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Abstract

We investigate the solvability of the following strongly non-linear non-autonomous boundary value prob-
lem

(P)

{(
a
(
x(t)

)
x′(t)

)′ = f
(
t, x(t), x′(t)

)
a.e. t ∈ R,

x(−∞) = ν−, x(+∞) = ν+

with ν− < ν+ given constants, where a(x) is a generic continuous positive function and f is a Carathéodory
non-linear function. We show that the solvability of (P) is strictly connected to a sharp relation between the
behaviors of f (t, x, ·) as |x′| → 0 and f (·, x, x′) as |t | → +∞. Such a relation is optimal for a wide class
of problems, for which we prove that (P) is not solvable when it does not hold.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

In this paper we investigate the existence of heteroclinic solutions for the following general
second-order non-autonomous boundary value problem on the whole real line
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(P)

{(
a
(
x(t)

)
x′(t)

)′ = f
(
t, x(t), x′(t)

)
a.e. t ∈ R,

x(−∞) = ν−, x(+∞) = ν+

with ν− < ν+ given constants. The usual second-order operator x �→ x′′ is here generalized
by x �→ (a(x)x′)′ where a(x) is a non-linear continuous positive function. The right-hand side
f : R

3 → R is a generic non-linear Carathéodory function, i.e. f (·, x, y) is measurable and
f (t, ·,·) is continuous.

The study of heteroclinic connections for boundary value problems on the whole real line had
a certain impulse in recent years, motivated by applications in various biological, physical and
chemical models, such as phase-transition, physical processes in which the variable transits from
an unstable equilibrium to a stable one, or front-propagation in reaction–diffusion equations.
Indeed, heteroclinic solutions are often called transitional solutions.

Contrary to the case of boundary value problems in compact domains, for which a very wide
literature has been produced, in the framework of unbounded intervals many questions are still
open and the theory presents some critical aspects. One of the main difficulty consists in the lack
of good a priori estimates and appropriate compact embedding theorems for the usual Sobolev
spaces.

In particular, the study of heteroclinic connections on the whole real line has been car-
ried out mainly for autonomous quasilinear problems, i.e. for right-hand side of the type
f (x, x′) = h(x)x′ + g(x), owing to the relevant applications to traveling wave solutions for
reaction–diffusion equations (see e.g. the monograph [8] for a rather exhaustive literature).

In recent years an increasing attention has been devoted to non-autonomous problems. In [18]
Volpert and Suhov considered equations of the type

x′′ − cx′ + g(t, x) = 0

for source terms g(t, x) satisfying g(t,0) = g(t,1) ≡ 0, g(t, x) > 0 for x ∈ (0,1) (we mention
also a contribution by Sanchez [17] for g(t, x) = a(t)b(x)). Such equations appear when search-
ing for stationary non-constant solutions of semilinear parabolic equations describing a chemical
reaction. The studies in this setting have been recently extended to equations having the general
quasi-linear structure

x′′ = h1(t, x)x′ + h2(t, x)

in [13], in which existence, multiplicity and non-existence results have been proved.
Further recent results concerning the theory of existence and multiplicity of solutions for more

general second-order equations with boundary conditions at infinity have been obtained also in
different contexts, see [1–5,7,9,11,12,15,19,20] and the book [16].

In [14] we began a study of fully non-linear second-order equations x′′ = f (t, x, x′) which are
specially applicable to right-hand side having the product structure f (t, x, x′) = c(t, x)b(x, x′),
providing some sufficient conditions for the existence of heteroclinic solutions. This research has
been developed in [6] for second-order differential operators of the type (φ(x′))′ where φ is a
monotone function which generalizes the one-dimensional p-Laplacian operator.

In this paper we investigate problem (P) in presence of a second-order operator of the type
(a(x)x′)′. This operator naturally arises in reaction–diffusion equations with non-constant diffu-
sivity or in porous media equations (see [8]).
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Problem (P) was already considered in the framework of compact intervals in [10]. Here
we investigate this problem in the whole real line and we give some general existence results
(see Theorems 2 and 3) which emphasize the relevance of a precise link between the behaviors
of f (t, x, ·) as y → 0 and f (·, x, y) as |t | → +∞. The conditions guaranteeing the existence
of solutions are very sharp, in the sense that they are not improvable, since for a rather wide
class of problems they are also necessary for the existence of solutions (see the non-existence
Theorems 4 and 5).

Our results find immediate and simple applications to right-hand sides having the product
structure

f (t, x, y) = b(x, y)c(t, x)

which are presented in Section 4 (see Theorems 6–9). We here wish just to mention criteria for
the particular case f (t, x, y) = h(t)g(x)b(y) with h ∈ L

p

loc(R), for some 1 � p � ∞, satisfying
t · h(t) � 0 for every t ; g positive in [ν−, ν+], b(y) satisfying b(0) = 0, 0 < b(y) < K|y|2−1/p

for y 	= 0. We have (see Corollary 2):
if

lim|t |→+∞
∣∣h(t)

∣∣|t |−δ = �1 ∈ (0,+∞) and lim|y|→0
b(y)|y|−γ = �2 ∈ (0,+∞)

for some δ > −1, γ > 0, then

(P) admits solutions ⇔ γ < 2 + δ.

This result, which is a necessary and sufficient condition for the existence of solutions, shows
the crucial relation between the infinitesimal order γ of b(y) as |y| → 0 and the rate δ of h(t)

as |t | → +∞. Moreover, observe that in this case the behavior of both the right-hand side f and
the differential operator a(x)x′ with respect to x does not influence the solvability of (P), which
results to be completely independent on a(x) and g(x).

A different situation occurs when h(t) ∼ |t |−1 as |t | → +∞. In this case we prove that if
γ > 1 problem (P) does not admit solutions. Instead when γ = 1 a relevant role is assumed by
the functions a(x) and g(x). Indeed we prove that (see Corollary 3) if

lim|t |→+∞
∣∣th(t)

∣∣ = h1 ∈ (0,+∞), lim|y|→0
b(y)|y|−1 = h2 ∈ (0,+∞) and

b(y) � h2|y| for every y ∈ R,

then

h1h2 · ming(x) > maxa(x) ⇒ (P) admits solutions;

h1h2 · maxg(x) < mina(x) ⇒ (P) does not admit solutions,

where the maxima and the minima are intended in the interval [ν−, ν+].
Our approach is based on a suitable combination between fixed point techniques and upper and

lower solutions method. In Section 2 we give some preliminary results concerning the solvability
and the convergence of solutions of certain auxiliary functional problems in bounded intervals.
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Section 3 contains the general existence and non-existence results, while Section 4 is devoted to
the applications to right-hand side having the product structure f (t, x, y) = c(t, x)b(x, y).

2. Auxiliary results

In this section we will study an auxiliary two-points problem for a functional differential
equation in a compact interval, for which we will provide an existence and a convergence result,
that will be used in the next section.

Let I = [a, b] ⊂ R be a compact interval and let A : C1(I ) → C(I), x �→ Ax , and
F : C1(I ) → L1(I ), x �→ Fx , be two continuous functionals. Let us consider the following func-
tional boundary value problem on [a, b]

(Q)

{(
Au(t)u

′(t)
)′ = Fu(t), a.e. on I,

u(a) = ν1, u(b) = ν2,

where ν1, ν2 ∈ R are given.
Throughout this section we assume the following hypotheses on the functionals A and F :

(F1) there exist m,M > 0 such that m � Ax(t) � M for every x ∈ C1(I ), t ∈ I ;
(F2) A maps bounded sets of C1(I ) into uniformly continuous sets in C(I), i.e. for every

bounded set D ⊂ C1(I ) and every ε > 0 there exists a real ρ = ρ(ε) > 0 such that

∣∣Ax(t1) − Ax(t2)
∣∣ < ε for every x ∈ D and t1, t2 ∈ I with |t1 − t2| < ρ;

(F3) there exists η ∈ L1+(I ): |Fx(t)| � η(t), a.e. on I , for every x ∈ C1(I ).

