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Analyses of the three valence-quark bound-state problem in relativistic quantum field theory predict that 
the nucleon may be understood primarily as a Borromean bound-state, in which binding arises mainly 
from two separate effects. One originates in non-Abelian facets of QCD that are expressed in the strong 
running coupling and generate confined but strongly-correlated colour-antitriplet diquark clusters in both 
the scalar–isoscalar and pseudovector–isotriplet channels. That attraction is magnified by quark exchange 
associated with diquark breakup and reformation. Diquark clustering is driven by the same mechanism 
which dynamically breaks chiral symmetry in the Standard Model. It has numerous observable conse-
quences, the complete elucidation of which requires a framework that also simultaneously expresses the 
running of the coupling and masses in the strong interaction. Planned experiments are capable of vali-
dating this picture.
© 2015 Argonne National Laboratory and The Authors. Published by Elsevier B.V. This is an open access 

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The proton is the core of the hydrogen atom, lies at the heart 
of every nucleus, and has never been observed to decay; but it 
is nevertheless a composite object, whose properties and inter-
actions are determined by its valence-quark content: u + u + d, 
i.e. two up (u) quarks and one down (d) quark. So far as is now 
known [1], bound-states seeded by two valence-quarks do not ex-
ist; and the only two-body composites are those associated with a 
valence-quark and -antiquark, i.e. mesons. These features are sup-
posed to derive from colour confinement. Suspected to emerge in 
QCD, confinement is an empirical reality; but there is no univer-
sally agreed theoretical understanding.

Such observations lead one to a position from which the pro-
ton may be viewed as a Borromean bound-state, viz. a system 
constituted from three bodies, no two of which can combine to 
produce an independent, asymptotic two-body bound-state. In QCD 
the complete picture of the proton is more complicated, owing, in 
large part, to the loss of particle number conservation in quantum 
field theory and the concomitant frame- and scale-dependence of 
any Fock space expansion of the proton’s wave function [2–5]. 
Notwithstanding that, the Borromean analogy provides an instruc-
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tive perspective from which to consider both quantum mechani-
cal models and continuum treatments of the nucleon bound-state 
problem in QCD. It poses a crucial question: Whence binding be-
tween the valence quarks in the proton, i.e. what holds the proton 
together?

In numerical simulations of lattice-regularised QCD (lQCD) 
that use static sources to represent the proton’s valence-quarks, 
a “Y-junction” flux-tube picture of nucleon structure is produced, 
e.g. Refs. [6,7]. This might be viewed as originating in the three-
gluon vertex, which signals the non-Abelian character of QCD 
and is the source of asymptotic freedom [8–10]. Such results and 
notions would suggest a key role for the three-gluon vertex in 
nucleon structure if they were equally valid in real-world QCD 
wherein light dynamical quarks are ubiquitous. As will become 
evident, however, they are not; and so a different explanation of 
binding within the nucleon must be found.

2. DCSB and diquark correlations

Dynamical chiral symmetry breaking (DCSB) is another of QCD’s 
emergent phenomena; and contemporary theory indicates that 
it is responsible for more than 98% of the visible mass in the 
Universe [11,12]. We judge it probable that DCSB and confine-
ment, defined via the violation of reflection positivity by coloured 
Schwinger functions (see, e.g. Refs. [13–17] and citations thereof) 
have a common origin in the Standard Model; but this does not 
B.V. This is an open access article under the CC BY license 
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mean that DCSB and confinement must necessarily appear to-
gether. Models can readily be built that express one without the 
other, e.g. numerous constituent quark models express confine-
ment through potentials that rise rapidly with interparticle separa-
tion but nevertheless possess no ready definition of a chiral limit; 
and models of the Nambu–Jona-Lasinio type typically express DCSB 
but not confinement.

