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In 1983, Pietsch asked if, for n ≥ 3 and all Hilbert spaces E1� � � � � En, the vector
space of the scalar valued absolutely �r � r1� � � � � rn�-summing multilinear mappings
on E1 × · · · × En coincides with the vector space of the n-linear Hilbert–Schmidt
functionals on E1 × · · · × En, for some choice of r� r1� � � � � rn ∈ �0�+∞�, satisfying
1/r ≤ 1/r1 + · · · + 1/rn. We show that the answer to this question is no. Moreover,
we show that the same question, for n ≥ 2 and mappings with values in infinite
dimensional Hilbert spaces, has the answer no. © 2001 Academic Press

1. INTRODUCTION

Recently many authors studied certain ideals of multilinear mappings
and polynomials in Banach spaces motivated by important counterparts
within the theory of linear operators in Banach spaces. In the linear theory
these operator ideals usually are natural extensions of natural classes in
Hilbert spaces. Hence it is important to know what the interesting classes of
multilinear mappings and polynomials mean in Hilbert spaces. In particular,
it is important to answer the question posed by Pietsch in 1983.
In this paper F� F1� � � � � Fn�G are Hilbert spaces over ��= � or �� and

n is a natural number.
For s ∈ �0�+∞
, we denote by ls�F� the vector space of all sequences

�xj�∞j=1 of elements of F , such that

∥∥�xj�∞j=1

∥∥
s
=
( ∞∑
j=1

�xj�s
) 1

s

< +∞�

343

0022-247X/01 $35.00
Copyright © 2001 by Academic Press

All rights of reproduction in any form reserved.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/81110931?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


344 mário c. matos

The norm ���s (s-norm if s < 1) defines a complete metric on ls�F�. We
indicate by lws �F� the vector space of all sequences �xj�∞j=1 of elements of
F , such that �φ�xj��∞j=1 ∈ ls �= ls���, for every φ in the topological dual F ′

of F . The following norm (s-norm, if s < 1) defines a complete metrizable
topology on this space:∥∥�xj�∞j=1

∥∥
w� s

�= sup
φ∈BF ′

∥∥�φ�xj��∞j=1

∥∥
s
�

Here BF ′ denotes the closed unit ball of F ′ centered at 0. The vector space
l∞�F� = lw∞�F�, formed by all bounded sequences �xj�∞j=1 of elements of F ,
is a Banach space for the norm∥∥�xj�∞j=1

∥∥
∞ = ∥∥�xj�∞j=1

∥∥
w�∞ �= sup

j∈�

∥∥xj∥∥�
We denote by ��F1� � � � � Fn�G� the vector space of all continuous

n-linear mappings from F1 × · · · × Fn into G. If F1 = · · · = Fn = F , this
space is also denoted by ��nF �G�.

1.1. Definition. For r� r1� � � � � rn ∈ �0�+∞�, with 1
r
≤ 1

r1
+ · · · + 1

rn
, T ∈

��F1� � � � � Fn�G� is absolutely �r� r1� � � � � rn�-summing if �T �x1j � � � � � xnj ��∞j=1∈
lr�G�, for every �xkj �∞j=1 in lwrk�Fk�, k = 1� � � � � n.
The vector space of all such mappings is denoted by

�
�r� r1����� rn�
as �F1� � � � � Fn�G��

For each T ∈ �
�r� r1����� rn�
as �F1� � � � � Fn�G�, we write

�T�as��r� r1����� rn� = sup
��xkj �∞j=1�w� rk≤1

��T �x1j � � � � � xnj ��∞j=1�r �

This defines a norm (r-norm, if r < 1) on �
�r� r1����� rn�
as �F1� � � � � Fn�G� and

makes this space metrizable and complete.

1.2. Definition. T ∈ ��F1� � � � � Fn�G� is Hilbert–Schmidt if, for each
complete orthonormal system �ekj � j ∈ Ik� in Fk, k = 1� � � � � n,

�T�HS =
( ∑
jk∈Ik

�T �e1j1� � � � � enjn��2
) 1

2

< +∞�

The vector space of all such mappings is denoted by �HS�F1� � � � � Fn�G�.
In this paper we shall write l2��� = E.
We recall the following result from the Linear Operator Theory (see

[2, Theorem 22.1.8, p. 302]).
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1.3. Theorem. �HS�F �G� = �
�r� r�
as �F �G�, for all Hilbert spaces F , G

and every strictly positive real number r.
If q ∈ �0�+∞
, we denote by �q�F �G� the vector space of all S ∈ ��F �G�

of the form

S�x� =∑
j∈I
σjφj�x�ej� ∀ x ∈ F�

with �φj�j∈I , �ej�j∈I being orthonormal families of elements of F ′, G, respec-
tively, and �σj�j∈I an absolutely q-summable family of scalars. We have
�2�F �G� = �HS�F �G� and, when q < r, �q�F �G� is a proper vector
subspace of �r�F �G�.