The following theorem provides an existence result for problem (Q).

Theorem 1. Under the assumptions (F1)–(F3), for every ν1, ν2 ∈ R there exists a function
u ∈ C1(I ) such that Au · u′ ∈ W 1,1(I ) and

{(
Au(t)u

′(t)
)′ = Fu(t), a.e. on I,

u(a) = ν1, u(b) = ν2,

i.e. u is a solution of problem (Q).

Proof. For every x ∈ C1(I ), put

Ix := ν2 − ν1 − ∫ b

a
( 1
Ax(τ)

∫ τ

a
Fx(s)ds)dτ∫ b

a
1

Ax(τ)
dτ

∈ R

and observe that

b∫
1

Ax(τ)

(
Ix +

τ∫
Fx(s)ds

)
dτ = ν2 − ν1. (1)
a a
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Let us consider the operator Γ : C1(I ) → C1(I ), x �→ Γx , defined by

Γx(t) := ν1 +
t∫

a

1

Ax(τ)

(
Ix +

τ∫
a

Fx(s)ds

)
dτ.

It is well defined and by (1) it is immediate to check that if Γ has a fixed point, then this is a
solution to (Q).

Of course, if (xk)k converges to x in the space C1(I ), then by the continuity of the functionals
A and F we have that (Axk

)k converges to Ax in C(I) and (Fxk
)k converges to Fx in L1(I ).

Moreover, since

1

Axk
(τ )

∣∣∣∣∣
τ∫

a

Fxk
(s)ds

∣∣∣∣∣ � 1

m

( b∫
a

η(s)ds

)
for every τ ∈ I,

by applying the dominate convergence theorem we obtain that Ixk
converges to Ix .

Let us now show that (Γ ′
xk

)k uniformly converges to Γ ′
x in I . To this aim, note that

∣∣Γ ′
xk

(t) − Γ ′
x(t)

∣∣ = 1

Axk
(t)Ax(t)

∣∣∣∣∣Ax(t)

(
Ixk

+
t∫

a

Fxk
(s)ds

)
− Axk

(t)

(
Ix +

t∫
a

Fx(s)ds

)∣∣∣∣∣
� 1

m2

(
Ax(t)|Ixk

− Ix | + |Ix |
∣∣Axk

(t) − Ax(t)
∣∣

+ Ax(t)

∣∣∣∣∣
t∫

a

(
Fxk

(s) − Fx(s)
)

ds

∣∣∣∣∣ +
∣∣∣∣∣

t∫
a

Fx(s)ds

∣∣∣∣∣
∣∣Axk

(t) − Ax(t)
∣∣),

for every t ∈ I . So,

∥∥Γ ′
xk

− Γ ′
x

∥∥
C(I)

� 1

m2

[
M|Ixk

− Ix | +
(

|Ix | +
b∫

a

∣∣Fx(t)
∣∣dt

)
‖Axk

− Ax‖C(I)

+ M‖Fxk
− Fx‖L1(I )

]
,

hence (Γ ′
xk

)k uniformly converges to Γ ′
x in I . Then, since

‖Γxk
− Γx‖C(I) �

b∫
a

∣∣Γ ′
xk

(t) − Γ ′
x(t)

∣∣dt,

we finally deduce that Γxk
→ Γx in C1(I ), i.e. Γ is a continuous operator.

Observe now that



C. Marcelli, F. Papalini / J. Differential Equations 241 (2007) 160–183 165
|Ix | � M

b − a

[
|ν2 − ν1| + b − a

m
‖η‖L1(I )

]
= M

b − a
|ν2 − ν1| + M

m
‖η‖L1(I ) (2)

for every x ∈ C1(I ). Therefore,

∣∣Γ ′
x(t)

∣∣ � 1

m

[
M

b − a
|ν2 − ν1| + M + m

m
‖η‖L1(I )

]
for every x ∈ C1(I ) and t ∈ I,

and this implies that Γ (C1(I )) is bounded in C1(I ), say ‖Γx‖C1(I ) � S for every x ∈ C1(I ). So,
put

D := {
x ∈ C1(I ): ‖x‖C1(I ) � S

}
,

Γ is a continuous operator mapping D onto itself.
Our goal is to show that Γ (D) is relatively compact, and in order to do this it suffices to prove

that Γ (D) is equicontinuous. To this aim, fixed ε > 0, from (F2) there exists ρ = ρ(ε) > 0 such
that ∀x ∈ D we have

∣∣Ax(t1) − Ax(t2)
∣∣ < ε and

∣∣∣∣∣
t2∫

t1

η(s)ds

∣∣∣∣∣ < ε for every t1, t2 ∈ I with |t1 − t2| < ρ.

Hence, if |t1 − t2| < ρ, by (2) for every x ∈ D we have

∣∣Γ ′
x(t1) − Γ ′

x(t2)
∣∣ = 1

Ax(t1)Ax(t2)

∣∣∣∣∣Ax(t2)

(
Ix +

t1∫
a

Fx(s)ds

)
− Ax(t1)

(
Ix +

t2∫
a

Fx(s)ds

)∣∣∣∣∣

� 1

m2

[∣∣Ax(t2) − Ax(t1)
∣∣(∣∣∣∣∣

t2∫
a

Fx(s)ds

∣∣∣∣∣ + |Ix |
)

+ Ax(t2)

∣∣∣∣∣
t1∫

t2

Fx(s)ds

∣∣∣∣∣
]

� 1

m2

[∣∣Ax(t2) − Ax(t1)
∣∣( b∫

a

∣∣Fx(s)
∣∣ds + |Ix |

)
+ M

∣∣∣∣∣
t2∫

t1

Fx(s)ds

∣∣∣∣∣
]

� ε

m2

[
M

b − a
|ν2 − ν1| + M + m

m
‖η‖L1(I ) + M

]

that is Γ (D) is equicontinuous.
Summarizing, Γ : D → D is a continuous, compact operator defined in a closed, bounded,

convex set. Hence it admits a fixed point and then problem (Q) admits at least a solution. �
Let us now consider the equation

(E)
(
a
(
x(t)

)
x′(t)

)′ = f
(
t, x(t), x′(t)

)
a.e. t ∈ R,
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where f : R
3 → R is a given Carathéodory function and a : R → R is a positive continuous

function.
The following result concerns the convergence of sequences of functions related, in a certain

sense, to solutions of the previous equation.
For all n ∈ N let In = [−n,n] and un ∈ C1(In) be such that a(un)u

′
n ∈ W 1,1(In) and

(
a
(
un(t)

)
u′

n(t)
)′ = f

(
t, un(t), u

′
n(t)

)
a.e. t ∈ In.

Consider the following sequences of functions (yn)n, (zn)n, (xn)n defined by

yn(t) :=
{

u′
n(t) for t ∈ In,

0 elsewhere in R,
zn(t) :=

{
(a(un(t))u

′
n(t))

′ for a.e. t ∈ In,

0 elsewhere in R,

xn(t) := un(0) +
t∫

0

yn(s)ds.

Lemma 1. Let J ⊂ R be a given interval (not necessarily bounded). Assume that:

(i) the sequences (un(0))n and (u′
n(0))n are bounded;

(ii) there exist two functions H,γ ∈ L1(J ) such that |yn(t)| � H(t) and |zn(t)| � γ (t) a.e. on
J and for all n ∈ N.

Then there exist three subsequences (ynk
)k , (znk

)k , (xnk
)k and a function x ∈ C1(J ), with

a(x)x′ ∈ W 1,1(J ), such that:

(a) xnk
→ x uniformly on J ;

(b) ynk
→ x′ in L1(J ) and pointwise on J ;

(c) znk
⇀ (a(x)x′)′ weakly in L1(J );

(d) (a(x(t))x′(t))′ = f (t, x(t), x′(t)) a.e. on J .

