I~) n = Cl + . . . .  c2 -t- • (26) 
n 

Then 
lim d~ = cl. (27) 

n - - * O O  

But this sequence tends to its limit very slowly (see Table 1), and therefore, to accelerate the 
convergence, Richardson's extrapolation technique was used (see, e.g., [15]). 

To describe Richardson's extrapolation method, let {Sn }N=t, with N > 2, be a given sequence of 

real numbers. On setting R(0 n) := Sn(n = 1, 2, N), regard ScP('~)IN • . . ,  t~0 Jn=l as the zeroth column of 
the Richardson extrapolation table for {Sn}g=x. The first column of the Richardson extrapolation 
table, consisting of N - 1 numbers, is defined by 

XnR(O n + l )  _ Xn@lR(0 n) 
R~n) := , ( n =  1,2  . . . .  , N -  1), 

Xn - -  X n + l  

and inductively, the (k + 1)st column of the Richardson extrapolation table, consisting of N - k - 1 
numbers, is defined by 

R(n) 2:n R(n+I) - Xn+k+l R(n) 
/¢+1 :=  , (n = 1 , 2 , . . . , N -  k -  1), 

X n -- Xn.i_k+ 1 

for each k = 0, 1 , . . . ,  N - 2, where the {xn}g=l are given constants. 
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Table I. The  values of the sequence ra* ~50 along with the 11 th and 12 th columns 
of the  Richardson extrapolation table. 

n d* Richl I Rich12 

20 1.09953053690152049130 1.094219687170 1.094219716687 

21 1.09919590402847313501 1.094219698239 1.094219724898 

22 1.09889868217055995621 1.094219707933 1.094219732104 

23 1.09863312670444988771 1.094219716464 1.094219738463 

24 1.09839458803132105327 1.094219724006 1.094219744093 

25 1.09817926618389322777 1.094219730702 1.094219749101 

26 1.09798402792476931384 1.094219736669 1.094219753577 

27 1.09780626866681586523 1.094219742008 1.094219757578 

28 1.09764380700083271896 1.094219746799 1.094219761188 

29 1.09749480325512798259 1.094219751116 1.094219764436 

30 1.09735769598056354276 1.094219755014 1.094219767368 

31 1.09723115195540070277 1.094219758544 1.094219770059 

32 1.09711402649254932819 1.094219761757 1.094219772436 

33 1.09700533167298618196 1.094219764670 1.094219774730 

34 1.09690421073185187532 1.094219767352 1.094219776619 

35 1.09680991726056868002 1.094219769770 1.094219778677 

36 1.09672179820828702671 1.094219772044 1.094219780085 

37 1.09663927990267148243 1.094219774054 1.094219782028 

38 1.09656185648678350698 1.094219776007 1.094219782964 

39 1.09648908030195654915 1.094219777677 

40 1.09642055384767953874 

41 1.09635592302690784070 

42 1.09629487144490689485 

43 1.09623711557608017652 

44 1.09618240064945976978 

45 1.09613049713203259919 

46 1.09608119771162252011 

47 1.09603431469899101332 

48 1.09598967778317498522 

49 1.09594713208562559890 

50 1.09590653646804320520 

In our case, in accordance with (26), xn  = 1 /n .  To conserve space, in Table 1, we give the 
values of the subsequence ¢~,150 along with the 11 th and 12 th columns of the Richardson ~unJ 'n=20,  

extrapolation method applied to it. The values of d* have been truncated to 20 decimal digits, 
while the results of extrapolation are given with 12 decimal digits. In addition to this, in Table 2, 
we present the diagonal elements of the first 12 columns of the Richardson table. 

It is evident from these tables that the constant ct in the asymptotic expansion of I~* is different 
from 1. More precisely, with at least seven significant digits, we have 

Cl = 1.094219 . . . .  (28) 

This result disproves the above-mentioned conjecture of Erd6s et al. It also raises the question 
of finding another set of interpolation nodes (instead of the extended Chebyshev nodes), which 
may be described analytically and may be considered an "almost optimal" set. 