In Pietsch [2, p. 303] we find the following result:

1.4. Theorem. For 0 < p < s < +∞,

(1) If p ≤ 2 and 1
p
− 1

s
< 1

2 , then �
�s�p�
as �F �G� = �q�F �G�, with 1

q
=

1
s
− 1

p
+ 1

2 .

(2) If p ≤ 2 and 1
p
− 1

s
≥ 1

2 , then �
�s�p�
as �F �G� = ��F �G�.

(3) If p ≥ 2, then �q�F �G� ⊂ �
�s�p�
as �F �G�, with 1

q
= p

2s .

1.5. Corollary. If 0 < p < s < +∞, then there is S ∈ �
�s�p�
as �E�E�,

that is not Hilbert–Schmidt.

Proof. If p ≤ 2 and 1
p
− 1

s
< 1

2 , we consider 1
t
= 1

s
− 1

p
+ 1

2 <
1
2 . We

have �
�s�p�
as �E�E� = �t�E�E�, by Theorem 1.4(1). Since t > 2, we consider

�αj�∞j=1 ∈ lt���\l2��� and define

S�x� =
∞∑
j=1

αjxjej ∀ x = �xj�∞j=1 ∈ l2��� = E�

Hence S ∈ �
�s�p�
as �E�E� = �t�E�E� and S /∈ �HS�E�E� = �2�E�E�.

If p ≤ 2 and 1
p
− 1

s
≥ 1

2 , then �
�s�p�
as �E�E� = ��E�E�, by Theorem 1.4(2).

We certainly have ��E�E� �= �HS�E�E�.
Ifp ≥ 2, we use Theorem 1.4(3) in order to write�q�E�E� ⊂ �

�s�p�
as �E�E�,

with q = 2s
p
. Since s > p is equivalent to q > 2, we can find S ∈ �q�E�E� ⊂

�
�s�p�
as �E�E�, that is not in �2�E�E� = �HS�E�E�.
Finally we note that �HS�E�E� �= ��E�E� = �

�+∞� r�
as �E�E� =

�
�+∞�+∞�
as �E�E�.
Since such results are known for linear operators, it is natural to conjec-

ture about what can happen when multilinear mappings are considered.
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2. THE MOST NATURAL PROBLEM

The following result gives an interesting characterization of the linear
absolutely �s� s�-summing mappings. See [3] for scalar-valued mappings.
We denote by W �BF ′ � the set of all regular probability measures on the
σ-algebra of the Borel subsets of BF ′ , for the weak ∗ topology on F ′

restricted to BF ′ .

2.1. Grothendieck–Pietsch Domination Theorem. If F and G are
Banach spaces, then T ∈ ��F �G� is absolutely �s� s�-summing if and only if
there are µ ∈ W �BF ′ � and C ≥ 0, such that

�T �x�� ≤ C

(∫
BF ′

�φ�x��sdµ�φ�
) 1

s

�

for every x ∈ F . The infimum over all these possible C is equal to �T�as� �s� s�.
The corresponding result for multilinear applications is stated as follows:

2.2. Theorem. If T ∈ ��F1� � � � � Fn�G� and r� r1� � � � � rn ∈ �0�+∞
 are
such that 1/r = 1/r1 + · · · + 1/rn, then T is absolutely �r� r1� � � � � rn�-summing
if and only if there are C ≥ 0 and µk ∈ W �BF ′

k
�, k = 1� � � � � n, such that

�T �x1�����xn��≤C
(∫

BF ′1

�φ�x1��r1dµ1�φ�
) 1

r1

···
(∫

BF ′n

�φ�xn��rndµn�φ�
) 1

rn

�

for every xk ∈ Fk, k = 1� � � � � n. The infimum of all these possible C is equal
to �T�as��r� r1� ���� rn�.

These results motivate the following question for n-linear mappings,
n ≥ 2.