Proof. From assumption (ii) it follows that the sequences (yn)n and (zn)n are uniformly inte-
grable. Thus, by applying the Dunford–Pettis theorem, we deduce the existence of two subse-
quences (ynk

)k, (znk
)k such that ynk

⇀ g and znk
⇀ h weakly in L1(J ), for some g,h ∈ L1(J ).

Therefore, for every measurable subset A ⊂ J we have∫
A

ynk
(t)dt →

∫
A

g(t)dt and
∫
A

znk
(t)dt →

∫
A

h(t)dt, as k → +∞.

By assumption (i) we can assume that unk
(0) → u0 and u′

nk
(0) → y0, for some u0, y0 ∈ R. So,

putting x(t) := u0 + ∫ t

0 g(s)ds, we have that xnk
(t) → x(t) as k → +∞; moreover x ∈ C(J )

and x′(t) = g(t) a.e. on J .
In Ink

we have u′
nk

(t) = ynk
(t) and then unk

(t) = xnk
(t), so

a
(
xnk

(t)
)
ynk

(t) = a
(
unk

(t)
)
u′

nk
(t) = a

(
xnk

(0)
)
ynk

(0) +
t∫
znk

(s)ds.
0
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Then, for every fixed t ∈ J we have

lim
k→+∞ynk

(t) = 1

a(x(t))

(
a(u0)y0 +

t∫
0

h(s)ds

)

hence the right-hand side coincides with g(t). Consequently g is continuous, x ∈ C1(J ),
ynk

→ x′ in L1(J ) and pointwise on J . Moreover, we have

a
(
x(t)

)
x′(t) = a

(
x(t)

)
g(t) = a(u0)y0 +

t∫
0

h(s)ds,

so a(x(t))x′(t) ∈ W 1,1(R), with (a(x(t))x′(t))′ = h(t) a.e. t ∈ J . Therefore znk
⇀ (a(x)x′)′

weakly in L1(J ).
Furthermore, note that for every t ∈ J

∣∣xnk
(t) − x(t)

∣∣ �
∣∣unk

(0) − u0
∣∣ +

∣∣∣∣∣
t∫

0

∣∣ynk
(s) − g(s)

∣∣ds

∣∣∣∣∣ �
∣∣unk

(0) − u0
∣∣ + ‖ynk

− g‖L1(J )

then the sequence (xnk
)k uniformly converges to x in J .

Finally, for a.e. t ∈ Ink
we have znk

(t) = (a(xnk
(t))ynk

(t))′ = f (t, xnk
(t), x′

nk
(t)) hence

(
a
(
x(t)

)
x′(t)

)′ = f
(
t, x(t), x′(t)

)
a.e. in J,

from the continuity of f (t, ·,·). �
Remark 1. If there exists L > 0 such that u′

n(t) � 0 for every |t | > L and n ∈ N, then x is
definitively increasing, since x′(t) � 0 for every |t | > L.

Remark 2. If there exist α,β ∈ C(J ) such that α(t) � un(t) � β(t) for every t ∈ In, n ∈ N, then
α(t) � x(t) � β(t) for every t ∈ J .

The uniform convergence of the sequence (xnk
)k to x leads to the following result concerning

the attaining of boundary conditions.

Corollary 1. Let J = R. Under the same assumptions as in Lemma 1, if we suppose that

lim
n→+∞un(−n) = u−, lim

n→+∞un(n) = u+,

then we have that

lim
t→−∞x(t) = u−, lim

t→+∞x(t) = u+.
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3. Existence and non-existence theorems

In this section we investigate the existence of heteroclinic solutions to equation (E). Our
approach is based on fixed point techniques suitably combined to the method of upper and lower
solutions, according to the following definition.

Definition 1. A lower (upper) solution for equation (E) is a bounded function α ∈ C1(R) such
that a(α)α′ ∈ W 1,1(R) and

(
a
(
α(t)

)
α′(t)

)′ � (�)f
(
t, α(t), α′(t)

)
for a.e. t ∈ R.

Throughout the paper we will assume the existence of an ordered pair of lower and upper
solutions α,β , i.e. satisfying α(t) � β(t) for every t ∈ R, and we will adopt the following nota-
tions:

I :=
[

inf
t∈R

α(t), sup
t∈R

β(t)
]
, ν := |I| = sup

t∈R

β(t) − inf
t∈R

α(t),

m := min
x∈I

a(x) > 0, M := max
x∈I

a(x), d := max
{∣∣α′(t)

∣∣ + ∣∣β ′(t)
∣∣: t ∈ R

}
.

Note that the value d is well defined, in fact

lim|t |→+∞α′(t) = lim|t |→+∞β ′(t) = 0,

since a(α)α′ ∈ W 1,1(R) and m > 0 (the same argument holds for β ′).
Moreover, in what follows, x+ and x− will denote the positive and negative parts of the real

number x, respectively, and we will put x ∧ y := min{x, y}, x ∨ y := max{x, y}.
Our main result is the following existence theorem.

Theorem 2. Assume that there exists a pair of lower and upper solutions α,β ∈ C1(R) of the
equation (E), satisfying α(t) � β(t), for every t ∈ R, with α increasing in (−∞,−Λ), β in-
creasing in (Λ,+∞), for some constant Λ ∈ R. Moreover, assume that there exist two constants
L > Λ, H > ν

2L
, a continuous function θ : R

+ → R
+ and a function λ ∈ Lp([−L,L]) with

1 � p � ∞, such that

+∞∫
r

1− 1
p

θ(r)
dr = +∞, (3)

∣∣f (t, x, y)
∣∣ � λ(t)θ

(
a(x)|y|) for a.e. |t | � L, every x ∈ I, every |y| � H. (4)

Finally, suppose that there exists a constant γ > 1 such that for every C > 0 there exist a func-
tion ηC ∈ L1(R) and a function KC ∈ W

1,1
loc ([0,+∞)), null in [0,L] and strictly increasing in

[L,+∞), such that:

∞∫ (
KC(t)

) 1
1−γ dt < +∞, (5)
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{
f (t, x, y) � −K ′

C(t)|y|γ ,

f (−t, x, y) � K ′
C(t)|y|γ for a.a. t � L, every x ∈ I, |y| � 2

(
M

m
C + d

)
(6)

and

∣∣f (
t, x, u(t)

)∣∣ � ηC(t)
for a.a. t ∈ R, every x ∈ I, and u ∈ W 1,1(R)

such that
∣∣u(t)

∣∣ � 2NC(t) + ∣∣α′(t)
∣∣ + ∣∣β ′(t)

∣∣, (7)

where

NC(t) := M

m

(
C1−γ + γ − 1

M
KC

(|t |))1/(1−γ )

.

Then, there exists a function x ∈ C1(R), with a(x)x′ ∈ W 1,1(R), such that⎧⎪⎨
⎪⎩

(
a
(
x(t)

)
x′(t)

)′ = f
(
t, x(t), x′(t)

)
a.e. t ∈ R,

α(t) � x(t) � β(t) for every t ∈ R,

x(−∞) = α(−∞), x(+∞) = β(+∞).

Proof. By (3), there exists a constant C > M
m

H � H such that

mC∫
MH

r1−1/p

θ(r)
dr > (Mν)

1− 1
p ‖λ‖p. (8)

Let us fix an integer n ∈ N and put In := [−n,n]. Let us introduce the truncation operator
T : W 1,1(In) → W 1,1(In) defined by

T (x) := Tx where Tx(t) := [
β(t) ∧ x(t)

] ∨ α(t). (9)

Of course, T is well defined and T ′
x(t) = x′(t) for a.a. t ∈ In such that α(t) < x(t) < β(t),

whereas T ′
x(t) = α′(t) for a.e. t such that x(t) � α(t), T ′

x(t) = β ′(t) for a.e. t such that
x(t) � β(t).

