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SUMMARY

Chromosomes must establish stable biorientation
prior to anaphase to achieve faithful segregation
during cell division. The detailed process by which
chromosomes are bioriented and how biorientation
is coordinated with spindle assembly and chromo-
some congression remain unclear. Here, we provide
complete 3D kinetochore-tracking datasets through-
out cell division by high-resolution imaging of
meiosis I in live mouse oocytes. We show that in
acentrosomal oocytes, chromosome congression
forms an intermediate chromosome configuration,
the prometaphase belt, which precedes biorienta-
tion. Chromosomes then invade the elongating
spindle center to form the metaphase plate and start
biorienting. Close to 90% of all chromosomes
undergo one or more rounds of error correction of
their kinetochore-microtubule attachments before
achieving correct biorientation. This process de-
pends on Aurora kinase activity. Our analysis reveals
the error-prone nature of homologous chromosome
biorientation, providing a possible explanation for
the high incidence of aneuploid eggs observed in
mammals, including humans.
INTRODUCTION

Proper segregation of homologous chromosomes during the

first meiotic division in female oocytes is essential to prevent

generation of aneuploid eggs. Fertilization of aneuploid eggs in

humans is a leading cause of pregnancy loss and, if survived

to term, results in developmental disabilities (Hassold and

Hunt, 2001). To segregate homologous chromosomes faithfully,

it is essential that all bivalents, the paired homologous chromo-

somes, achieve biorientation, i.e., that their homologous kineto-

chores are attached to microtubules from the opposite poles of

the meiotic spindle. Although the mechanism of sister chromatid
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biorientation has been well studied in somatic mitotic cells (Kops

et al., 2010; Maiato et al., 2004; Walczak and Heald, 2008),

homologous chromosome biorientation in animal oocytes is

poorly understood.

Somatic animal cells contain two centrosomes that predefine

the poles of the mitotic spindle. One of the most widely used

models to explain biorientation is the so-called ‘‘search-and-

capture’’ mechanism, in which sister kinetochores become

attached to microtubules emanating from the spindle poles. If

both kinetochores are attached in an end-on manner from

opposite poles (amphitelic), the force balance leads to stable

biorientation. If the attachment is incorrect, for example if one

kinetochore is attached to two poles (merotelic) or both are

attached to the same pole (syntelic), the force balance cannot

be achieved. Such erroneous attachments are sensed by Aurora

B kinase, which phosphorylates a set of kinetochore substrates

to detach the incorrect microtubules. The detached kineto-

chores activate the spindle assembly checkpoint, giving the

cell time for a new round of biorientation (Nezi and Musacchio,

2009). Merotelic and syntelic attachments are regarded as errors

that must be corrected because they would cause chromosome

missegregation if they persisted until anaphase (Cimini et al.,

2003). Although no comprehensive quantitative analysis has

been carried out, the available data (Cimini et al., 2003) allow

estimation of the number of erroneous attachments during

prometaphase in somatic mitotic cells to less than 10%,

although this may be an underestimate (Salmon et al., 2005).

The classical search-and-capture model explains chromosome

congression as a result of the biorientation process because

the balance of the pulling forces on the sister kinetochores

positions the chromosomes at the spindle equator. Although

congression mechanisms that do not require biorientation have

been described (Cai et al., 2009; Kapoor et al., 2006; Wignall

and Villeneuve, 2009), it remains unknown what fraction of chro-

mosomes normally congress without biorientation inmammalian

cells (Foley and Kapoor, 2009).

By contrast, oocytes in humans and all other mammals

analyzed so far (and also in Gallus, Xenopus, Drosophila, and

C. elegans) lack centrosomes (Manandhar et al., 2005), and the

search-and-capture mechanism should become insufficient in

their large cytoplasm (Wollman et al., 2005). Oocytes must
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therefore achieve spindle bipolarization and chromosome bio-

rientation through a different process (Walczak and Heald,

2008). Because mice represent the closest experimentally trac-

table model to humans, we have focused our analysis on their

oocytes. We previously showed that the acentrosomal spindle

in mouse oocytes is assembled by self-organization of many

microtubule-organizing centers (MTOCs) (Schuh and Ellenberg,

2007). Upon nuclear envelope breakdown (NEBD), over 80

MTOCs scattered in the cytoplasm attract each other and form

a cluster in the center of the oocyte that radiates microtubules

to the outside, the apolar microtubule ball. This ball then bipolar-

izes through a several hour tug of war of attractive and repulsive

forces between the MTOCs, giving rise to multipolar intermedi-

ates and ultimately a barrel-shaped spindle with poorly focused

poles. How homologous chromosome biorientation is achieved

during this lengthy and complex spindle self-assembly process

is not known to date.

In this study, we have addressed this issue, using 3D confocal

fluorescence microscopy at high spatial and temporal resolution

in live mouse oocytes. We succeeded to track all homologous

kinetochores during the approximately 8 hr from NEBD to the

onset of chromosome segregation in anaphase. These datasets

allowed a systematic quantitative analysis of kinetochore and

chromosome dynamics during the first meiotic division. We

show that chromosome congression precedes biorientation,

forming an intermediate chromosome configuration, the pro-

metaphase belt. Furthermore we show that two-thirds of all

biorientation attempts are erroneous, and that 86% of all homol-

ogous chromosomes undergo error corrections of their kineto-

chore-microtubule attachments before they establish stable

biorientation. These results show that homologous chromosome

biorientation is a highly error-prone process in acentrosomal

mammalian oocytes, which may explain the high incidence of

segregation errors in meiosis I observed in vivo (Hassold and

Hunt, 2001).