2.3. Natural Problem. If n ≥ 2, is it possible to find r� r1� � � � � rn ∈
�0�+∞
, with 1/r = 1/r1 + · · · + 1/rn, such that �HS�F1� � � � � Fn�G� =
�

�r� r1� ���� rn�
as �F1� � � � � Fn�G�, for all Hilbert spaces F1� � � � � Fn�G?

We start with the case n = 2.

2.4. Example. If G �= �0�, there is Tb ∈ �HS�E�E�G�, such that Tb /∈
�
r� r1� r2�
as �E�E � G�, for all r� r1� r2 ∈ �0�+∞
 satisfying 1/r = 1/r1 + 1/r2.
As usual, if k ∈ �, we write ek to denote the element

�0� � � � � 0� 1� 0� � � �� ∈ l2, with 1 in the position k. If x ∈ l2, we write
x = �xj�∞j=1 = ∑∞

j=1 xjej . We shall use the notation x = �xj�∞j=1, when
x = �xj�∞j=1 ∈ l2 = E. It is easy to show that �xk�∞k=1 ∈ lwp�E�, for
�xk�∞k=1 ∈ lwp�E�. We define T ∈ ��l2� l2��� by

T �x� y� =
∞∑
j=1

1
j
xjyj ∀ x� y ∈ l2�
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We note that T is Hilbert–Schmidt since
∞∑

j� k=1

�T �ej� ek��2 =
∞∑
j=1

�T �ej� ej��2 =
∞∑
j=1

1
j2
< +∞�

Now we consider S ∈ ��l2� l2�, given by

S�x� =
∞∑
j=1

1
j1/2

xjej ∀ x ∈ l2�

We have

�S�x��2 = �T �x� x�� ∀ x ∈ l2�

If T were in �
�r� 2r� 2r�
as �l2� l2���, we would have

∞∑
j=1

�S�xj��2r =
∞∑
j=1

�T �xj� xj��r < +∞�

for every �xj�∞j=1 ∈ lw2r�l2�. Thus S would be absolutely �2r� 2r�-summing,
hence Hilbert–Schmidt. But

∞∑
j=1

�S�ej��2 =
∞∑
j=1

1
j
= +∞�

Therefore T cannot be in �
�r� 2r� 2r�
as �l2� l2���. If b ∈ G, b �= 0, we define

Tb�x� y� = T �x� y�b, for all x� y ∈ l2. It is easy to see that Tb is Hilbert–
Schmidt. If φ ∈ G′ is such that φ�b� = 1, we have T = φ ◦ Tb. Hence,
Tb cannot be in �

�r� 2r� 2r�
as �l2� l2�G�. If this were true, T would be in

�
�r� 2r� 2r�
as �l2� l2���, a contradiction.

For r� r1� r2 ∈ �0�+∞
, such that 1/r = 1/r1 + 1/r2, by Theorem 2.2, we
have

�
�r�r1� r2�
as �l2� l2�G� ⊂ �

�s� 2s� 2s�
as �l2� l2�G� when s = max�r1� r2��

Hence Tb /∈ �
�r�r1� r2�
as �l2� l2�G�.

It is possible to prove that for 0 < r�p� q < +∞ and 1
r
= 1

p
+ 1

q
,

�
r�p� q
as �l2� l2��� is the space of nuclear forms. It is properly contained in

the space of the Hilbert–Schmidt forms, since the diagonal form

T �x� y� =
+∞∑
j=1

1
j
xjyj

is Hilbert–Schmidt but not nuclear.
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2.5. Example. If n ≥ 2, G �= �0�, there is R ∈ �HS�nE�G�, such that
R is not absolutely �r� r1� � � � � rn�-summing, for all r� r1� � � � � rn ∈ �0�+∞
,
satisfying 1/r = 1/r1 + · · · + 1/rn.
We consider ψ ∈ E′ and c ∈ E such that ψ�c� = 1. We define R ∈

��nE�G� by

R�x1� � � � � xn� = Tb�x1� x2�ψ�x3� � � � ψ�xn��

where Tb is as in the previous example. We note that R is Hilbert–Schmidt,
since

∞∑
j1=1�����jn=1

�R�ej1� � � � � ejn��2 = �ψ�2�n−2�
∞∑

j1=1� j2=1

�Tb�ej1� ej2��2 < +∞�

We consider r� r1� � � � � rn ∈ �0�+∞
, such that 1/r = 1/r1 + · · · + 1/rn. If
R were absolutely �r� r1� � � � � rn�-summing, there would be C ≥ 0 and µk ∈
W �BE′ �, k = 1� � � � � n, such that