Moreover, consider the penalty function u : R
2 → R defined by u(t, x) := [x − β(t)]+ −

[x − α(t)]−. Of course, u(t, x) = 0 if α(t) � x � β(t).
For every x ∈ W

1,1
loc (R), put

Qx(t) := −(
2NC(t) + ∣∣α′(t)

∣∣ + ∣∣β ′(t)
∣∣) ∨ [

T ′
x(t) ∧ (

2NC(t) + ∣∣α′(t)
∣∣ + ∣∣β ′(t)

∣∣)]
and let us consider the following auxiliary boundary value problem on the compact interval
In = [−n,n], for n > L:

(
P∗

n

) { (
a
(
Tx(t)

)
x′(t)

)′ = f
(
t, Tx(t),Qx(t)

) + arctan
(
u
(
t, x(t)

))
, a.e. t ∈ In,

x(−n) = α(−n), x(n) = β(n).

Step 1. Let us now prove that if x ∈ C1(In) is a solution of problem (P∗
n), then α(t) � x(t) �

β(t) for all t ∈ In, hence Tx(t) ≡ x(t) and u(t, x(t)) ≡ 0.
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First we show that α(t) � x(t) for every t ∈ In. If t0 is such that x(t0) − α(t0) := min(x(t) −
α(t)) < 0, then t0 belongs to a compact interval [t1, t2] ⊂ In satisfying x(t1) − α(t1) = x(t2) −
α(t2) = 0 and x(t) − α(t) < 0 for every t ∈ (t1, t2). Hence, Tx(t) ≡ α(t) and Qx(t) ≡ α′(t) in
[t1, t2], then

(
a
(
α(t)

)
x′(t)

)′ = f
(
t, α(t), α′(t)

) + arctan
(
x(t) − α(t)

)
<

(
a
(
α(t)

)
α′(t)

)′ a.e. in (t1, t2).

Thus, the function a(α(t))(x′(t) − α′(t)) is strictly decreasing in (t1, t2), so we have
a(α(t))(x′(t) − α′(t)) < a(α(t0))(x

′(t0) − α′(t0)) = 0 for t ∈ (t0, t2), then also x′(t) − α′(t) < 0
in (t0, t2), a contradiction. Similarly one can show that x(t) � β(t) for every t ∈ In.

Step 2. Now we prove that if x ∈ C1(In) is a solution of problem (P∗
n), then |x′(t)| � NC(t)

for every t ∈ In and x′(t) � 0 in In \ [−L,L].
Since x ∈ C1([−L,L]) and x([−L,L]) ⊂ I , we can apply Lagrange theorem to deduce that

for some τ0 ∈ In we have

∣∣x′(τ0)
∣∣ = 1

2L

∣∣x(L) − x(−L)
∣∣ � supβ − infα

2L
< H < C.

We start by proving that |x′(t)| < C for every t ∈ [−L,L]. To this end, assume, by contradic-
tion, the existence of an interval J = (τ1, τ2) ⊂ (−L,L), such that H < |x′(t)| < C in J and
|x′(τ1)| = H, |x′(τ2)| = C or vice versa. Of course, x′(t) keeps constant sign in J ; assume now
x′(t) > 0 in J (the proof will proceed similarly if x′(t) < 0).

Since x′(t) < C for every t ∈ J , by the definition of (P∗
n) and assumption (4), for a.e. t ∈ J it

results

∣∣(a(
x(t)

)
x′(t)

)′∣∣ = ∣∣(a(
Tx(t)

)
x′(t)

)′∣∣ = ∣∣f (
t, x(t), x′(t)

)∣∣ � λ(t)θ
(
a
(
x(t)

)
x′(t)

)
.

Therefore, by Hölder inequality, if q is the conjugate exponent of p, we deduce

mC∫
MH

r1/q

θ(r)
dr �

τ2∫
τ1

(a(x(t))x′(t))1/q

θ(a(x(t))x′(t))
∣∣(a(

x(t)
)
x′(t)

)′∣∣dt �
τ2∫

τ1

(
a
(
x(t)

)
x′(t)

)1/q
λ(t)dt

�
( τ2∫

τ1

(
a
(
x(t)

)
x′(t)

)
dt

) 1
q

‖λ‖p � M
1
q ‖λ‖p

( τ2∫
τ1

x′(t)dt

) 1
q

� (Mν)
1
q ‖λ‖p

in contradiction with (8). Thus, we get |x′(t)| < C � M
m

C = NC(t) for every t ∈ [−L,L].
By assumption (6) and the definition of Qx , we deduce that (a(x(t))x′(t))′ � 0 for a.e. t � L.

So, if x′(t̄ ) < 0 for some t̄ ∈ [L,n) we have a(x(t))x′(t) � a(x(t̄ ))x′(t̄ ) < 0 for every t ∈
[t̄ , n] and then x′(t) < 0 for every t ∈ [t̄ , n], hence x(n) < x(t̄ ) � β(t̄ ) � β(n), a contradiction.
Similarly we can show that x′(t) � 0 for every t ∈ [−n,−L].

Observe now that if x′(t0) = 0 for some t0 ∈ [L,n), then x′(t) = 0 for every t ∈ [t0, n]. Indeed,
since x′(t) < NC(t) in a right neighborhood [t0, t0 + δ], by (6) we deduce (a(x(t))x′(t))′ =
f (t, x(t), x′(t)) � 0, i.e. a(x(t))x′(t) is decreasing in [t0, t0 + δ]. This implies that x′(t) � 0
in [t0, t0 + δ] and being x′(t) � 0 in [L,n], we conclude x′(t) = 0 in [t0, t0 + δ]. Therefore,
sup{t � n: x′(t) ≡ 0 in [t0, t]} = n.
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Let us now prove that |x′(t)| � NC(t) in In \[−L,L]. To this aim, let t̂ := sup{t > L: x′(τ ) �
NC(τ) in [L, t]}. If t̂ < n then x′(t̂ ) = NC(t̂ ) > 0 and 0 < x′(t) < 2NC(t) in a right neighbor-
hood [t̂ , t̂ + δ]. Moreover, by virtue of what observed above, we have x′(t) > 0 in [L, t̂ + δ].
Hence, we have (a(x(t))x′(t))′ = f (t, x(t), x′(t)) a.e. in [L, t̂ + δ] and by applying assump-
tion (6) we have

(
a
(
x(t)

)
x′(t)

)′ � −K ′
C(t)

∣∣x′(t)
∣∣γ � −K ′

C(t)

Mγ

(
a
(
x(t)

)
x′(t)

)γ
, a.e. in [L, t̂ + δ].

Then

1

1 − γ

[(
a
(
x(t)

)
x′(t)

)1−γ − (
a
(
x(L)

)
x′(L)

)1−γ ] =
t∫

L

(a(x(s))x′(s))′

(a(x(s))x′(s))γ
ds � −KC(t)

Mγ
,

for every t ∈ [L, t̄ + δ]. Hence,

(
a
(
x(t)

)
x′(t)

)1−γ �
(
a
(
x(L)

)
x′(L)

)1−γ + γ − 1

Mγ
KC(t) � (MC)1−γ + γ − 1

Mγ
KC(t),

i.e. x′(t) � NC(t) for every t ∈ [L, t̂ + δ], in contradiction with the definition of t̂ . The same
argument works in the interval [−n,−L].

Step 3. Let us now prove that problem (P∗
n) admits solutions for every n > L. To this aim, let

A : C1(In) → C(In), x �→ Ax , and F : C1(In) → L1(In), x �→ Fx , be the functionals defined by

Ax(t) := a
(
Tx(t)

)
, Fx(t) := f

(
t, Tx(t),Qx(t)

) + arctan
(
u
(
t, x(t)

))
.