DCSB ensures the existence of nearly-massless pseudo-
Goldstone modes (pions), each constituted from a valence-quark 
and -antiquark whose individual Lagrangian current-quark masses 
are < 1% of the proton mass [18]. In the presence of these modes, 
no flux tube between a static colour source and sink can have 
a measurable existence. To verify this statement, consider such 
a tube being stretched between a source and sink. The poten-
tial energy accumulated within the tube may increase only until 
it reaches that required to produce a particle–antiparticle pair 
of the theory’s pseudo-Goldstone modes. Simulations of lQCD 
show [19,20] that the flux tube then disappears instantaneously 
along its entire length, leaving two isolated colour-singlet sys-
tems. The length-scale associated with this effect in QCD is r/σ �
(1/3) fm and hence if any such string forms, it would dissolve well 
within hadron interiors.

This discussion has exposed two corollaries of DCSB that are 
crucial in determining the observable features of the Standard 
Model. Another equally important consequence of DCSB is less 
well known. Namely, any interaction capable of creating pseudo-
Goldstone modes as bound-states of a light dressed-quark and 
-antiquark, and reproducing the measured value of their lep-
tonic decay constants, will necessarily also generate strong colour-
antitriplet correlations between any two dressed quarks contained 
within a nucleon. Although a rigorous proof within QCD cannot be 
claimed, this assertion is based upon an accumulated body of ev-
idence, gathered in two decades of studying two- and three-body 
bound-state problems in hadron physics, e.g. Refs. [21–35]. No re-
alistic counter examples are known; and the existence of such di-
quark correlations is also supported by simulations of lQCD [36,37].

The properties of diquark correlations have been charted. Most 
importantly, diquarks are confined. However, this is not true if 
the leading-order (rainbow-ladder, RL [23,38]) truncation is used 
to define the associated scattering problem [26]. Corrections to 
that simplest symmetry-preserving approximation are critical in 
quark–quark channels: they eliminate bound-state poles from the 
quark–quark scattering matrix but preserve the strong correla-
tions [23,27,28].

Additionally, owing to properties of charge-conjugation, a di-
quark with spin-parity J P may be viewed as a partner to the 
analogous J−P meson [21]. It follows that scalar, isospin-zero and 
pseudovector, isospin-one diquark correlations are the strongest; 
and whilst no pole-mass exists, the following mass-scales, which 
express the strength and range of the correlation and are each 
bounded below by the partnered meson’s mass, may be asso-
ciated with these diquarks [21,26,36,37]: m[ud]0+ ≈ 0.7–0.8 GeV, 
m{uu}1+ ≈ 0.9–1.1 GeV, with m{dd}1+ = m{ud}1+ = m{uu}1+ in the 
isospin symmetric limit. Realistic diquark correlations are also soft. 
They possess an electromagnetic size that is bounded below by 
that of the analogous mesonic system, viz. [39,40]:

r[ud]0+ � rπ , r{uu}1+ � rρ , (1)

with r{uu}1+ > r[ud]0+ . As in the meson sector, these scales are all 
set by that associated with DCSB.

It is worth remarking here that in a dynamical theory based 
on SU(2)-colour, diquarks are colour-singlets. They would thus ex-
ist as asymptotic states and form mass-degenerate multiplets with 
mesons composed from like-flavoured quarks. (These properties 
Fig. 1. Poincaré covariant Faddeev equation. � is the Faddeev amplitude for a baryon 
of total momentum P = pq + pd , where pq,d are, respectively, the momenta of the 
quark and diquark within the bound-state. The shaded area demarcates the Fad-
deev equation kernel: single line, dressed-quark propagator; �, diquark correlation 
amplitude; and double line, diquark propagator.

are a manifestation of Pauli–Gürsey symmetry [41,42].) Conse-
quently, the [ud]0+ diquark would be massless in the presence 
of DCSB, matching the pion, and the {ud}1+ diquark would be 
degenerate with the theory’s ρ-meson. Such identities are lost 
in changing the gauge group to SU(3)-colour; but clear and in-
structive similarities between mesons and diquarks nevertheless 
remain, as we have described above.