RESULTS

Tracking of All Kinetochores during Cell Division
To analyze spatiotemporal dynamics of kinetochores and chro-

mosomes during the first meiotic division of live mouse oocytes,

we recorded four-dimensional (4D) datasets of kinetochores and

chromosomes labeled with EGFP-CENP-C and Histone 2B

(H2B)-mCherry, respectively, expressed after quantitative

mRNA microinjection (Jaffe and Terasaki, 2004) (Figure 1A;

Movie S1 available online). We used an automated confocal

microscope that can focus and track all chromosomes within

the oocyte to record 3D stacks of optical sections for 9 hr after

induction of maturation (Schuh and Ellenberg, 2007; Rabut and

Ellenberg, 2004). Live imaging did not perturb oocytematuration,

as the rate of polar body extrusion and average time from NEBD

to polar body extrusion were indistinguishable from normal

in vitro culture conditions (83% [n = 12 with imaging] versus

78% [n = 61 w/o imaging], p = 1.0; 8.8 ± 0.6 hr [n = 10] versus

8.6 ± 0.8 hr [n = 7], p = 0.7). In these 4D datasets, we could detect

99.6% of all kinetochores (n = 200 from 5 oocytes) at all time

points from NEBD to anaphase onset with high spatial (xy

0.3 mm, z 3.0 mm) and temporal (90 s) resolution. The 4D datasets
were processed by an in-house-developed computational pipe-

line, which detects kinetochore positions and tracks them in 3D

after registration of global cellular movements. The resulting

kinetochore tracks were interactively validated and rare errors

corrected. In this manner we could obtain complete 3D tracking

datasets of all kinetochores during the entire process of the first

meiotic division (Figures 1B and 1E; Movie S2). We make these

datasets available online as a resource for the analysis of kinet-

ochore and chromosome dynamics (http://www.ellenberg.embl.

de/apps/KTTracking/).

Kinetochore Movements Define Four Kinetic Phases
of Chromosome Biorientation
To gain insight into the processes that govern kinetochore

dynamics, we analyzed different parameters for reproducible

global changes during the first meiotic division. The average

kinetochore speed changed in a canonical and stepwise fashion

after NEBD (Figures 1C and 1D; Movie S2), suggesting changes

in the interactions of kinetochores and/or chromosome arms

with microtubules. Thus we can define five kinetic phases of

chromosome dynamics during the first meiotic division: phase

1 (�0–1 hr), in which kinetochores move relatively rapidly

(0.19 ± 0.04 mm/min, up to 0.31 mm/min) outwards; phase 2

(�1–2 hr), in which kinetochores move more slowly (0.13 ±

0.03 mm/min, up to 0.25 mm/min) with no obvious radial direction-

ality; phase 3 (�2–4 hr), in which chromosomes exhibit rapid

oscillations (0.27 ± 0.11 mm/min, up to 0.59 mm/min) along the

spindle axis; phase 4 (from �4 hr to anaphase onset), in which

chromosomes oscillate more slowly (0.19 ± 0.05 mm/min, up

to 0.34 mm/min); and finally anaphase, during which chromo-

somes very rapidly move to the opposite spindle poles (0.80 ±

0.23 mm/min, up to 1.2 mm/min). Anaphase is triggered after

completion of biorientation, but how chromosome biorientation

is achieved during the preceding four phases is poorly under-

stood in mammalian meiosis, and we therefore decided to

analyze them in more detail.

In Phase 1, Kinetochores Individualize
to a Spherical Shell
We previously reported that clustered chromosomes are individ-

ualized and moved onto the forming microtubule ball �0–1 hr

after NEBD (Schuh and Ellenberg, 2007), which corresponds to

phase 1. By analyzing kinetochore tracks during phase 1, we

found that not only chromosomes but also kinetochores were

individualized from their clusters during the chromosome-sorting

process (Figures S1A–S1D), resulting in a spherical shell-like

chromosome configuration on the surface of the microtubule

ball (see also Figure 4).

In Phase 2, Chromosomes Congress
to Form the Prometaphase Belt
To understand how the individualized chromosomes congress to

the metaphase plate, we carefully analyzed their spatial distribu-

tion in three dimensions over time. At the beginning of phase 2,

chromosomes and kinetochores were distributed randomly

(Figures 2A and 2B, 0:49) on the surface of the microtubule

ball (see also Figure 4B). With the onset of chromosome con-

gression, this distribution became progressively ordered as
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Figure 1. Complete 3D Kinetochore Tracking In Vivo

(A) Time-lapse imaging of the first meiotic division in an oocyte expressing EGFP-CENP-C (kinetochores, green) and H2B-mCherry (chromosomes, red).

Maximum intensity z projection images from representative time points for each phase (phase 1, 2, 3, 4, and anaphase) are shown. EGFP-CENP-C signals are

processed for peak enhancement and background subtraction. H2B-mCherry signals are processed by a Gaussian filter. Time after NEBD (hr:mm). Scale bar is

5 mm. See also Movie S1.

(B) The images are reconstructed in 3D. The kinetochore (green) and the chromosome (cyan) signals are shown. Kinetochore tracks are indicated by lines and

color-coded by time. Time after NEBD (hr). The unit of the grid is 5 mm.

(C) The kinetochore tracks are smoothed and color-coded by the kinetochore speeds as indicated by the color bar. Tracks in earlier time points are shown more

transparent.

(D) The mean kinetochore speed of all kinetochores is shown over time. The smoothed curves of 5 oocytes are shown.

(E) Smoothed paths of homologous kinetochores on a single chromosome from NEBD to anaphase onset are shown. The color code represents the time after

NEBD as indicated by the color bar. The unit of the grid is 5 mm.

Paths of all chromosomes are available in http://www.ellenberg.embl.de/apps/KTTracking/. See also Figure S1 and Movie S2.
shown by a decrease in aspect ratio of the ellipsoid fitted to all

chromosome positions (Figure 2C). At the end of phase 2,

all chromosomes had relocated close to the equator of the

overall chromosome distribution (Figures 2A–2C, 1:59; Movie

S3). Viewing chromosome positions from the top onto the

equator revealed that they formed a belt-like arrangement with a

chromosome-free region inside of the equator (Figure 2B, top

view, 1:59). Thus, chromosome congression results in a belt-

like chromosome configuration, which we refer to hereafter as

the ‘‘prometaphase belt.’’

To investigate how chromosomes move to the prometaphase

belt, we analyzed their tracks during congression. Chromo-

somes that were located far from the equator at the beginning

of phase 2 congressed toward it, whereas chromosomes already

located near the equator remained stationary until the end of
570 Cell 146, 568–581, August 19, 2011 ª2011 Elsevier Inc.
phase 2 (Figure 2D). The paths of the congressing chromosomes

defined arcs around a 7.5 mm radius sphere, consistent with the

size of the microtubule ball (see also Figure 4). Collectively, chro-

mosomes therefore congress to form the prometaphase belt by

sliding along the surface of the microtubule ball during phase 2

(Figure 3E, ‘‘phase 2’’).