As it is easy to check, by (7) the functionals are well defined and continuous. Moreover, if D is
a bounded subset of C1(In), i.e. there exists S > 0 such that ‖x‖C1(I ) � S, then for fixed ε > 0,
by the uniform continuity of a(·) in I , there exists δ = δ(ε) > 0 such that |a(ξ1) − a(ξ2)| < ε

whenever |ξ1 − ξ2| < δ. Therefore, putting ρ = δ
S

, if |t1 − t2| < ρ we have

∣∣Tx(t1) − Tx(t2)
∣∣ �

∣∣∣∣∣
t2∫

t1

∣∣x′(τ )
∣∣dτ

∣∣∣∣∣ � S|t1 − t2| < δ for every x ∈ D

and consequently |Ax(t1) − Ax(t2)| < ε for every x ∈ D, whenever |t1 − t2| < ρ.
Therefore, the functionals A and F satisfy the hypotheses (F1)–(F3) of Theorem 1. So, by

applying such a result with ν1 = α(−n) and ν2 = β(n), we obtain the existence of a function
un ∈ C1(In) such that a(un)u

′
n ∈ W 1,1(In) which is a solution of the problem (P∗

n). Moreover,
taking into account the properties proved in Steps 1 and 2, we infer that

(
a
(
un(t)

)
u′

n(t)
)′ = f

(
t, un(t), u

′
n(t)

)
a.e. t ∈ In

for every n ∈ N.
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Observe now that the sequence of solutions (un)n satisfies all the assumptions of Lemma 1,
with J = R, H(t) = NC and γ (t) = ηC(t), for t ∈ R, where C is the constant fixed at the begin-
ning of the proof of Theorem 2. So, by assertion (d) of such a lemma, we deduce the existence
of a solution x of equation (E) and from Corollary 1 we deduce the assertion. �
Remark 3. In view of the previous proof (see (8)), note that condition (3) can be weakened as
follows:

+∞∫
HM

r
1− 1

p

θ(r)
dr > (Mν)

1− 1
p ‖λ‖p. (10)

The following existence result is analogous to the previous one and covers the case when (6)
is fulfilled for γ = 1.

Theorem 3. Let all the assumptions of Theorem 2 be satisfied for γ = 1, with assumption (5)
replaced by the following one

∞∫
e− 1

M
KC(t) dt < +∞ (11)

and the function NC(t) replaced by

N∗
C(t) := M

m
Ce− 1

M
KC(|t |). (12)

Then the assertion of Theorem 2 holds.

Proof. The proof is the same of that of Theorem 2. The sole difference is in proving that x′(t) �
N∗

C(t) in In \ [−L,L]. Indeed, defining as before t̂ := sup{t > L: x′(τ ) � N∗
C(τ) in [L, t]}, we

deduce again (a(x(t))x′(t))′ = f (t, x(t), x′(t)) in a right neighborhood [t̂ , t̂ + δ] and x′(t) > 0
in [L, t̂ + δ]. Since γ = 1 in this case we get

(
a
(
x(t)

)
x′(t)

)′ � −K ′
C(t)

∣∣x′(t)
∣∣ � −K ′

C(t)

M

(
a
(
x(t)

)
x′(t)

)
, a.e. in [L, t̂ + δ],

then

a(x(t))x′(t)
a(x(L))x′(L)

= e

∫ t
L

(a(x(s))x′(s))′
(a(x(s))x′(s)) ds � e− 1

M
KC(t)

implying

a
(
x(t)

)
x′(t) � a

(
x(L)

)
x′(L)e− 1

M
KC(t) � MCe− 1

M
KC(t),

i.e. x′(t) � N∗
C(t) for every t ∈ [t̂ , t̂ + δ], in contradiction with the definition of t̂ . The same

argument works in the interval [−n,−L]. �
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Remark 4. Actually, as regards the asymptotic behavior of the solutions x found in the previous
two existence theorems, note that we showed it is constant or strictly increasing for |t | sufficiently
large.

As already mentioned above, the assumptions of the previous existence theorems are not
improvable in the sense that if the right-hand side f satisfies assumption (6) with the reversed
inequalities and the summability condition (5) (or (11)) does not hold, then problem (P) does not
admit solutions, as the following results state.

Theorem 4. Assume that there exist three constants L � 0, ρ > 0, γ > 1 and a positive strictly
increasing function K ∈ W

1,1
loc ([L,+∞)) satisfying

∞∫ (
K(t)

) 1
1−γ dt = +∞ (13)

such that one of the following pair of conditions holds:

f (t, x, y) � −K ′(t)|y|γ for a.e. t � L, every x ∈ [
ν−, ν+]

, |y| < ρ, (14)

or

f (t, x, y) � K ′(−t)|y|γ for a.e. t � −L, every x ∈ [
ν−, ν+]

, |y| < ρ. (15)

Moreover, assume that

tf (t, x, y) � 0 for a.e. |t | � L, every x ∈ R, |y| < ρ. (16)

Then, problem (P) can only admits solutions which are constant in [L,+∞) (when (14) holds)
or constant in (−∞,−L] (when (15) holds). Therefore, if both (14) and (15) hold and L = 0,
then problem (P) does not admit solutions. More precisely, no function x ∈ C1(R), with a(x)x′
almost everywhere differentiable, exists satisfying the boundary conditions and the differential
equation in (P).

Proof. Suppose that (14) holds (the proof is the same if (15) holds).
Let x ∈ C1(R), with a(x)x′ almost everywhere differentiable (not necessarily belonging to

W 1,1(R)), be a solution of problem (P). First of all, let us prove that limt→+∞x′(t) = 0.
Indeed, since x(+∞) = ν+ ∈ R, we have lim supt→+∞x′(t) � 0 and lim inft→+∞x′(t) � 0.

If lim inft→+∞x′(t) < 0, then there exists an interval [t1, t2] ⊂ [L,+∞) such that −ρ <

x′(t) < 0 in [t1, t2], x′(t2) > m
M

x′(t1). But by virtue of assumption (16) we deduce that
a(x(t))x′(t) is decreasing in [t1, t2] and then

x′(t2) � 1

M
a
(
x(t2)

)
x′(t2) � 1

M
a
(
x(t1)

)
x′(t1) � m

M
x′(t1),

a contradiction. So, necessarily lim inft→+∞x′(t) = 0.
Similarly, if lim supt→+∞x′(t) > 0, then there exists an interval [t1, t2] ⊂ [L,+∞) such that

0 � x′(t) < ρ in [t1, t2], x′(t1) < m x′(t2). Since a(x(t))x′(t) is decreasing in [t1, t2] we get

M
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x′(t1) � 1

M
a
(
x(t1)

)
x′(t1) � 1

M
a
(
x(t2)

)
x′(t2) � m

M
x′(t2),

a contradiction. So, limt→+∞x′(t) = 0 and we can define t∗ := inf{t � L: |x′(t)| < ρ in
[t,+∞)}.

Let us now prove that x′(t) � 0 for every t � t∗. Indeed, if x′(t̂ ) < 0 for some t̂ � t∗, being
a(x(t))x′(t) decreasing in [t∗,+∞), we get

x′(t) � 1

M
a
(
x(t)

)
x′(t) � 1

M
a
(
x(t̂ )

)
x′(t̂ ) � m

M
x′(t̂ ) < 0,

for every t � t̂ , in contradiction with the boundedness of x.
Let us define t̃ := inf{t � t∗: x(τ) � ν− in [t,+∞)} � t∗. Let us assume by contradiction

that x′(t̄ ) > 0 for some t̄ � t̃ . Put T := sup{t � t̄ : x′(τ ) > 0 in [t̄ , t]}, observe that T = +∞.
Indeed, if T < +∞, since 0 < x′(t) < ρ in [t̄ , T ], by (14) we have

(
a
(
x(t)

)
x′(t)

)′ = f
(
t, x(t), x′(t)

)
� −K ′(t)

(
x′(t)

)γ for a.e. t ∈ [t̄ , T ]. (17)

So, assuming without restriction ρ � 1, being γ > 1 we get

(
a
(
x(t)

)
x′(t)

)′ � −K ′(t)x′(t) � −K ′(t)
m̃

a
(
x(t)

)
x′(t)

where m̃ := minξ∈[x(t̄ ),x(T )] a(ξ). Then, integrating in [t, T ] with t < T we obtain (taking into
account that x′(T ) = 0)

a
(
x(t)

)
x′(t) �

T∫
t

K ′(τ )

m̃
a
(
x(τ)

)
x′(τ )dτ for every t ∈ (t̄ , T ],

so by the Gronwall’s inequality we deduce a(x(t))x′(t) � 0, i.e. x′(t) � 0 in the same interval,
in contradiction with the definition of T . Hence T = +∞.