3. Diquarks in the nucleon

The bulk of QCD’s particular features and nonperturbative phe-
nomena can be traced to the evolution of the strong running 
coupling. Its unique characteristics are primarily determined by 
the three-gluon vertex: the four-gluon vertex does not contribute 
dynamically at leading order in perturbative analyses of matrix el-
ements; and nonperturbative continuum analyses of QCD’s gauge 
sector indicate that satisfactory agreement with gluon propagator 
results from lQCD simulations is typically obtained without refer-
ence to dynamical contributions from the four-gluon vertex, e.g.
Refs. [43–51]. The three-gluon vertex is therefore the dominant 
factor in producing the class of renormalisation-group-invariant 
running interactions that have provided both successful descrip-
tions of and predictions for many hadron observables [52–56]. It is 
this class of interactions that generates the strong attraction be-
tween two quarks which produces tight diquark correlations in 
analyses of the three valence-quark scattering problem.

The existence of tight diquark correlations considerably simpli-
fies analyses of the three valence-quark scattering problem and 
hence baryon bound states because it reduces that task to solv-
ing a Poincaré covariant Faddeev equation [22], depicted in Fig. 1. 
The three gluon vertex is not explicitly part of the bound-state 
kernel in this picture of the nucleon. Instead, one capitalises on 
the fact that phase–space factors materially enhance two-body in-
teractions over n ≥ 3-body interactions and exploits the dominant 
role played by diquark correlations in the two-body subsystems. 
Then, whilst an explicit three-body term might affect fine details of 
baryon structure, the dominant effect of non-Abelian multi-gluon 
vertices is expressed in the formation of diquark correlations. Such 
a nucleon is then a compound system whose properties and inter-
actions are primarily determined by the quark+diquark structure 
evident in Fig. 1.

It is important to highlight that both scalar–isoscalar and 
pseudovector–isotriplet diquark correlations feature within a nu-
cleon. Any study that neglects pseudovector diquarks is unre-
alistic because no self-consistent solution of the Faddeev equa-
tion in Fig. 1 can produce a nucleon constructed solely from a 
scalar diquark, e.g. pseudovector diquarks typically provide roughly 
150 MeV of attraction [32]. The relative probability of scalar ver-
sus pseudovector diquarks in a nucleon is a dynamical statement. 
Realistic computations predict a scalar diquark strength of approx-
imately 60% [29,34,35]. As will become clear, this prediction can 
be tested by contemporary experiments.

The quark+diquark structure of the nucleon is elucidated in 
Fig. 2, which illustrates the leading component of its Faddeev
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Fig. 2. Dominant piece in the nucleon’s eight-component Poincaré-covariant Faddeev 
amplitude: s1(|p|, cos θ). In the nucleon rest frame, this term describes that piece 
of the quark–diquark relative momentum correlation which possesses zero intrinsic
quark–diquark orbital angular momentum, i.e. L = 0 before the propagator lines are 
reattached to form the Faddeev wave function. Referring to Fig. 1, p = P/3 − pq

and cos θ = p · P/
√

p2 P 2. (The amplitude is normalised such that its U0 Chebyshev 
moment is unity at |p| = 0.)

amplitude: with the notation of Ref. [34], a representation of 
s1(|p|, cos θ), computed using the Faddeev kernel described there-
in. This function describes a piece of the quark+scalar–diquark 
relative momentum correlation. Notably, in this solution of a re-
alistic Faddeev equation there is strong variation with respect to 
both arguments. Support is concentrated in the forward direction, 
cos θ > 0, so that alignment of p and P is favoured; and the am-
plitude peaks at (|p| � MN/6, cos θ = 1), whereat pq ≈ P/2 ≈ pd
and hence the natural relative momentum is zero. In the antipar-
allel direction, cos θ < 0, support is concentrated at |p| = 0, i.e.
pq ≈ P/3, pd ≈ 2P/3. A realistic nucleon amplitude is evidently 
a complicated function; and significant structure is lost if simple 
interactions and/or truncations are employed in building the Fad-
deev kernel, e.g. extant treatments of a momentum-independent 
quark–quark interaction – a contact interaction – produce a Fad-
deev amplitude that is also momentum independent [57,58], a re-
sult exposed as unrealistic by Fig. 2 for any probe sensitive to the 
nucleon interior.