We reasoned that plus-end-directed forces generated by

chromokinesins might be responsible for chromosome individu-

alization in phase 1 and/or prometaphase belt formation in phase

2. The chromokinesin Kid is a prime candidate because it has

been shown to be required for expulsion of chromosomes on

a monopolar spindle in mitotic cells (Levesque and Compton,

2001) and congression in Xenopus egg extracts (Antonio et al.,

2000; Funabiki andMurray, 2000).We therefore imaged chromo-

some and kinetochore dynamics in oocytes from Kid knockout

http://www.ellenberg.embl.de/apps/KTTracking/


Figure 2. Chromosome Congression Proceeds via the Prom-

etaphase Belt
(A) Images of EGFP-CENP-C (kinetochores, green) and H2B-mCherry (chro-

mosomes, red) in phase 2. The projection view along the chromosome

distribution equator (see C) at 1:59 is shown. Time after NEBD (hr:mm). Scale

bar is 5 mm.

(B) Kinetochore positions are shown in 3D as green spheres and red bars

connecting homologous kinetochores. The views along the chromosome

distribution equator at 1:59 (Side View) and perpendicular to the equator (Top

View) are shown. The unit of the grid is 5 mm.

(C) Ellipsoids fitted to chromosome distributions (red). The aspect ratio of the

ellipsoid (h/w, where h is the length of the ellipsoid shortest axis [red bar], and

w is the diameter of the equator [red/magenta circle]) is shown at the bottom.

The view along the equator at 1:59 is shown.

(D) Smoothed chromosome tracks from 0:49 to 1:59 (hr:mm) are plotted. The x

axis (magenta) and y axis (red) represent the chromosome distribution equator

at 1:59 and its shortest axis, respectively, as in (C). The start points of the

tracks are shown as gray circles and the end points are shown as cyan circles.

The color code represents time as indicated by the color bar. Tracks of all

chromosomes (All), the chromosomes congressing to the equator (Con-

gressing), and the chromosomes staying around the equator (Stationary) are

shown. Arrows indicate displacement of the ‘‘congressing’’ chromosomes.

See also Figure S2 and Movie S3.
mice (Ohsugi et al., 2008) (Figure S2A). Quantitative analysis of

these data revealed that neither chromosome individualization

nor congression was significantly affected by the absence of

Kid (Figures S2B–S2D), demonstrating that Kid is dispensable

for these processes in mouse oocytes.

In Phase 3, Chromosomes Invade the Spindle,
Transforming the Prometaphase Belt into
the Metaphase Plate
Although the prometaphase belt formed during phase 2 repre-

sents a congressed chromosome configuration, in that all

paired kinetochores are found around one plane, it is not

yet the final arrangement in which chromosomes are stably

bioriented. Therefore, we next addressed how the prometa-

phase belt with its chromosome-free interior transforms into

the metaphase plate. During phase 3, chromosomes moved

from the belt toward the center of the plane (Figures 3A–3D;

Movie S3). This centripetal movement resulted in an even distri-

bution of the chromosomes across the equatorial plane by the

end of phase 3 (Figure S3A), thereby defining the metaphase

plate. Thus, the metaphase plate is formed by chromosomes

invading the spindle from the peripheral prometaphase belt

(Figure 3E, ‘‘phase 3’’). Both the change in direction and the

significant increase in speed of the invading chromosomes

compared to phase 2 (average speed of congressing chromo-

somes = 0.13 ± 0.02 [n = 10]; average speed of invading chro-

mosomes = 0.17 ± 0.04 [n = 6]; p = 0.01) indicated a different

mechanism of this motion. Furthermore, the inward movements

were concomitant with the onset of kinetochore oscillations

perpendicular to the equator (Figure 3D), suggesting that kinet-

ochore-microtubule attachments are dynamic during the inva-

sion of chromosomes.

Chromosome Congression Precedes Bivalent
Stretching
Next, we wanted to determine when bivalents are stretched

by directional microtubule forces. By measuring interkineto-

chore distances, we found that most bivalents were not

stretched in phase 2, although they had already congressed,

forming the prometaphase belt (Figures 4A and 4D and Movie

S4, from �130 to �70 min). During the invasion in phase 3,

however, the fraction of stretched bivalents increased progres-

sively, reaching 89% ± 9% (Figures 4A and 4D and Movie S4,

from �70 to 50 min). Thus, the majority of bivalents became

stretched only after the formation of the prometaphase belt, as

indicated by the significantly different half-time of chromosome

congression and fraction of stretched bivalents (p = 0.0001,

Figure 4E).

Spindle Elongation Promotes Chromosome
Biorientation
To examine the relationship of spindle elongation with chromo-

some biorientation, we imaged kinetochores and microtubules

by 3mCherry-CENP-C and EGFP-MAP4, respectively (Fig-

ure 4B). During phase 3 the spindle elongated, increasing its

aspect ratio almost exactly concomitantly with the increase of

stretched bivalents (Figures 4C and 4D, from �70 to 50 min),

indicated by indistinguishable half-times of the increases
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Figure 3. Chromosomes Invade the Spindle to Form the

Metaphase Plate

(A) Images of EGFP-CENP-C (kinetochores, green) and H2B-

mCherry (chromosomes, red) in phase 3. Time after NEBD

(hr:mm). The projection view along the chromosome distribution

equator is shown. The scale bar is 5 mm.

(B) Kinetochore positions are shown in 3D as green spheres and

red bars connecting homologous kinetochores. The views along

the chromosome distribution equator (Side View) and perpen-

dicular to the equator (Top View) are shown. The unit of the grid is

5 mm.

(C) Ellipsoids fitted to chromosome distribution (red). The view

along the equator (magenta) is shown. The aspect ratio of the

ellipsoid is shown at the bottom.