Observe now that by (17) we get

1

1 − γ

[(
a
(
x(t)

)
x′(t)

)1−γ − (
a
(
x(t̄ )

)
x′(t̄ )

)1−γ ] =
t∫

t̄

(a(x(s))x′(s))′

(a(x(s))x′(s))γ
ds � 1

m̃γ

(
K(t̄ ) − K(t)

)

therefore, putting M̃ := maxξ∈[x(t̄ ),x(T )] a(ξ), for a.e. t � t̄ we have

M̃1−γ x′(t)1−γ �
(
a
(
x(t)

)
x′(t)

)1−γ �
(
a
(
x(t̄ )

)
x′(t̄ )

)1−γ + (γ − 1)

m̃γ

(
K(t) − K(t̄ )

)
then

x′(t) � 1
˜

((
a
(
x(t̄ )

)
x′(t̄ )

)1−γ + (γ − 1)

γ

(
K(t) − K(t̄ )

)) 1
1−γ

.

M m̃
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By virtue of (13) we deduce that x(+∞) − x(t̄ ) = ∫ +∞
t̄

x′(t)dt = +∞, in contradiction with
the boundedness of x.

Therefore, x′(t) ≡ 0 in [t̃ ,+∞) and by the definition of t̃ this implies t̃ = t∗. So, x′(t) ≡ 0 in
[t∗,+∞) and by the definition of t∗ this implies t∗ = L. �
Theorem 5. Let all the assumptions of Theorem 4 be satisfied, with γ = 1 and (13) replaced by

∞∫
e− 1

m̃
K(t) dt = +∞, (18)

where m̃ := minx∈[ν−,ν+] a(x). Then, the same assertion of Theorem 4 holds.

Proof. The proof proceeds exactly as that of Theorem 4 till the definition of T and the observa-
tion that T = +∞. Since 0 < x′(t) < ρ and ν− � x(t) � ν+ in [t̄ ,+∞), we have

(
a
(
x(t)

)
x′(t)

)′ = f
(
t, x(t), x′(t)

)
� −K ′(t)

(
x′(t)

)
for a.e. t � t̄

and then

log
a(x(t))x′(t)
a(x(t̄ ))x′(t̄ )

=
t∫

t̄

(a(x(s))x′(s))′

a(x(s))x′(s)
ds � 1

m̃

(
K(t̄ ) − K(t)

)

therefore, for a.e. t � t̄ we have

x′(t) � 1

M̃
a
(
x(t̄ )

)
x′(t̄ )e

1
m̃

(K(t̄ )−K(t))

where M̃ := maxx∈[ν−,ν+] a(x). By virtue of (18) we deduce that x(+∞) − x(t̄ ) =∫ +∞
t̄

x′(t)dt = +∞, in contradiction with the boundedness of x. Therefore, x′(t) ≡ 0 in [t̃ ,+∞)

and by the definition of t̃ this implies t̃ = t∗. So, x′(t) ≡ 0 in [t∗,+∞) and by the definition of t∗
this implies t∗ = L. �
Remark 5. Note that in the case γ > 1 the behavior of the non-linear function a(x) entering
in the differential operator of equation (E) does not influence the existence or non-existence of
solutions. Instead, in the case γ = 1 the maximum and the minimum attained by a(x) in [ν−, ν+]
are crucial parameters for the existence or the non-existence of solutions.

Remark 6. If the sign condition in (16) is satisfied with the reversed inequality, i.e. if

tf (t, x, y) � 0 for a.e. |t | � L, every x ∈ R, |y| < ρ, (19)

then also in this case it is possible to prove that limx→±∞x′(t) = 0 and x′(t) � 0 for |t | � L. So,
since ν− < ν+, when L = 0 problem (P) does not admit solutions.
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4. Criteria for right-hand side of the type f (t,x,y) = c(t, x)b(x,y)

In this section we present some operative criteria useful when the right-hand side has the
following product structure

f (t, x, y) = c(t, x)b(x, y).

As we will show, there is a strict link between the local behaviors of b(x, ·) at y = 0 and c(·, x)

at infinity which plays a key role for the existence or non-existence of heteroclinic solutions.
In what follows we assume that b is a continuous function satisfying

b(x, y) > 0 for every y 	= 0, b
(
ν−,0

) = b
(
ν+,0

) = 0

and c is a Carathéodory function satisfying

t · c(t, x) � 0 for a.e. |t | � t̄ , every x ∈ [
ν−, ν+]

(20)

for some t̄ � 0.
We investigate the solvability of the following boundary value problem

(P)

{(
a
(
x(t)

)
x′(t)

)′ = f
(
t, x(t), x′(t)

)
a.e. t ∈ R,

x(−∞) = ν−, x(+∞) = ν+

with functions x ∈ C1(R), such that a(x)x′ ∈ W 1,1(R).
We split the discussion into two subsections, according to the value of the exponent δ such

that |c(t, x)| � h|t |δ for some constant h > 0, as |t | → +∞.

4.1. Case δ > −1

The next result provides sufficient conditions for the existence, whereas the following one
states sufficient conditions for the non-existence of solutions.

Theorem 6. Suppose that there exists a function λ ∈ L
p

loc(R), 1 � p � +∞, such that∣∣c(t, x)
∣∣ � λ(t) for a.e. t ∈ R, every x ∈ [

ν−, ν+]
. (21)

Assume that there exist real constants −1 < δ1 � δ2, 0 < γ2 � γ1, such that

1 < γ1 < δ1 + 2 and γ2(δ1 + 1) > (γ1 − 1)(δ2 + 1) (22)

and for every x ∈ [ν−, ν+] we have

h1|t |δ1 �
∣∣c(t, x)

∣∣ � h2|t |δ2 , a.e. |t | > L, (23)

k1|y|γ1 � b(x, y) � k2|y|γ2 , whenever |y| < ρ, (24)

b(x, y) � k2|y|2− 1
p whenever |y| > L, (25)

for certain positive constants h1, h2, k1, k2, ρ,L > t̄ .
Then, problem (P) admits solutions.
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Proof. We will show that under these conditions, all the assumptions of Theorem 2 hold. First
observe that in this case the constant functions α(t) = ν− and β(t) = ν+, t ∈ R, are a pair of
monotone, ordered lower and upper solutions, so assumption (H1) holds.

Fixing H > max{L, ν+−ν−
2L

} and putting θ(r) := k2(
r
m

)
2− 1

p for r > 0, it is immediate to verify
the validity of conditions (3) and (4).

Let us now fix a constant C > 0 and put C̄ = 2M
m

C. Since b(x, y) > 0 for y 	= 0, denoted by
m̂C := min{b(x, y): x ∈ [ν−, ν+], ρ � |y| � C̄}, we have m̂C > 0. So, put

μC := min

{
m̂C

Cγ1
, k1

}

and

KC(t) :=
{

μC

∫ t

L
min{minx∈[ν−,ν+] c(−τ, x),−maxx∈[ν−,ν+] c(τ, x)}dτ for t � L,

0 for 0 � t � L.

By condition (21), we have KC ∈ W
1,1
loc ([0,+∞)) and due to (20) it is strictly increasing for

t � L.
Observe that by the definition of μC and (24), it follows that

b(x, y) � μC |y|γ1 for every x ∈ [
ν−, ν+]

, y ∈ [−C̄, C̄].