In the process of searching for the solution of this problem, several heuristic arguments have 
been examined. In the following, we describe and analyze two configurations of nodes based on 
heuristic arguments. 
(1) The first heuristic (which was suggested by Szabados), consists of using the so-called double 
extended Chebyshev nodes T, obtained from the T-nodes by repeated extension of its inner 
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Table 2. Diagonal elements of the Richardson extrapolation table for the sequence 
~ , ~ * / 5 0  

t ~ n  I n = 2 0 "  

k R (5°-k) 

1 1.0939 1735 
2 1.0942 1525 
3 1.0942 1858 
4 1.0942 1936 
5 1.0942 1957 
6 1.0942 1967 
7 1.0942 1971 
8 1.0942 1974 
9 1.0942 1976 

10 1.0942 1977 
11 1.0942 1978 
12 1.0942 1978 

points, namely 

{ cos[(2k-1)~r)/(2n)] } 
T =  Xk= cos2[Ir/(2n) ] , k - - 2 ,  a , . . . , n - 1 ,  xl = - x n = l  . (29) 

In order to check the efficiency of this heuristic, we have calculated numerically the values of In (T) 
for n in the range 3-100. These results are presented in Table 3, along with the values of the 
integral for some other important  sets of nodes, as well as with the optimal values of the integral. 
As we see from this table, the repeated extension leads to a decrease in the value of the integral 
(i.e., In(T) < I,~(T), n > 5). However, this improvement is insignificant, since the values In(T) 
are much closer to In(T)  than to the optimal values I~. Indeed, we performed the analysis of the 
asymptotic behavior of In(T) (in a way similar to that  which was used in the analysis of I~) and 
found that  asymptotically 

io(,) 
Thus, the asymptotic behaviors of In(T) and In(T) are similar. 
(2) Another heuristic was motivated by the results of a numerical experiment. Note first that ,  
as was shown in the previous section, for two different sets of nodes, the Fekete nodes and the 
extended Chebyshev nodes, the values of the integral are the same. Therefore, one can assume 
tha t  the optimal set corresponds to the location of nodes somewhere between these two specific 
sets. Indeed, the numerical results indicate that  (for fixed n > 4), the optimal set of nodes X* 
is located approximately in the middle between the T-set and the F-set. Unfortunately, there 
is no explicit expression for the Fekete nodes, and to overcome this difficulty, we start  with the 
following observation. 

It  is known (see, e.g., [16]) tha t  if the Fekete nodes of order n are written in the form xk = 
cos6~ (k = 1 ,2 , . . .  ,n) ,  where 0 = 81 < 82 < . . .  < / ? ,  = r ,  then 

2k - 2 2k - 1 
2 n _ l l r < / ~ k <  2 n _ l l r ,  k = l , 2 , . . . , n .  (31) 

In view of this inequality, it seems reasonable to consider the set of nodes -~ which in addition to 
the end-points of the interval [-1,  1] will contain the points of the form cos 8-k (k = 2, 3 , . . . ,  n - l ) ,  
where ~-k is the arithmetic mean of the left-hand and right-hand sides of (31), namely 

(4k~n:2- 3)7r, xl  } F : = . x k = c o s  k =  2 , 3 , . . . , n - 1 ;  = -xn  = l . (32) 
k 



46 L. BRUTMAN AND D. TOLEDANO 

Table 3. The values of the integral for several specific sets of nodes in comparison 
with the optimal values. 