A nucleon (and kindred baryons) described by Fig. 1 is a Bor-
romean bound-state, the binding within which has two contri-
butions. One part is expressed in the formation of tight diquark 
correlations. That is augmented, however, by attraction generated 
by the quark exchange depicted in the shaded area of Fig. 1. 
This exchange ensures that diquark correlations within the nucleon 
are fully dynamical: no quark holds a special place because each 
one participates in all diquarks to the fullest extent allowed by 
its quantum numbers. The continual rearrangement of the quarks 
guarantees, inter alia, that the nucleon’s dressed-quark wave func-
tion complies with Pauli statistics.

It is impossible to overstate the importance of appreciating 
that these fully dynamical diquark correlations are vastly differ-
ent from the static, pointlike “diquarks” which featured in early 
attempts [59,60] to understand the baryon spectrum and to ex-
plain the so-called missing resonance problem [61–63]. Modern 
diquarks are soft, Eq. (1); and, as we shall explain, enforce certain 
distinct interaction patterns for the singly- and doubly-represented 
valence-quarks within the proton. On the other hand, the number 
of states in the spectrum of baryons obtained from the Faddeev
equation in Fig. 1 [64] is similar to that found in the three-
constituent quark model, just as it is in today’s lQCD calculations 
of this spectrum [65].

4. Nucleon current

The Poincaré-covariant photon–nucleon interaction current is:

Jμ(K , Q ) = ie ū(P f )

[
γμF1(Q 2) + σμν Q ν

2mN
F2(Q 2)

]
u(Pi) ,

(2)

where Pi (P f ) is the momentum of the incoming (outgoing) 
nucleon; Q = P f − Pi , K = (Pi + P f )/2: for elastic scattering, 
K · Q = 0, K 2 = −m2

N(1 + τN ), τN = Q 2/(4m2
N ). The functions 

F1,2 are, respectively, the Dirac and Pauli form factors: F1(0) ex-
presses the bound-state’s electric charge and F2(0), its anoma-
lous magnetic moment, κN=n,p . Notably, F2 ≡ 0 for any massless 
fermion [66]. The Sachs electric and magnetic form factors are, re-
spectively, G E = F1 − τN F2, G M = F1 + F2.

A nucleon described by the Faddeev equation in Fig. 1 is consti-
tuted from dressed-quarks, any two of which are always correlated 
as either a scalar or pseudovector diquark. If this is a veracious de-
scription of Nature, then the presence of these correlations must 
be evident in numerous empirical differences between the re-
sponse of the bound-state’s doubly- and singly-represented quarks 
to any probe whose wavelength is small enough to expose the di-
quarks’ nonpointlike character. Associating a monopole mass with 
the radii in Eqs. (1), it becomes apparent that this wavelength 
corresponds to momentum transfers Q 2 � m2

ρ , where mρ is the 
ρ-meson’s mass.

In connection with electromagnetic probes, it is now possi-
ble to check these predictions following the appearance of high 
precision data on the neutron’s electric form factor out to Q 2 =
3.4 GeV2 [67]. The Gn

E data are significant largely because they can 
be combined with existing empirical information on Gn

M , G p
E,M in 

order to produce a flavour separation of the proton’s Dirac and 
Pauli form factors [68,69], i.e. a chart of the separate contributions 
of u- and d-quarks to the proton’s form factors. Supposing s-quark 
contributions are negligible, as seems the case [70], and assuming 
charge symmetry, then

F u
1,2 = 2F p

1,2 + F n
1,2 , F d

1,2 = 2F n
1,2 + F p

1,2 . (3)

In the future, nucleon-to-resonance transition form factors might 
be used similarly [71–73], in which event numerous new windows 
on baryon structure would be opened.

Evaluation of the nucleon currents is detailed in Ref. [34] and 
the results we describe herein are informed by that analysis, which 
provides a unified description of the electromagnetic properties of 
the nucleon, �-baryon and Roper resonance [35]. However, since 
one of our primary aims is to elucidate those aspects of nucleon 
structure and properties that derive primarily from diquark clus-
tering and the interference between different types of clusters, we 
have performed new calculations, where appropriate, with novel 
configurations in the initial and final nucleon states. In what fol-
lows, it is therefore important to appreciate that the nucleon cur-
rent can unambiguously be decomposed as follows:

Jμ(K , Q ) =
∑

k,l=1,...,8

J kl
μ(K , Q ) , (4)

where k, l, respectively, label the diquark component in the com-
plete Faddeev wave function for the final and initial state. For ex-
ample, J 11

μ denotes that contribution to the current obtained when 
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Fig. 3. Computed ratio of proton electric and magnetic form factors. Curves: solid 
(black) – full result, determined from the complete proton Faddeev wave function 
and current; dot-dashed (red) – momentum-dependence of scalar-diquark contri-
bution [sum over k, l = 1, 2 in Eq. (4)]; dashed (green) – momentum-dependence 
produced by that piece of the scalar diquark contribution to the proton’s Faddeev 
wave function which is purely S-wave in the rest-frame [from J 11

μ in Eq. (4)]; dot-
ted (blue) – momentum-dependence of pseudovector diquark contribution [from 
the sum over k, l = 3, 8 in Eq. (4)]. All partial contributions have been renormalised 
to produce unity at Q 2 = 0. Data: circles (blue) [76]; squares (green) [77]; asterisks 
(brown) [78]; and diamonds (purple) [79].

one selects for both the final and initial state a scalar diquark cor-
relation with L = 0 in the nucleon’s rest frame, and the sum over 
k, l = 1, 2 expresses the complete scalar-diquark contribution.

5. Verifiable predictions of diquark pairing

Consider the ratio of proton electric and magnetic form factors, 
REM(Q 2) = μp G E (Q 2)/G M(Q 2), μp = G M(0). A series of exper-
iments [74–79] has determined that REM(Q 2) decreases almost 
linearly with Q 2 and might become negative for Q 2 � 8 GeV2. Our 
first goal is to clarify the origin of this behaviour.

A clear conclusion from Fig. 3 is that pseudovector diquark 
correlations have little influence on the momentum dependence 
of REM(Q 2). Their contribution is indicated by the dotted (blue) 
curve, which was obtained by setting the scalar diquark compo-
nent of the proton’s Faddeev amplitude to zero and renormalising 
the result to unity at Q 2 = 0. As apparent from the dot-dashed 
(red) curve, the evolution of REM(Q 2) with Q 2 is primarily de-
termined by the proton’s scalar diquark component. In this com-
ponent, the valence d-quark is sequestered inside the soft scalar 
diquark correlation so that the only objects within the nucleon 
which can participate in a hard scattering event are the valence 
u-quarks. (Any interaction with the d-quark attracts a 1/Q 2 sup-
pression because it is always locked into a correlation described by 
a meson-like form factor [39].)

It is known from Ref. [55] that scattering from the proton’s 
valence u-quarks is responsible for the momentum dependence 
of REM(Q 2). However, the dashed (green) curve in Fig. 3 reveals 
something new, i.e. components of the nucleon associated with 
quark–diquark orbital angular momentum L = 1 in the nucleon 
rest frame are critical in explaining the data. Notably, the pres-
ence of such components is an inescapable consequence of the 
self-consistent solution of a realistic Poincaré-covariant Faddeev 
equation for the nucleon. The visible impact on REM(Q 2) is primar-
ily driven by a marked reduction in F p

1 and a lesser effect on F p
2

when the L = 1 components are neglected. (This behaviour can be 
read from Figs. 3 and 4 in Ref. [29].) The effect can be understood 
once it is recalled that a Gordon identity may be used to re-express 
the γμ term in Eq. (2) as a sum of two equally important terms, 
viz. a convection current, as appears in the nonrelativistic case, and 
Fig. 4. Upper panel. Proton ratio R21(x) = xF2(x)/F1(x), x = Q 2/M2
N . Curves: solid 

(black) – full result, determined from the complete proton Faddeev wave func-
tion and current; dot-dashed (red) – momentum-dependence of the scalar-diquark 
contribution; dashed (green) – momentum-dependence of that component of the 
scalar diquark contribution to the proton’s Faddeev wave function which is purely 
S-wave in the rest-frame; dotted (blue) – momentum-dependence of the pseu-
dovector diquark contribution. Lower panel. Neutron ratio Rn

12(x) = F n
1(x)/[xF n

2 (x)]. 
Curve legend as in the upper panel. The data in both panels are drawn from 
Refs. [67,68,80–84].

a spin current, which leads to a gyromagnetic ratio of two for a 
pointlike fermion.