(D) Smoothed chromosome tracks from 1:59 to 3:12 (hr:mm) are

plotted. The x axis (magenta) and y axis (red) represent the

chromosome distribution equator and its shortest axis, respec-

tively, as in (C). The start points of the tracks are shown as cyan

circles and the end points are shown as yellow circles. The color

code represents time as indicated by the color bar. Tracks of all

chromosomes (All), the chromosomes moving inward (Inward

Invasion), and the other chromosomes (Others) are shown. Arrows

indicate displacement of the ‘‘inward invasion’’ chromosomes.

(E) A model for chromosome movement in phases 2 and 3.

Chromosomes congress to the equator (magenta circle) sliding

along the surface of the microtubule ball and form the prom-

etaphase belt in phase 2 (from gray to cyan). The chromosomes

invade the spindle inwards to form the metaphase plate in phase 3

(from cyan to yellow).

See also Figure S3 and Movie S3.
(p = 1.0, Figure 4E). This precise kinetic correlation suggests that

spindle elongation contributes to chromosome biorientation.

To understand how homologous chromosomes achieve bio-

rientation, we analyzed dynamics of bivalent stretching and

alignment by measuring changes in interkinetochore distances

and chromosome angles with the spindle axis, respectively.

Average bivalent stretching (Figure 5B) and alignment (Figure 5E)

increased progressively with linear kinetics during phase 3 (from

�70 to 50 min), confirming that the majority of chromosomes

becomes bioriented during spindle elongation (compare

Figure 4D).

To analyze the kinetics of individual chromosome biorientation

attempts (Figure 5A), we counted the number of significant

bivalent stretching events (see Experimental Procedures and

Figure S4A) over time. Biorientation attempts occurred most

frequently in the first half of phase 3 (Figure 5D, from �50 to

0 min), when the spindle starts to elongate (compare Figure 4D),

and oriented the chromosomes parallel to the spindle axis

(Figure 5G). By contrast, biorientation attempts that occurred

prior to spindle elongation in phase 2 (compare Figure 4D)

failed to orient chromosomes along the spindle axis (Figures

5D and 5G, from �150 to �50 min). These results indicate that

spindle elongation promotes biorientation and enhances its

fidelity.
572 Cell 146, 568–581, August 19, 2011 ª2011 Elsevier Inc.
Loss of Kinetochore Attachment Is the Rule for
Chromosome Biorientation in Oocyte Meiosis
The complete kinetochore-tracking datasets allowed

us to investigate biorientation systematically for each

individual chromosome (Figure 5A;MovieS5andMovie
S6). Analyzing bivalent stretching and alignment at the single-

chromosome level revealed that only very few chromosomes

achieved biorientation at the first attempt, and the kinetic path

taken was very different between individual chromosomes (Fig-

ure 5A). The ‘‘Red’’ chromosome, for example, started biorienta-

tion and alignment early and gradually as revealed by its slow

stretching and early alignment (Figures 5A, 5C, and 5F, from

�127 to �28 min, red brackets), eventually leading to stable

biorientation in a continuous process over �1.5 hr. By contrast,

the ‘‘Black’’ chromosome started biorientation only very late

(�5 min), stretching abruptly and snapping into a parallel position

with the spindle axis (Figures 5A, 5C, and 5F, 4 min, white and

blackarrowheads), leading tobiorientationwithin less than20min.

We found that most chromosomes underwent multiple bio-

rientation attempts, indicated by repetitive bivalent stretching/

relaxation (Figures 5A and 5C; and Movie S6) and reorientation

along the spindle axis (Figure 5F). For example, the ‘‘Blue’’ chro-

mosome showed three biorientation attempts. The first occurred

at�45min, but the bioriented statewas lost at 4min. The second

biorientation attempt occurred at 15 min, which however halted

transiently at 22 min, and was followed by the third attempt at

35 min (Figures 5A, 5C, and 5F, blue arrowheads), leading to

stable biorientation. Overall, 86% of all chromosomes under-

went two or more biorientation attempts with a maximum of six



Figure 4. Chromosome Congression Precedes Bivalent Stretching and Spindle Elongation
(A) Kinetochore positions in phases 2 and 3 are shown in 3D as spheres and bars connecting homologous kinetochores. Stretched bivalents (>70% normalized

interkinetochore distance) are colored by blue and nonstretched bivalents are colored by gray. The views along the chromosome distribution equator (Side View)

and perpendicular to the equator (Top View) are shown. At �112 min, the same view point as that of �72 min is used. The unit of the grid is 5 mm. Time after

metaphase entry (min). Phase 2 corresponds to �130 to �70 min. Phase 3 corresponds to �70 to 50 min.

(B) Images of EGFP-MAP4 (microtubule lattices, green) and 3mCherry-CENP-C (kinetochores, red). 3mCherry-CENP-C signals are processed for peak

enhancement and background subtraction. The projection view along the chromosome distribution equator is shown. Scale bar is 5 mm.

(C) Ellipsoids fitted to spindle microtubules (green) and chromosome distribution (red). The view along the chromosome distribution equator is shown. The aspect

ratios of the ellipsoids are shown at the bottom.

(D) To indicate the extent of chromosome congression (red, n = 9), the aspect ratio of chromosome distribution subtracted from 1 (1� h/w) is normalized using the

minimum value and the mean value over the time points from 100 to 150 min and plotted. To indicate spindle elongation (green, n = 4), the aspect ratio of the

spindle is plotted. The values of spindle elongation and fraction of stretched bivalents (blue, n = 9) are normalized using the minimum and the maximum values

over all time points. Averages and standard deviations are shown.

(E) The time of the half-maximal value from (D) is plotted. The value of chromosome congression (red) is obtained by fitting a line between the minimum to the last

local maximum before metaphase entry. The values of spindle elongation (green) and bivalent stretching (blue) are obtained by fitting sigmoidal curves through all

time points. Averages and standard deviations are shown. *p = 0.0001.