Therefore, by (20) we obtain

f (t, x, y) = c(t, x)b(x, y) � μCc(t, x)|y|γ1 � −K ′
C(t)|y|γ1

and

f (−t, x, y) = c(−t, x)b(x, y) � μCc(−t, x)|y|γ1 � K ′
C(t)|y|γ1

for a.a. t � L, every x ∈ [ν−, ν+] and every y ∈ [−C̄, C̄]. Then, condition (6) of Theorem 2
holds.

Now, from (23) it follows that h1μC |t |δ1 � K ′
C(t) for a.a. |t | � L. As a consequence, we have

KC(t) � h1μC

δ1 + 1

(|t |δ1+1 − Lδ1+1). (26)

Hence, for |t | � L we obtain

∞∫ (
KC(t)

) 1
1−γ dt �

(
h1μC

δ1 + 1

)1/(1−γ1)
∞∫ (|t |δ1+1 − Lδ1+1)1/(1−γ1) dt < +∞

since by (22) we have δ1 +1 > γ1 −1. Moreover, since lim|t |→+∞NC(t) = 0, a constant L∗
C > L

exists such that 2NC(t) � ρ for every |t | � L∗ .
C
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Let us define

ηC(t) :=
{

maxx∈[ν−,ν+] |c(t, x)| · max(x,y)∈[ν−,ν+]×[−C̄,C̄] b(x, y) if |t | � L∗
C,

h2k2|t |δ2(2NC(t))γ2 if |t | > L∗
C.

By (24) and (23), for every y ∈ W 1,1(R) such that |y(t)| � 2NC(t) for a.a. t ∈ R and every
x ∈ [ν−, ν+], it results

∣∣f (
t, x, y(t)

)∣∣ = ∣∣c(t, x)
∣∣b(

x, y(t)
)
� h2|t |δ2b

(
x, y(t)

)
� ηC(t),

so it remains to prove that ηC ∈ L1(R).
Obviously ηC ∈ L1([−L∗

C,L∗
C]). Moreover, when |t | > L∗

C , by (26) we have

0 < ηC(t) = h2k2|t |δ2

(
2

m

(
(MC)1−γ1 + (γ1 − 1)

Mγ1

|t |∫
L

∣∣kC(s)
∣∣ds

)1/(1−γ1)
)γ2

� h2k2|t |δ2

(
2

m

)γ2
(

(MC)1−γ1 + (γ1 − 1)h1μC

Mγ1(δ1 + 1)

(|t |δ1+1 − Lδ1+1))γ2/(1−γ1)

= C1|t |δ2
(
C2 + C3|t |δ1+1) −γ2

γ1−1

where Ci , i = 1,2,3, are constants and C1,C3 > 0. Therefore, there exists a positive constant
C4 such that

+∞∫
L∗

C

ηC(t)dt � C4

+∞∫
L∗

C

t
δ2− γ2(δ1+1)

γ1−1 dt < +∞

since by (22) we have γ2(δ1+1)
γ1−1 − δ2 > 1. An analogous argument holds for

∫ L∗
C−∞ ηC(t)dt , then

ηC ∈ L1(R). Therefore, Theorem 2 applies and guarantees the assertion of the present result. �
Theorem 7. Suppose that condition (20) holds for t̄ = 0 and let there exist real constants δ > −1,
γ > 0, Λ � 0, and a positive function �(t) ∈ L1([0,Λ]) such that

γ � δ + 2, (27)∣∣c(t, x)
∣∣ � λ1|t |δ for every x ∈ [

ν−, ν+]
, a.e. |t | > Λ, (28)

b(x, y) � λ2|y|γ for every x ∈ [
ν−, ν+]

, |y| < ρ, (29)∣∣c(t, x)
∣∣ � �

(|t |) for a.e. |t | � Λ,x ∈ [
ν−, ν+]

, (30)

for some positive constants λ1, λ2, ρ.
Then, problem (P) does not admit solutions.
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Proof. Put g(t) := �(|t |) for |t | � Λ and g(t) := λ1|t |δ for |t | > Λ. Moreover, set K(t) :=
λ2

∫ t

0 g(τ)dτ for t � 0. Of course, K(t) is a strictly increasing function belonging to

W
1,1
loc ([0,+∞)). Moreover, for every t � Λ we have

K(t) = λ2

Λ∫
0

�(τ)dτ + λ1λ2

t∫
Λ

τδ dτ = λ2

Λ∫
0

�(τ)dτ + λ1λ2

δ + 1

(
tδ+1 − Λδ+1).

So, since γ > 1 and δ + 1 > 0, we get

∞∫ (
K(t)

) 1
1−γ dt = +∞ ⇔

∞∫
t

δ+1
1−γ dt = +∞

and the last integral diverges owing to (27).
Moreover from (28) and (29) we obtain that (14) and (15) of Theorem 4 hold for L = 0 and

this concludes the proof. �
Remark 7. In most of the concrete situations, the link between the local behaviors of b(x, ·) at
y = 0 and c(·, x) at infinity, emphasized in Theorems 6 and 7 (see conditions (23), (24), (29), (28))
can be simplified.

Indeed, when the function c(t, x) has precise rate of growth (when δ > 0) or infinitesimal
order (when −1 < δ < 0) as |t | → +∞, we can assume δ1 = δ2 = δ in condition (23). In this
case, the second inequality in (22) reduces to γ2 > γ1 − 1.

So, if the infinitesimal order of b(x, y) as |y| → 0 is γ , for some γ < δ + 2, then put γ2 := γ ,
it is possible to find γ1 in such a way that conditions in (22) are satisfied and Theorem 6 applies.
On the other hand, when the infinitesimal order of b(x, y) as |y| → 0 is greater or equal than
δ + 2, then by Theorem 7 we deduce the non-existence of bounded solutions. In other words,
δ + 2 is a threshold value for the infinitesimal order of b(x, y) as |y| → 0, in order to have
bounded solutions.

Such considerations are precisely stated in the next result and the following remark.

Corollary 2. Let f (t, x, y) = h(t)g(x)b(y), where h ∈ L
p

loc(R), for some 1 � p � ∞, b is con-
tinuous in R and g is continuous and positive in [ν−, ν+].

Assume that b(0) = 0, b(y) > 0 for y 	= 0; t · h(t) � 0 for every t . Moreover, assume that

lim|t |→+∞
∣∣h(t)

∣∣|t |−δ = �1 ∈ (0,+∞) for some δ > −1, (31)

lim|y|→0
b(y)|y|−γ = �2 ∈ (0,+∞) for some γ > 0, (32)

lim|y|→+∞b(y)|y| 1
p

−2 = �3 ∈ [0,+∞). (33)

Then, problem (P) admits solutions if and only if γ < 2 + δ.
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Proof. Put c(t, x) := h(t)g(x). It is immediate to verify that assumptions (31) and (32) imply
the validity of (28) and (29) for suitable positive constants λ1, λ2,Λ,ρ. So, when γ � δ + 2
problem (P) does not admit solutions, as a consequence of Theorem 7.

Assume now γ < δ + 2 and prove that all the assumptions of Theorem 6 hold. To this aim,
first observe that both the conditions (21) and (25) are satisfied.

Moreover, observe that assumption (31) implies that condition (23) holds for δ1 = δ2 = δ and
suitable positive constants h1, h2,L.

Put γ2 := γ , since γ2 > 0 and γ2 < δ + 2, we can choose a value γ1 ∈ (1, δ + 2)∩ (γ2, γ2 + 1)

in such a way that the inequalities in (22) are satisfied and condition (24) holds. So, by applying
Theorem 6 we deduce that (P) admits solutions. �
Remark 8. The previous result remains true (as regards both the existence and the non-existence)
even if we replace assumption (32) with the following one

lim|y|→0
b(y)|y|−γ = 0 and lim|y|→0

b(y)|y|−(γ+ε) = +∞ for every ε > 0 (34)

with γ > 0. Indeed, if γ < δ + 2 we can put γ2 := γ and for every γ1 ∈ (1, δ + 2) ∩ (γ2, γ2 + 1)

conditions (22) and (24) hold. Moreover, also condition (29) is satisfied, so (P) admits solutions
if and only if γ < δ + 2.