�R�x1� � � � � xn��

≤ C

(∫
BE′

�φ�x1��r1dµ1�φ�
) 1

r1

� � �

(∫
BE′

�φ�xn��rndµn�φ�
) 1

rn

�

for every xk ∈ E, k = 1� � � � � n. Hence, in a particular case, we could write

�R�x1� x2� c� � � � � c�� ≤ C
2∏
k=1

(∫
BE′

�φ�xk��rkdµk�φ�
) 1

rk �c�n−2�

for every xk ∈ E, k = 1� 2. For c ∈ E, ψ�c� = 1, we have �Tb�x1� x2�� =
�R�x1� x2� c� � � � � c��. This would imply that Tb is absolutely �s� r1� r2�-
summing, with 1/s = 1/r1 + 1/r2, a contradiction to Example 2.4.

This example can be proved directly, without the Pietsch domination
theorem.

3. MORE GENERAL PROBLEM

In 1983, at a Conference in Leipzig (see [3]), Pietsch proposed the fol-
lowing question:

3.1. Pietsch’s Problem. If n ≥ 3, is it possible to find r� r1� � � � � rn ∈
�0�+∞�, with 1/r ≤ 1/r1 + · · · + 1/rn, such that �HS�F1� � � � � Fn��� =
�

�r� r1� ���� rn�
as �F1� � � � � Fn���, for all Hilbert spaces F1� � � � � Fn?
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3.1.a. Proposition. If F and G are Hilbert spaces over �, then
�

�2� 2� 2�
as �F�G��� = �HS�F�G���.

This result is a consequence of a linear result, by using the isomorphism
' from ��F �G′� onto ��F�G���. See Pietsch [2, p. 239, 17.5.2]. Hence
the answer to the question of Pietsch is yes when n = 2.
It is easy to show that �HS�F1� � � � � Fn−1�F ′

n� is isometric to �HS

�F1� � � � � Fn��� by the isomorphism ', defined by

'�T ��x1� � � � � xn−1� xn� = T �x1� � � � � xn−1��xn��

when T ∈ �HS�F1� � � � � Fn−1�F ′
n� and xk ∈ Fk, k = 1� � � � � n − 1� n. This

motivates the following question:

3.2. The Infinite Dimensional Vector Valued Problem. If n ≥ 2, is it pos-
sible to find r� r1� � � � � rn ∈ �0�+∞�, with 1/r ≤ 1/r1 + · · · + 1/rn, such
that �HS�F1� � � � � Fn�G� = �

�r� r1� ���� rn�
as �F1� � � � � Fn�G�, for Hilbert spaces

F1� � � � � Fn and every infinite dimensional Hilbert space G?

We shall prove that the answer to each of these problems is negative.
Our examples for Problem 3.2 will depend partially on the examples we
give to answer Problem 3.1. Of course, the examples of Section 2 give part
of the solution to these two problems.

4. THE INFINITE DIMENSIONAL
VECTOR VALUED PROBLEM

In this section we always consider n ≥ 2.

4.1. Example. If r� r1� � � � � rn ∈ �0�+∞� are such that 1/r ≤ 1/r1 + · · · +
1/rn, with rk = +∞ for at least one k ∈ �1� � � � � n�, then there is T ∈
�

�r�r1�����rn�
as �nE�E� that is not Hilbert–Schmidt.
With no loss of generality we consider r1 = +∞. For φ ∈ E′, φ �= 0, we

define

T �x1� � � � � xn� = x1φ�x2� � � � φ�xn� ∀ xk ∈ E�k = 1� � � � � n�

T is not Hilbert–Schmidt, since

∞∑
jk=1� k=1�����n

�T �ej1� � � � � ejn��2 = �φ�2�n−1�
∞∑
j1=1

�ej1�2 = +∞�



350 mário c. matos

On the other hand, we have

∥∥�T �x1j � � � � � xnj ��∞j=1

∥∥
r
≤ ∥∥�x1j �∞j=1

∥∥
∞

n∏
k=2

∥∥�φ�xkj ��∞j=1

∥∥
rk

≤ �φ�n−1
∥∥�x1j �∞j=1

∥∥
∞

n∏
k=2

∥∥�xkj �∞j=1

∥∥
w� rk

�

This shows that T ∈ �
�r� r1� ���� rn�
as �nE�E�, since r1 = +∞.