See also Movie S4.
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Figure 5. Meiotic Chromosome Biorientation Is Very Error Prone

(A) Images of four single chromosomes in an oocyte expressing EGFP-CENP-C (kinetochores, green) and H2B-mCherry (chromosomes, red). The color bars

indicate normalized interkinetochore distances as shown on the left. The text labels denoting colors on the left correspond to the colors used for the plots in (C)

and (F). The arrowheads indicate the biorientation attempts (>20% consecutive increase of normalized interkinetochore distance, see also Figure S4A and

574 Cell 146, 568–581, August 19, 2011 ª2011 Elsevier Inc.



and an average of 3.1 ± 1.5 biorientation events per chromo-

some (Figure 5H, n = 200 from 5 oocytes). Sixty-seven percent

of bivalent stretching events collapsed or stalled and were thus

not able to establish stable chromosome biorientation. This is

most likely due to frequent improper kinetochore-microtubule

attachments that would require to be dissolved to be corrected

(Nezi and Musacchio, 2009). Indeed, we found that some chro-

mosomes rotated between biorientation events, reverting

their orientation between spindle poles (Figure S4C), demon-

strating that kinetochore-microtubule attachments were lost

and reformed. The dynamic nature of kinetochore-microtubule

attachments was additionally indicated by the fact that the

amplitude of chromosome oscillations along the spindle axis

was maximal in phase 3 (Figures S4D–S4F). Together our results

demonstrate that chromosome biorientation is unexpectedly

error prone in meiosis I. Most chromosomes underwent multiple

kinetochore-microtubule attachments that presumably had to

be actively corrected before reaching stable biorientation.

Kinetochore-Microtubule Attachments Are
Predominantly Incorrect at Prometaphase
The frequently observed collapse or stalling of bivalent stretch-

ing suggested that kinetochore-microtubule attachments are

erroneous. Observation of single kinetochore fibers was not

possible in live oocytes due to the very high density of non-

kinetochore microtubules in the meiotic spindle. To directly

investigate kinetochore-microtubule attachments, we therefore

immunostained kinetochores and microtubules after destabiliz-

ing dynamic non-kinetochore microtubules with calcium in a

fixed cell time course (Figure S5G). This allowed us to system-

atically analyze the nature of the kinetochore-microtubule

attachment throughout meiosis (Figures 6A and 6B; and

Figure S5H).

Up to 2 hr after NEBD (corresponding to phases 1 and 2),

most kinetochores were not attached to microtubule bundles

but were contacted by very short microtubules from multiple

directions, and we therefore categorized their attachment status

as ‘‘undefined’’ (Figures 6A and 6B, 1–2 hr). Starting at 2 hr after

NEBD, we found three types of attachments formed by bundled

kinetochore microtubules: lateral attachment (microtubules

attach to one kinetochore on their sides), merotelic attachment

(microtubules from opposite poles attach to one kinetochore on
Experimental Procedures). The bracket indicates the slow biorientation process

See also Movie S5.

(B) The mean normalized interkinetochore distance of all chromosomes (n = 20)

(C) Normalized interkinetochore distances for the four chromosomes shown in (A) a

bracket indicate biorientation attempts corresponding to those shown in (A).

(D) Biorientation attempts are counted over time. Averages and standard deviati

(E) The mean chromosome angle with the estimated spindle axis of all chromoso

deviations.

(F) Chromosome angles with the estimated spindle axis for the representative fo

shown. The arrowheads and the bracket correspond to those shown in (A).

(G) Chromosome angles with the estimated spindle axis just after biorientation atte

75th percentiles, and the bars show the 10th and 90th percentiles (n = 28, 49, 12

(H) The number of biorientation attempts of every chromosome in an oocyte is

represents time of the attempt as indicated in the color bar. The bar on the right

Plots of changes in normalized interkinetochore distances and chromosome an

KTTracking/. See also Figure S4 and Movie S6.
their ends), and amphitelic attachment (microtubules from one

pole attach to one kinetochore on their ends) (Figures 6B and

6C and Figure S5H, 2–8 hr). From 2 to 4 hr after NEBD

(corresponding to phase 3), merotelic and lateral attachments

progressively became more frequent, reaching a maximum

46% ± 15%, whereas amphitelic attachments remained rare

(17% ± 8%) (Figure 6C). These merotelic and/or lateral attach-

ments indeed exerted an imbalanced force on the kinetochore

as shown by intrakinetochore stretching along the microtubule

bundles (Figure S5I). These results indicate that the majority of

initial kinetochore attachments to microtubule bundles are not

suitable for stable biorientation and are therefore corrected.

Indeed amphitelic attachments became more frequent from 4

to 8 hr after NEBD (corresponding to late phase 3 and early

phase 4), reaching a maximum of 87% ± 8% (Figures 6A–6C

and Figure S5H). These quantitative kinetics of kinetochore

attachments derived from fixed cell timecourses are entirely

consistent with the frequent collapse or stalling of stretched

bivalents observed during phase 3 in our live-cell kinetochore

tracking (Figure 6D). If aligned to the same temporal reference

of NEBD (Figures S5A–S5F), failed biorientation attempts

observed in live cells peak at the time of transition between

merotelic and amphitelic attachments in fixed cells (Figures

6C and 6D). It is worth noting that merotelic attachments could

be found on apparently well-bioriented chromosomes (Fig-

ure 6B, 6 hr, chromosome 1), providing an explanation for the

biorientation losses of maximally stretched bivalents observed

in live oocytes (compare Figures 5A and 5C, the ‘‘Blue’’ chromo-

some). These data demonstrate that incorrect kinetochore-

microtubule attachments are predominant in prometaphase of

meiosis I and are then corrected to amphitelic attachments to

establish stable chromosome biorientation required for correct

segregation.