It must also be noted that the presence of diquark correlations 
and the use of a Poincaré covariant framework is insufficient to 
explain the data in Fig. 3. It is possible to incorporate both but 
still fail in this comparison, e.g. Faddeev equation studies based 
on a quark–quark contact interaction always generate a zero in 
the neighbourhood Q 2 � 4 M2

N [57,58], and are thus ruled-out by 
the data. As explained in Refs. [57,85], the flaw in those studies 
is the contact interaction itself, which generates a momentum-
independent dressed-quark mass. The existence and location of a 
zero in REM(Q 2) are a measure of nonperturbative features of the 
quark–quark interaction, with particular sensitivity to the running 
of the dressed-quark mass [85].

It is natural now to consider the proton ratio: R21(x) =
xF2(x)/F1(x), x = Q 2/M2

N , drawn in the upper panel of Fig. 4. 
As with REM , the momentum dependence of R21(x) is principally 
determined by the scalar diquark component of the proton. Fur-
thermore, the rest-frame L = 1 terms are revealed to be critical 
in explaining the data: the behaviour of the dashed (green) curve 
highlights the impact of omitting these components.

These remarks concerning Faddeev wave function components 
with quark–diquark orbital angular momentum L �= 0 in the 
nucleon rest frame are consistent with the relativistic constituent-
quark model study of Ref. [86] and the analysis of nucleon spin 
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Fig. 5. Upper panel. Flavour separation of the proton’s Dirac form factor as a function 
of x = Q 2/M2

N . Curves: solid – u-quark; and dashed d-quark contribution. Data: 
circles – u-quark; and squares – d-quark. Lower panel. Same for Pauli form factor. 
Data: Refs. [67,68,80–84].

structure in Ref. [87]. Both explain that at energies accessible 
now and for the foreseeable future, the nucleon is described by 
a complex wave function that can be characterised as possessing 
significant quark orbital angular momentum. This being the case, 
then helicity conservation can neither be a good approximation in 
the analysis of extant measurements nor a reliable guide to the 
interpretation of anticipated data. The same effect is manifest in 
analyses of the N → � transition [33,34].

The lower panel of Fig. 4 displays an analogous ratio for the 
neutron: Rn

12(x) = F n
1(x)/[xF n

2(x)]. Here the curve obtained in the 
absence of pseudovector diquarks does not resemble the data, de-
spite the fact that both the scalar-diquark-only and pseudovector-
diquark-only curves are finite at x = 0. This makes apparent that 
something more than orbital angular momentum and a running 
quark mass is important in understanding and explaining the be-
haviour of nucleon electromagnetic form factors; and whatever 
it is must distinguish between isospin partners. This might have 
been anticipated from Ref. [29] through a comparison of Figs. 6 
and 13 therein: whilst so-called precocious scaling was evident in 
R21(x), this was not the case for Rn

21(x). The additional feature, 
of course, is the presence of both scalar and pseudovector diquark 
correlations, which have different impacts on the doubly and singly 
represented valence-quarks.

Fig. 5 displays the proton’s flavour separated Dirac and Pauli 
form factors. The salient features of the data are: the d-quark 
contribution to F p

1 is far smaller than the u-quark contribution; 
F d

2/κd > F u
2 /κu on x < 2 but this ordering is reversed on x > 2; and 

in both cases the d-quark contribution falls dramatically on x > 3
whereas the u-quark contribution remains roughly constant. Our 
calculations are in semi-quantitative agreement with the empirical 
Fig. 6. Upper panel. u-quark contribution to the proton’s Dirac form factor as a func-
tion of x = Q 2/M2

N . Curves: solid (black) – complete contribution; dot-dashed (red) 
– scalar-diquark contribution; dotted (blue) – pseudovector diquark contribution. 
Lower panel. d-quark contribution to the proton’s Dirac form factor. Curve legend 
same as upper panel. Data: Refs. [67,68,80–84].