n ExtCheb DoubleExt NFekete Average Optimal 

3 1 .600000  1 .600000  1.600000 1.600000 1.600000 

4 1 .714286 1 .714782 1.710892 1.711326 1.710758 

5 1 .777778  1 .775415 1.773250 1.773147 1.772609 

6 1 .818182  1 .814176 1.813625 1.812806 1.812367 

7 1 .846154  1 .841486 1.841942 1.840516 1.840165 

8 1 .866667  1 .861869 1.862889 1.861011 1.860728 

9 1 .882353  1 .877687 1.879001 1.876803 1.876571 

10 1 .894737  1 .890321 1.891767 1.889352 1.889159 

15 1 .931034  1 .928026 1.929331 1.926618 1.926527 

20 1 .948718  1 .946653 1.947634 1.945076 1.945023 

25 1 .959184  1 .957697  1.958436 1.956107 1.956073 

30 1 .966102  1 .964986 1.965556 1.963445 1.963421 

35 1 .971014  1 .970147  1.970599 1.968680 1.968663 

40 1 .974684  1 .973990 1.974356 1.972603 1.972589 

45 1 .977528  1 .976962 1.977264 1.975652 1.975642 

50 1 .979798  1 .979327  1.979580 1.978091 1.978082 

55 1 .981651 1 .981253 1.981469 1.980085 1.980078 

60 1 .983193 1 .982852 1.983038 1.981746 1.981740 

65 1 .984496 1 .984201 1.984362 1.983152 1.983147 

70 1 .985611 1 .985353 1.985495 1.984356 1.984352 

75 1 .986577  1 .986350  1.986475 1.985400 1.985396 

80 1 .987421 1 .987219 1.987331 1.986313 1.986310 

85 1 .988166  1 .987985  1.988085 1.987119 1.987116 

90 1 .988827  1 .988664 1.988754 1.987835 1.987832 

95 1 .989418  1 .989271 1.989353 1.988476 1.988473 

100 1 .989950  1 .989816  1.989890 1.989052 1.989050 

This  set of nodes will be called the Near-Fekete nodes. Note tha t  this set consists of n - 2 roots 

of the  Chebyshev polynomial  T2n-l(X) (the roots with odd indices excluding the first and  the 

last).  

The  values of the integral  for the Near-Fekete nodes have been computed  numerically,  and  they 

are presented in the fourth column of Table 3. I t  is worthwhile to indicate  t ha t  there is a slight 

decrease in the values of the integral In(~') in comparison wi th  In(F).  
Finally,  we define the A-set of nodes as the ar i thmet ic  mean  of the F -  and  the T-sets ,  namely  

1 [ c o s ( ( 2 k - 1 ) r ) / ( 2 n ) )  (4k- -  , k 2 , 3 , . .  , n - l ,  
A := 2 [ cos2(~r/(2n)) 4 n -  2 J (33) 

Xl = --Xn = I. 

This set of nodes will be called the Average set. The values of In(A) computed numerically are 

presented in Table 3. Comparison of these values with the optimal values of the integral I* shows 
that In(A) are very close to I~. Thus, we conclude that the readily available Average set of nodes 
is, for all practical purposes, as useful as the optimal set. 

Moreover, we have performed the analysis  of the asymptot ic  behavior  of In(A) following the 

same me thod  which was used for the  analysis of 1~,. Namely, under  the assumpt ion  t ha t  

bl b2 
In(A) = 2 . . . . . . . .  (34) 

n n 2 

we have calculated numerical ly  (with the precision of 26 decimal digits),  the sequence e,~(A) = 
[ 2 - I n  (A)]*n. In  order to be consistent  with our previous analysis  of the sequence d*, Richardson 's  
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Table 4. Diagonal elements of the Richardson extrapolation table for the sequence 
A 50 (en( I}.=20. 

k R(k 5°-k) 

1 1.0939 1146 
2 1.0942 1955 
3 1.0942 2035 
4 1.0942 2022 
5 1.0942 2005 
6 1.0942 1996 
7 1.0942 1991 
8 1.0942 1988 
9 1.0942 1986 

10 1.0942 1985 
11 1.0942 1984 
12 1.0942 1984 

ex t rapo la t ion  me thod  was applied to the subsequence le  ~A ~ 5 °  The  diagonal  e lements  of t n~ ]ln=2O" 
the  first 12 columns of the  Richardson table  are presented in Table 4. 

O n  the  basis of these results, we conclude t ha t  at  least with seven significant digits, we have 

51 -- 1.094219 . . . .  (35) 

Compar i son  of (28) and  (35) leads to the following conjecture.  

CONJECTURE. The  following a s y m p t o t i c  relat ionship holds: 

I ~ - I n ( A )  = o ( 1 ) ,  n - ~ c ~ .  (36) 
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