Error Correction Requires Aurora B/C Kinase Activity
Our kinetochore-tracking data revealed that most chromosomes

undergo multiple biorientation attempts, presumably reflecting

error correction of kinetochore-microtubule attachments. In

mouse oocytes, it is suggested that Aurora B and potentially

also Aurora C are responsible for the error correction (Lane

et al., 2010; Sharif et al., 2010; Yang et al., 2010). To examine

whether the multiple biorientation attempts depend on the
described in the text. Time after metaphase entry (min). Scale bar is 5 mm.

in the oocyte is plotted over time. Error bars represent standard deviations.

re plotted over time. The smoothed curves are shown. The arrowheads and the

ons from 5 oocytes.

mes (n = 20) in the oocyte is plotted over time. Error bars represent standard

ur chromosomes shown in (A) are plotted over time. The smoothed curves are

mpts are plotted in box plots over time. The boxes show themedian, 25th, and

3, 73, 25, 9, from left to right, from 5 oocytes).

counted from �150 to 150 min relative to metaphase entry. The color code

indicates the average and the standard deviation (n = 100 from 5 oocytes).

gles of all chromosomes are available at http://www.ellenberg.embl.de/apps/
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Figure 6. Predominant Improper Kinetochore-Microtubule Attachments in Phase 3

(A) Oocytes were stained with anti-Tubulin (microtubules, green), CREST (kinetochores, red), and Hoechst 33342 (chromosomes, blue) after brief treatment with

a 0.1 mMCa2+-containing buffer (see Extended Experimental Procedures). Maximum intensity z projection images across the whole spindle are shown in the top

panel. Z projection images of four selected sections are shown in the bottom panel. Circles and numbers indicate the kinetochores magnified in (B). Time after

NEBD (hr). Scale bar is 5 mm.

(B) Magnified views for the kinetochore-microtubule attachments in the oocytes shown in (A). Kinetochore-microtubule attachments are classified into three

categories: ‘‘Mixed/Undefined’’ (green), ‘‘Merotelic/Lateral’’ (red), and ‘‘Amphitelic’’ (blue). The images are enwrapped with squares colored according to the

categories. Scale bar is 1 mm. The full list of the magnified views for the kinetochore-microtubule attachments are in Figure S5H.

(C) All kinetochores (n = 40) in an oocyte are classified according to their kinetochore-microtubule attachments. The fraction of each category is shown over time,

relative to NEBD. Averages and standard deviations from 3 oocytes at each time point are shown. Note that phase 3 is prolonged until 5 hr in this particular

experiment, which is evident from quantitative analysis of the chromosome distribution and the spindle (Figures S5A–S5F), presumably because of a temperature

control problem during oocyte collection every hour.

(D) Biorientation losses (>20% consecutive decrease of normalized interkinetochore distance) are counted over time from the live imaging data. Averages and

standard deviations from 5 oocytes are shown.
activity of Aurora B/C as predicted for error corrections, we

treated oocytes with the inhibitor Hesperadin at concentrations

that inhibit Aurora B but not Aurora A in somatic cells (Lipp

et al., 2007). Hesperadin treatment accelerated the timing of

anaphase onset (Figure S6A), consistent with the previously re-
576 Cell 146, 568–581, August 19, 2011 ª2011 Elsevier Inc.
ported Aurora B/C phenotypes in mouse oocytes (Lane et al.,

2010; Sharif et al., 2010; Yang et al., 2010). Kinetochore-tracking

analysis revealed that the number of biorientation attempts

decreased in a dose-dependent manner in Hesperadin-treated

oocytes (Figures 7A–7C). Biorientation attempts occurred on



Figure 7. Error Correction Requires Aurora Kinase Activity

(A) Maximum intensity z projection images of EGFP-CENP-C (kinetochores, green) and H2B-mCherry (chromosomes, red) in the presence of DMSO (control) or

100 nM or 200 nM Hesperadin. Time after NEBD (hr:mm). The arrowheads indicate kinetochores on lagging chromosomes. The scale bar is 5 mm.

(B) The number of biorientation attempts of every chromosome in an oocyte is counted from 60 to 360 min after NEBD. The color code represents time of the

attempt as indicated in the color bar.

(C) The averages and the standard deviations of the number of biorientation attempts (n = 80, 60, 60 from left to right). *p < 0.001.

(D) Model for homologous chromosome biorientation during meiosis I in mouse oocytes. For details, see Discussion.
average only once/chromosome in 200 nM Hesperadin-treated

oocytes, suggesting that the first attempt was not corrected in

most chromosomes. This effect is consistent with the reported

phenotypes of Aurora B knockdown in mitotic cells (Hauf et al.,

2003). Furthermore, the same effect was observed after treat-

ment of oocytes with a second, structurally different Aurora

B/C inhibitor, ZM447439 (Figure S6B), confirming that Aurora

B/C activity is specifically required for multiple biorientation

attempts. The effect was not due to the slight shortening of
spindle length (86% compared to control oocytes), as oocytes

whose spindle lengths were similarly reduced by low-dose

Nocodazole treatment showed a normal frequency of biorienta-

tion attempts (data not shown). The Hesperadin-treated

oocytes exhibited lagging chromosomes (25% at 100 nM

[n = 8], 0% in control [n = 10]), and chromosomes failed segre-

gation after short movement toward the spindle poles (100% at

200 nM [n = 5], 0% in control [n = 10]) at anaphase (Figure 7A),

indicating that Aurora B/C-dependent error correction is
Cell 146, 568–581, August 19, 2011 ª2011 Elsevier Inc. 577



required for proper chromosome segregation. We conclude

that predominant errors in kinetochore-microtubule attach-

ments during prometaphase are converted into correct attach-

ments depending on the activity of Aurora B/C in mouse

oocytes.

DISCUSSION

Homologous Chromosome Biorientation Proceeds
in Four Phases
Based on changes in dynamic kinetochore parameters, the

meiotic process from NEBD to anaphase onset can be divided

into four functionally distinct phases (Figure 7D). Before NEBD,

chromosomes and kinetochores are clustered, and—after a brief

movement caused by NEBD—chromosome-microtubule inter-

actions are initiated. In phase 1, chromosomes move to the

surface of the forming microtubule ball, a cluster of MTOCs

that continuously polymerize microtubules with their plus ends

facing outwards (Schuh and Ellenberg, 2007), distributing as

single objects in a spherical shell with individualized kineto-

chores. In phase 2, chromosomes congress by lateral sliding

along the surface of the microtubule ball, forming the prometa-

phase belt between the future spindle poles. In phase 3, the

microtubule ball elongates perpendicular to the prometaphase

belt, transforming into the barrel-shaped bipolar spindle. Kineto-

chores are now subject to stretching forces and attempt biorien-

tation multiple times while oscillating along the spindle axis with

high amplitudes. This highly dynamic phase leads to establish-

ment of stable biorientation only after several failed attempts.

Concomitantly, stretched chromosomes invade the spindle,

transforming the prometaphase belt into the metaphase plate.