Similarly, we can replace assumption (32) with the following one:

lim|y|→0
b(y)|y|−γ = +∞ and lim|y|→0

b(y)|y|−γ+ε = 0 for every ε > 0. (35)

In this case, if γ < δ + 2 we can put γ1 := γ and γ2 := γ − ε for ε < min{1, γ }. In this way,
conditions (22) and (24) are satisfied, and (P) is solvable. Instead, if γ > δ + 2, chosen ε in such
a way that γ − ε > δ + 2, condition (29) is verified with γ − ε and problem (P) does not admit
solutions.

Finally, we wish just to mention that analogous modifications could be made in assump-
tion (31) concerning the rate of growth (or infinitesimal order, according to the sign of δ) of h(t)

as |t | → +∞. We avoid to present them in detail, since the argument is very similar to that above
developed.

Example 1. Let f (t, x, y) := − 1
t
g(x)|t |α|y|γ √

1 + |y|β , with α,β, γ > 0 and g a generic con-
tinuous positive function. Note that assumption (31) is satisfied with δ = α − 1. Moreover, when
α � 1 then all the other assumptions of Corollary 2 hold with p = ∞ and γ + β � 2. Hence,
there exist solutions if and only if γ < α + 1.

Instead, when α < 1 then we have to take p < 1
1−α

and so condition (33) holds if γ + β <

α + 1. In this case, being γ < γ + β there exist solutions.

Example 2. Let f (t, x, y) := − 1
t

√|t ||y|α|log(1+|y|)|, with α < 3
2 . Chosen p ∈ ( 1

2−α
,2) all the

assumptions of Corollary 2 are satisfied, with δ = − 1
2 , γ = α + 1 and �3 = 0. So, we deduce that

if α < 1
2 there exist solutions, otherwise if 1

2 � α < 3
2 do not exist solutions.

The discussion in the previous examples holds whatever g(x) and a(x) may be.



C. Marcelli, F. Papalini / J. Differential Equations 241 (2007) 160–183 181
4.2. Case δ = −1

In order to treat such situations we will make use of Theorems 3 and 5. Contrary to the
previous case (δ1 > −1) in which the existence of solutions does not depend on the behavior
of the function a(x) appearing in the differential operator of equation (E), now a crucial role is
played by the values

M = max
x∈[ν−,ν+]

a(x), m = min
x∈[ν−,ν+]

a(x).

Theorem 8. Suppose that there exists a function λ ∈ L
p

loc(R), 1 � p � +∞, such that (21)
holds. Moreover, assume that there exist positive real constants h1, k1,μ with μ � 1, h1k1 > M ,
δ ∈ [−1,−1 + h1k1

M
μ), such that for every x ∈ [ν−, ν+] we have

k1|y| � b(x, y) � k2|y|2− 1
p , for every |y| � ρ; (36)

k1|y| � b(x, y) � k3|y|μ, whenever |y| < ρ; (37)

h1|t |−1 �
∣∣c(t, x)

∣∣ � h2|t |δ, a.e. |t | > L (38)

for certain positive constants h2, k2, k3, ρ,L > t̄ .
Then, problem (P) admits solutions.

Proof. As in the proof of Theorem 6, let us define θ(r) = k2(
r
m

)
2− 1

p ,

KC(t) :=
{

k1
∫ t

L
min{minx∈[ν−,ν+] c(−τ, x),−maxx∈[ν−,ν+] c(τ, x)}dτ for t � L,

0 for 0 � t � L,

and put

ηC(t) :=
{

maxx∈[ν−,ν+] |c(t, x)| · max(x,y)∈[ν−,ν+]×[−C̄,C̄] b(x, y) if |t | � L∗
C,

2h2k3|t |δ(ÑC(t))μ if |t | > L∗
C,

(39)

where ÑC(t) is the function defined in (12) (see Theorem 3) and L∗
C is such that 2ÑC(t) � ρ for

|t | � L∗
C .

Also in this case it is easy to verify that assumptions (21), (36) and (37) imply the validity
of conditions (3), (4), (6) for γ = 1, and (7). Moreover, note that since KC(t) � h1k1 log t

L
and

h1k1 > M , we have

∞∫
e− 1

M
KC(t) dt � L

h1k1
M

∞∫
t−

h1k1
M dt < +∞,

then condition (11) is satisfied. So, it remains to prove the summability of ηC(t) in R.
To this aim, when |t | is sufficiently large we have

0 < ηC(t) = 2h2k3|t |δ
(

M

m
C

)μ

e− μ
M

KC(|t |) � const.|t |δ− h1k1
M

μ.

Since δ < h1k1 μ − 1 we get ηC ∈ L1(R) and this concludes the proof. �

M
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In the previous result the requirement h1k1 > M is not merely technical, but it is essential, as
it will be clarified by the following non-existence result.

Theorem 9. Suppose that condition (20) holds for t̄ = 0 and assumption (30) is satisfied. More-
over, assume that there exist positive constants h1, k1 with h1k1 � m such that

∣∣c(t, x)
∣∣ � h1|t |−1, for every x ∈ R, a.e. |t | > Λ, (40)

b(x, y) � k1y, for every x ∈ R, 0 < y < ρ, (41)

for some positive constants Λ,ρ.
Then problem (P) does not admit solutions.

Proof. In this case, put K(t) := k1
∫ t

0 �(τ)dτ for t ∈ [0,Λ] and K(t) := ∫ Λ

0 �(τ)dτ +
h1k1(log t − logL) for t � Λ. Note that assumptions (14) and (15) are satisfied with γ = 1
and L = 0. Moreover,

∞∫
e− 1

m
K(t) dt = +∞ ⇔

∞∫
t−

1
m

h1k1 dt = +∞,

and the last equality holds since h1k1 � m. So, the assertion follows from Theorem 5. �
The next criterium is an immediate consequence of Theorems 8 and 9.

Corollary 3. Let f (t, x, y) = h(t)g(x)b(y), with h ∈ L
p

loc(R), for 1 � p � ∞, b continuous in
R and g continuous and positive in [ν−, ν+].

Assume that b(0) = 0, b(y) > 0 for y 	= 0 and th(t) � 0 for every t . Moreover, suppose that
b(y) � k1|y| for every y ∈ R and

lim|t |→+∞
∣∣th(t)

∣∣ = h1, lim|y|→0

b(y)

|y| = h2, lim sup
|y|→+∞

b(y)

|y|2− 1
p

< +∞

for some positive real constants h1, h2.
Then if h1k1 · minx∈[ν−,ν+]g(x) > M then problem (P) admits solutions; instead if

h1h2 · maxx∈[ν−,ν+]g(x) < m then (P) does not admit solutions.

Remark 9. Analogous considerations to those made in Remark 8 hold also in this case.

We present now some simple examples in which the previous corollary applies.

Example 3. Let

f (t, x, y) := −htg(x)|y|
√

1 + y2

1 + t4

where h > 0 and g is a generic continuous function, positive in [ν−, ν+]. Take a(x) ≡ 1 for every

x ∈ R. In this case put c(t) := −t (1+ t4)
1
2 and b(y) := |y|√1 + y2, it is immediate to check that
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all the assumptions of Corollary 3 are satisfied for p = +∞, h1 = h, k1 = h2 = 1 and μ = 2.
Then, if minx∈[ν−,ν+] g(x) > 1

h
problem (P) admits solutions, instead if maxx∈[ν−,ν+] g(x) < 1

h
then problem (P) does not admit solutions.

Example 4. Let f (t, x, y) = f (t, y) := − t

t2+1
ky2

arctan |y| for y 	= 0, defined by continuity at y = 0.

Also in this case all the assumptions of Corollary 3 hold for p = ∞, h1 = 1, k1 = h2 = k and
μ = 2. Hence, if k > 1 problem (P) admits solutions, instead if k < 1 problem (P) does not admit
solutions.
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