4.2. Example. If r� r1� � � � � rn ∈ �0�+∞� are such that 1/r < 1/r1 + · · ·+
1/rn, with rk ≤ r for at least one k ∈ �1� � � � � n�, then there is T ∈
�

�r� r1� ���� rn�
as �nE�E� that is not Hilbert–Schmidt.
We suppose that rn ≤ r, with no loss of generality. Since 1/r ≤ 1/rn,

we can write 1/r ≤ �n− 1�/s + 1/rn, where s = +∞. By Example 4.1,
there is T ∈ �

�r�+∞�����+∞�rn�
as �nE�E� that is not Hilbert–Schmidt. But

�
�r�+∞�����+∞�rn�
as �nE�E� ⊂ �

�r� r1� ���� rn−1�rn�
as �nE�E�.

4.3. Example. If r� p� q ∈ �0�+∞�, with 1
r
< 1

p
+ 1

q
, p > r, and q > r,

then there is T ∈ �
�r�p� q�
as �2E�E� that is not Hilbert–Schmidt.

Since r < p, we have r < +∞. By our hypothesis, we cannot have p =
+∞ or q = +∞. Thus p� q ∈ �0�+∞
. We have

0 <
1
s
= 1
r
− 1
q
<

1
p

and 0 < p < s < +∞�

By Corollary 1.5, there is S ∈ �
�s�p�
as �E�E� that is not Hilbert–Schmidt. For

φ ∈ E′, φ �= 0, we define

T �x� y� = S�x�φ�y� ∀ x� y ∈ E�

T is not Hilbert–Schmidt:

∞∑
j�k=1

�T �ek� ej��2 =
∞∑

j�k=1

�S�ek��2�φ�ej��2 = �φ�2
∞∑
k=1

�S�ek��2 = +∞�

Now, since 1
r
= 1

s
+ 1

q
, we have

��T �xj� yj��∞j=1�r ≤ ��S�xj��∞j=1�s��φ�yj��∞j=1�q
≤ �S�as� �s�p���xj�∞j=1�w�p�φ���yj�∞j=1�w� q�

Thus T ∈ �
�r�p� q�
as �2E� E�.
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4.4. Example. If 1/r < 1/r1 + · · ·+ 1/rn, with r� r1� � � � � rn ∈ �0�+∞� and
rk > r, for every k = 1� � � � � n, then there is T ∈ �

�r� r1� ���� rn�
as �nE�E� that

is not Hilbert–Schmidt.
For n = 2, Example 4.3 gives the result.
For n > 2, we have r < +∞ for at least two rk, k = 1� � � � � n,

finite. With no loss of generality we may suppose r1� r2 ∈ �0�+∞
.
Now we write 1/t1 = 1/r1 + 1/r2, and find t > t1, t < +∞, such that
1/r < 1/t + 1/r3 + · · · + 1/rn. Since 1/t < 1/r1 + 1/r2, we can use either
Example 4.2, or Example 4.3, in order to find R ∈ �

�t� r1� r2�
as �2E�E� that is

not Hilbert–Schmidt. Now we consider φ ∈ E′, φ �= 0, and define

T �x1� � � � � xn� = R�x1� x2�φ�x3� � � � φ�xn� ∀ xk ∈ E� k = 1� � � � � n�

T is not Hilbert–Schmidt:
∞∑

jk=1� k=1�����n

�T �ej1� � � � � ejn��2 = �φ�n−2
∞∑

j� k=1

�R�ej� ek��2 = +∞�

On the other hand

∥∥�T �x1j � � � � � xnj ��∞j=1

∥∥
r
≤ ∥∥�R�x1j � x2j ��∞j=1

∥∥
t

n∏
k=3

∥∥�φ�xkj ��∞j=1

∥∥
rk

≤ �R�as� �t� r1� r2��φ�n−2
n∏
k=1

��xkj �∞j=1�w� rk�

and T is absolutely �r� r1� � � � � rn�-summing.

With this example we have completed the answer to Problem 3.2.

5. THE PROBLEM OF PIETSCH

Propositions 5.1 and 3.1.a show the reason that made Pietsch state his
problem with n ≥ 3.

5.1. Proposition. �
�r� r�+∞�
as �F�G��� = �HS�F�G���, if r ∈ �0�+∞


and F�G are Hilbert spaces over �.