In phase 4, chromosomes have reached stable biorientation

and position on the metaphase plate but continue to show

low-amplitude oscillations. Finally, all chromosomes are syn-

chronously segregated toward the opposite poles at anaphase

(see also Movie S6).

Chromosome Individualization Is Likely Driven
by Chromokinesins
The individualization of chromosomes and their kinetochores

in phase 1 is microtubule dependent (Schuh and Ellenberg,

2007), and three arguments make chromokinesins, plus-end-

directed motors that bind to chromosome arms, its likely driving

force. First, chromosome arms are the main microtubule

contacts at this stage (Schuh and Ellenberg, 2007), whereas

there are few, if any, kinetochore-microtubule bundles (Figures

6A–6C). Second, chromosomes moved with their arms leading

ahead of their kinetochores (Figure S1A; Movie S1 and Movie

S2), indicating that the force is transmitted to the arms directly.

Third, the chromosome speed was 0.24 mm/min, very similar to

the 0.3 mm/min polar ejection movements by a chromokinesin

in Xenopus egg extracts (Antonio et al., 2000; Funabiki and

Murray, 2000).

Formation of the Prometaphase Belt: Redirection
of Plus-End-Directed Forces by Bipolarization
During phase 2, chromosomes congress on the surface of the

microtubule ball to form the prometaphase belt. Reanalysis of
578 Cell 146, 568–581, August 19, 2011 ª2011 Elsevier Inc.
the chromosome configuration in our previous 3D datasets of

monastrol-treated oocytes shows that not only bipolarization

of the microtubule ball (Schuh and Ellenberg, 2007) but also

congression are dependent on kinesin-5, a plus-end-directed

motor that slides antiparallel microtubules apart (Kapitein

et al., 2005). Although congression occurred before measurable

spindle elongation (Figure 4), our immunostaining revealed that

stable microtubules indeed start to bipolarize in phase 2, con-

comitant with congression (Figure 6A and Figure S5D, 2 hr).

Our quantitative data furthermore allow us to evaluate three

candidate motors for congression. First, congression was com-

pleted prior to interkinetochore stretching, ruling out that the

pulling force of kinetochore-microtubules from opposite poles

(Maiato et al., 2004; Walczak and Heald, 2008; Kops et al.,

2010) drives congression. Second, chromosome speed during

congression was 0.17 mm/min (max 0.35 mm/min), making it

less likely that CENP-E-mediated lateral sliding, known to

proceed at 1–2 mm/min (Cai et al., 2009; Kapoor et al., 2006),

is responsible. This makes the third candidate, congression

driven by chromokinesin-mediated polar ejection forces (Anto-

nio et al., 2000; Funabiki and Murray, 2000), the most likely

mechanism. The same forces that individualize chromosomes

to the surface of the microtubule ball would thus be redirected

by the beginning bipolarization of the spindle and move the

chromosomes to the prometaphase belt. The slowing down

of the chromosome motion from 0.24 to 0.17 mm/min could

be due to an imperfectly bipolarized microtubule ball, which

would likely require chromokinesins to switch between microtu-

bules to reach the most distal plus ends on the ball surface. As

it has been suggested that chromosome congression depends

on a chromokinesin in C. elegans oocytes (Wignall and Ville-

neuve, 2009), the mechanism of congression in acentrosomal

oocytes may be conserved among organisms. Furthermore,

recent observations of a belt-like structure in prometaphase

of somatic cells (Magidson et al., 2011 [this issue of Cell])

suggest that the formation of such an intermediate may be

a universal mechanism for congression. Kid, a chromokinesin

generating a plus-end-directed force in mitosis (Levesque and

Compton, 2001) and Xenopus egg extracts (Antonio et al.,

2000; Funabiki and Murray, 2000), was not essential for chro-

mosome individualization and prometaphase belt formation in

mouse oocytes (Figure S2). It will be very interesting to identify

the plus-end-directed motor(s) responsible for chromosome

individualization and congression in mouse oocytes in future

studies.

Kinetochore Fiber-Driven Biorientation Starts
in Prometaphase, Transforming the Belt into a Plate
In phase 3, chromosomes start to invade the interior of the

prometaphase belt, concomitant with interkinetochore stretch-

ing (Figure S3B) and rapid oscillation along the spindle axis (Fig-

ure 3D), suggesting that kinetochore-microtubule bundles

formed along the spindle axis during phase 3 (Figure 6) are

responsible for this motion. The invasion of chromosomes is

therefore likely driven by the minimization of the pole-to-pole

distances of the pullingmicrotubules. Kinetochore fibers, amphi-

telically attached microtubule bundles, could be detected

for over 3 hr during phases 3 and 4 (Figure 6), earlier than in



a previous electron microscopy report that could not sample

kinetochores systematically (Brunet et al., 1999).

Chromosome Biorientation in Oocytes
Is Very Error Prone
Our live- and fixed-cell measurements suggested that kineto-

chores become initially predominantly attached in an incorrect

manner to microtubule bundles (Figure 6), and that consequently

86% of chromosomes undergo two or more rounds of biorienta-

tion (Figure 5). This highly error-prone nature of meiotic chromo-

some biorientation is very interesting in light of the higher

incidence of aneuploidies after the first meiotic division in

mammalian oocytes, compared to centrosomal somatic mitosis

and male meiosis (Hassold and Hunt, 2001).

What could explain this high error rate? Our data suggest that

the major reason is the acentrosomal spindle self-assembly

process. When kinetochores start to be attached during phase

3, the spindle is only partially bipolarized, with many MTOCs still

located far away from the poles (Figure S5D) (Schuh and

Ellenberg, 2007), whose microtubules are likely to attach to

kinetochores incorrectly (Figure 5). In addition, our kineto-

chore-tracking data indicate that bivalents in mouse oocytes

lack a back-to-back geometrical configuration of homologous

kinetochores prior to chromosome biorientation, a mechanism

that has been suggested to facilitate efficient homolog biorienta-

tion in Drosophila and yeasts (Dernburg et al., 1996; Karpen

et al., 1996; Kemp et al., 2004; Yokobayashi and Watanabe,

2005). The fact that we used young (8-week-old) mice and did

not observe any precocious separation of homologous chromo-

somes (n = 400 bivalents from 10 oocytes) makes it unlikely that

the recently reported age-dependent loss of chromosome cohe-

sion (Hodges et al., 2005; Chiang et al., 2010; Lister et al., 2010)

played a role in our experiments. It is furthermore worth noting

that we found no correlation between the chiasma-centromere

distance and the number of biorientation attempts or time of

stable biorientation establishment (Figure S4B and data not

shown) and can therefore not corroborate the notion that chias-

mata positioned far from the centromere increase the rate of

missegregation (Lamb et al., 1997; Hassold et al., 1995; Ross

et al., 1996; Koehler et al., 1996; Lacefield and Murray, 2007).

MouseOocytes Actively Correct Erroneous Kinetochore
Attachments and Exhibit Spindle Checkpoint Activity
For the large majority of chromosomes, erroneous kinetochore-

microtubule attachments are dissolved and corrected, as

indicated by multiple stalled and/or collapsed biorientation

attempts, depending on the Aurora B/C kinase activity (Figure 5

and Figure 7). In mitosis, merotelic attachments are dissolved in

an Aurora B-dependent manner, creating unattached kineto-

chores with an active spindle checkpoint for a new round of

attachment (Nezi and Musacchio, 2009). It is likely that this

pathway functions also in mouse oocytes, and indeed we found

Mad2-EGFP, a spindle checkpoint protein that marks unat-

tached kinetochores (Waters et al., 1998; Chen et al., 1996), on

the bivalent kinetochores during phase 3 (Figures S6C and

S6D). Consistent with this observation, spindle checkpoint

proteins have been shown to be required to prevent errors in

chromosome segregation in mouse oocytes (Li et al., 2009;
McGuinness et al., 2009; Tsurumi et al., 2004; Wassmann

et al., 2003; Homer et al., 2005).

Biorientation during Acentrosomal Spindle Assembly:
Stepwise Activation of Chromosome-Microtubule
Interactions Coupled to Efficient Error Correction
Takingall ourdata together,wepropose the followingmechanism

of homologous chromosome biorientation. Initially, chromo-

somes interact with MTOC microtubules on their arms via chro-

mokinesins to individualize their kinetochores on the surface of

themicrotubule ball and keep them in reaching distance ofmicro-

tubules in the large oocyte cytoplasm. The subsequent onset

of kinesin-5-dependent bipolarization of the microtubule ball

redirects plus-end-directed forces toward its equator, driving

congression and creating the prometaphase belt. Until this point,

2 hr after NEBD, kinetochore attachments appear to be sup-

pressed, likely to preventmassively incorrect attachments during

the a/multipolar stages of spindle self-assembly. After congres-

sion is achieved, kinetochore attachments are allowedbut remain

highlydynamic toallowmultiple roundsof error correctionsduring

the ongoing bipolarization and elongation of the spindle. Finally,

kinetochore attachments are stabilized in metaphase and satisfy

the spindle checkpoint (as indicated by dissociation of Mad2,

Figures S6C and S6D), and anaphase is initiated. In this

temporally and spatially well-coordinated manner, homologous

chromosome biorientation can be ensured over the course of

the long and complex multipolar spindle self-assembly process.

EXPERIMENTAL PROCEDURES

Kinetochore Tracking

In brief, kinetochore positions were detected after signal interpolation in z by

the Imaris (Bitplane) spot detection function, followed by manual corrections.

To correct global cellular movements, kinetochore positions over time were

registered to the centroid of all kinetochores and then tracked using Imaris

3D spot tracking. The trackswere evaluated and the rare errors were corrected

manually in Imaris. This left fewer than 0.5% ambiguous kinetochore tracks

when two kinetochores of a homologous pair crossed too closely or when

kinetochores were clustered at NEBD. See the Extended Experimental Proce-

dures for further detail.

Quantitative Analysis and Visualization

To calculate kinetochore speeds, we fitted cubic smoothing splines to the

kinetochore tracks and calculated their derivatives with respect to time to yield

the speed (Movie S2). We excluded the values of <5 min after NEBD from the

speed analysis of phase 1, when kinetochores moved inwards following the

collapse of the nuclear envelope.

Chromosome distribution and the spindle were fitted with ellipsoids, whose

equators and diameters were calculated (see Extended Experimental Proce-

dures). When indicated, the images were processed by 3D rotation and

maximum intensity projection using ImageJ (http://rsbweb.nih.gov/ij/) to

show the projection view along the equator of the chromosome distribution.

To measure homologous chromosome biorientation, we used two parame-

ters, interkinetochore distance and chromosome orientation. The interkineto-

chore distance, the distance between homologous kinetochores, was normal-

ized to the value of maximal stretching, to account for differences in chiasma

positions. Chromosome orientation was measured as the angle between the

axis connecting homologous kinetochores and the estimated spindle axis

(see Extended Experimental Procedures). When indicated, cubic smoothing

splines were fitted to the changes of the normalized interkinetochore distance

and the chromosome angle over time. For the calculations described below,

we used the smoothed values.
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Chromosome biorientation attempts were defined as the events that show

>20% consecutive increase of the normalized interkinetochore distance,

which were specifically observed from�150 to 150 min after metaphase entry

but not for 60 min before anaphase onset (Figure S4A). Stretched bivalents

were defined as the chromosomes that reach >70%of their maximal interkine-

tochore distance. If a stretched bivalent maintained the angle with the esti-

mated spindle axis within <15� until anaphase onset, the chromosome was

considered as established orientation along the spindle axis.

We used two different time references during meiosis. One is time after

NEBD, which is defined as the time when the diameter of the disassembling

nucleolus becomes less than 5 mm. The other is time after metaphase entry,

which is defined as the timewhen half of chromosomes established orientation

along the spindle axis.

All calculations were automated by an in-house developed Java (SunMicro-

systems) program and R (http://www.r-project.org/). The 2D and the 3D plots

were generated by the plotting software Gnuplot (http://www.gnuplot.info/) or

Prism (GraphPad) and the ray-tracing software Pov-Ray (http://www.povray.

org/), respectively, controlled by scripts generated from the Java program.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures,
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