Proof. If T ∈ �
�r� r�+∞�
as �F�G � ��, we consider '−1�T ��x��y� = T �x� y�,

for x ∈ F and y ∈ G. We have

��'−1�T ��xj��∞j=1�r = ��T �xj� yj��∞j=1�r = �∗��
for a convenient choice of yj ∈ BG. Thus
�∗� ≤ �T�as� �r� r�+∞���xj�∞j=1�w� r��yj�∞j=1�∞ = �T�as� �r� r�+∞���xj�∞j=1�w� r
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and we have '−1�T � ∈ �
�r� r�
as �F �G′� = �HS�F �G′�. Thus T = '�'−1�T ��

is Hilbert–Schmidt.
On the other hand, if T ∈ �HS�F�G���, then '−1�T � ∈ �HS�F �G′� =

�
�r� r�
as �F �G′�. Thus

��T �xj� yj��∞j=1�r ≤ ��'−1�T ��xj��∞j=1�r��yj�∞j=1�∞
≤ �'−1�T ��as� �r� r���xj�∞j=1�w� r��yj�∞j=1�∞

and T is absolutely �r� r�+∞�-summing.

5.2. Example. If n ≥ 3, r� r1� � � � � rn ∈ �0�+∞�, with 1/r = 1/r1 + · · ·
1/rn, and, for at least one k ∈ �1� � � � � n�, rk = +∞ (say, rn = +∞), then

(i) there is T Hilbert–Schmidt, T /∈ �
�r� r1� ���� rn�
as �nE���, when

r1� � � � � rn−1 ∈ �0�+∞
;
(ii) there is T ∈ �

�r� r1� ���� rn�
as �nE���, that is not Hilbert–Schmidt, when

rj = +∞, for some j in �1� � � � � n− 1�.
Of course, we have to consider the cases:

(i) r1� � � � � rn−1 ∈ �0�+∞
,
(ii) For at least one k ∈ �1� � � � � n− 1�, rk = +∞.

In the case (i), we have 1/r = 1/r1 + · · · + 1/rn−1 and n − 1 ≥ 2. By
Example 2.5, there is S Hilbert–Schmidt defined on En−1 with values in
E′, that is not absolutely �r� r1� � � � � rn−1�-summing. It follows that T =
'�S� ∈ �HS�nE���. If '�S� were absolutely �r� r1� � � � � rn�-summing, we
would have

��S�x1j � � � � � xn−1
j �∞j=1�r = ���'�S��x1j � � � � � xn−1

j � xnj ���∞j=1�r = �∗��
for convenient choices of xnj ∈ BE , j = 1� � � � . Thus

�∗� ≤ �'�S��as� �r� r1� ����rn�
n−1∏
k=1

��xkj �∞j=1�rk��xnj �∞j=1�∞�

Therefore we would have

��S�x1j � � � � � xn−1
j �∞j=1�r ≤ �'�S��as� �r� r1� ���� rn�

n−1∏
k=1

��xkj �∞j=1�rk
and S would be absolutely �r� r1� � � � � rn−1�-summing, a contradiction.

In the case (ii), we have 1/r = 1/r1 + · · · + 1/rn−1 and n − 1 ≥ 2. By
Example 4.1, we can find S ∈ �

�r� r1� ���� rn−1�
as �n−1E�E�, that is not Hilbert–

Schmidt. We define T ∈ ��nE��� by

T �x1� � � � xn� =
∞∑
k=1

�S�x1� � � � � xn−1��k�xn�k = '�S��x1� � � � � xn−1� xn��
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Since S is not Hilbert–Schmidt, '�S� and T are not Hilbert–Schmidt. On
the other hand,

��T �x1j � � � � � xnj ��∞j=1�r ≤ ��S�x1j � � � � � xn−1
j ��∞j=1�r��xnj �∞j=1�∞

≤ �S�as� �r� r1� ����rn−1�
n∏
k=1

��xkj �∞j=1�w� rk

and T is absolutely �r� r1� � � � � rn�-summing.

5.3. Example. If n ≥ 3, r� r1� � � � � rn ∈ �0�+∞�, 1/r < 1/r1 + · · · +
1/rn, with rk ≤ r, for at least one k ∈ �1� � � � � n�, then there is
T ∈ �

�r� r1����� rn�
as �nE���, that is not Hilbert–Schmidt.

With no loss of generality we suppose r1 ≤ r. If r > r1, we have 1
r
< 1

r1
and

1
r
<

1
r1

+ · · · + 1
rn−1

� with n− 1 ≥ 2�

If r = r1, we must have rj < +∞, for some j ∈ �2� � � � � n�.With no loss of
generality we may take this j = 2 and write

1
r
<

1
r1

+ · · · + 1
rn−1

� with n− 1 ≥ 2�

By Example 4.2, there is S ∈ �
�r� r1����� rn−1�
as �n−1E�E� that is not Hilbert–

Schmidt. Now, we can define T ∈ ��nE��� in terms of S, as in case (ii) of
Example 5.2. As it was proved there, T is absolutely �r� r1� � � � � rn−1�+∞�-
summing (hence absolutely �r� r1� � � � � rn−1� rn�-summing), but it is not
Hilbert–Schmidt.

5.4. Example. If n ≥ 2, r� r1� � � � � rn ∈ �0�+∞�, 1/r < 1/r1 + · · · + 1/rn,
with rk > r, for k = 1� � � � � n, at least one of them +∞, then there is
T ∈ �

�r� r1����� rn�
as �nE���, that is not Hilbert–Schmidt.

With no loss of generality we may consider rn = +∞. Hence we have

1
r
<

1
r1

+ · · · + 1
rn−1

� with rk > r� for k = 1� � � � � n− 1� n− 1 ≥ 1�

By Example 4.4, if n > 2, and by Corollary 1.5, if n = 2, we can find
S ∈ �

�r� r1����� rn−1�
as �n−1E�E�, that is not Hilbert–Schmidt. Now, we may define

T ∈ ��nE��� in terms of S, as in case (ii) of Example 5.2. Hence, as
it was proved there, T is absolutely �r� r1� � � � � rn�-summing, but it is not
Hilbert–Schmidt.
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5.5. Example. If n ≥ 2, r� r1� � � � � rn ∈ �0�+∞�, 1/r < 1/r1 + · · · + 1/rn,
with +∞ > rk > r, for k = 1� � � � � n, then there is T ∈ �

�r� r1� ���� rn�
as �nE���,

that is not Hilbert–Schmidt.
We consider s > rn such that 1/r < 1/r1 + · · · + 1/rn−1 + 1/s. Now we

take t > 0, such that 1/t = 1/r − 1/s. We have two possibilities:

(1) t < rk, for k = 1� � � � � rn−1.

(2) t ≥ rk for some k ∈ �1� � � � � n− 1�.
In case (1), by Example 4.4, if n ≥ 3, or by Corollary 1.5, if n = 2,

there is R ∈ �
�t� r1����� rn−1�
as �n−1E�E�, that is not Hilbert–Schmidt. By Corollary

1.5, there is S ∈ �
�s� rn�
as �E�E�, that is not Hilbert–Schmidt. We define T ∈

��nE��� by

T �x1� � � � � xn� =
∞∑
j=1

�R�x1� � � � � xn−1��j�S�xn��j

= '�R��x1� � � � � xn−1� S�xn���

for xk ∈ E, k = 1� � � � � n− 1. We have

( ∞∑
j=1

�T �x1j � � � � � xnj ��r
) 1

r

≤
( ∞∑
j=1

�R�x1j � � � � � xn−1
j ��t

) 1
t
( ∞∑
j=1

�S�xnj ��s
) 1

s

≤ �R�as��t�r1�����rn−1��S�as��s�rn�
n∏
k=1

��xkj �∞j=1�w� rk �

Therefore T is absolutely �r� r1� � � � � rn�-summing. Since R and S are not
Hilbert–Schmidt, is easy to see that T is not Hilbert–Schmidt.
In case (2), if n = 2, we have that 1/t + 1/s = 1/r < 1/r1 + 1/s. These

inequalities imply t > r1. Hence, by Example 4.2, if n ≥ 3, or by Corollary
1.5, if n = 2, there is R ∈ �

�t� r1����� rn−1�
as �n−1E�E�, that is not Hilbert–Schmidt.

By Corollary 1.5, there is S ∈ �
�s� rn�
as �E�E�, that is not Hilbert–Schmidt. We

define T ∈ ��nE��� as in case (1) and have T absolutely �r� r1� � � � � rn�-
summing, but not Hilbert–Schmidt.

With this example we complete our answer to the Problem of Pietsch.
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