data. They reproduce the qualitative behaviour and also predict a 
zero in F d

1 at x � 7.
It is natural to seek an explanation for the pattern of behaviour 

in Fig. 5. We have emphasised that the proton contains scalar and 
pseudovector diquark correlations. The dominant piece of its Fad-
deev wave function is u[ud]; namely, a u-quark in tandem with a 
[ud] scalar correlation, which produces 62% of the proton’s normal-
isation [88]. If this were the sole component, then photon–d-quark 
interactions within the proton would receive a 1/x suppression 
on x > 1, because the d-quark is sequestered in a soft correla-
tion, whereas a spectator u-quark is always available to participate 
in a hard interaction. At large x = Q 2/M2

N , therefore, scalar di-
quark dominance leads one to expect F d ∼ F u/x. Available data 
are consistent with this prediction but measurements at x > 4
are necessary for confirmation. Furthermore, as first remarked in 
Refs. [89,90], scalar diquark correlations cannot be the entire ex-
planation because they alone cannot produce a zero in F d

1 .
Consider the images in Fig. 6, which expose the relative 

strength of scalar and pseudovector correlations in the flavour 
separated form factors. The upper panel shows that whilst the 
scalar diquark component of the proton is the dominant determin-
ing feature of F u

1 , i.e. in connection with the doubly represented 
valence-quark, the pseudovector component nevertheless plays a 
measurable role.

In the case of F d
1 (lower panel, Fig. 6) the pseudovector correla-

tion provides the leading contribution. The proton’s pseudovector 
component appears in two combinations: u{ud} and d{uu}. The 
latter involves a hard d-quark and is twice as probable as the 
former (isospin Clebsch–Gordon algebra). The presence of pseu-
dovector diquarks in the proton therefore guarantees that valence 
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Fig. 7. Upper panel. u-quark contribution to the proton’s Pauli form factor as a func-
tion of x = Q 2/M2

N . Curves: solid (black) – complete contribution; dot-dashed (red) 
– scalar-diquark contribution; dotted (blue) – pseudovector diquark contribution. 
Lower panel. d-quark contribution to the proton’s Pauli form factor. Curve legend 
same as upper panel. Data: Refs. [67,68,80–84].

d-quarks will always be available to participate in a hard scattering 
event. An important observation is that F d

1 possesses a zero be-
cause a zero is present in each of its separated contributions. (This 
is evident in Ref. [29], discussion of Fig. 3, lower-right panel.) The 
location of the predicted zero therefore depends on the strength of 
interference with the scalar diquark part of the proton. Hence, like 
the ratios of valence-quark parton distribution functions at large 
Bjorken-x [87,91], the location of the zero in F d

1 is a measure of the 
relative probability of finding pseudovector and scalar diquarks in 
the proton: with all other things held equal, the zero moves toward 
x = 0 as the probability of finding a pseudovector diquark within 
the proton increases. Empirical verification of a zero in F d

1 would 
be definitive evidence that the “precocious scaling” of R21(x) is ac-
cidental, existing only on a narrow domain because of fortuitous 
cancellations amongst the many scattering diagrams involved in 
expressing the current of a proton comprised from tight quark–
quark correlations.

In Fig. 7 we draw analogous figures for the proton’s flavour-
separated Pauli form factor. Plainly, F u

2 is far more sensitive to 
interference between scalar and pseudovector diquark correlations 
than F u

1 . On the other hand, F d
1,2 exhibit similar patterns of inter-

play between scalar and pseudovector diquarks.
The information contained in Figs. 5–7 provides clear evi-

dence in support of the notion that many features in the mea-
sured behaviour of nucleon electromagnetic form factors are pri-
marily determined by the presence of strong diquark correla-
tions in the nucleon. Importantly, whilst inclusion of a “pion 
cloud” can potentially improve quantitative agreement with data, 
it does not qualitatively affect the salient features of the form fac-
tors [58,92].
6. Summary

We explained how the emergent phenomenon of dynamical 
chiral symmetry breaking ensures that Poincaré covariant analy-
ses of the three valence-quark scattering problem in continuum 
quantum field theory yield a picture of the nucleon as a Bor-
romean bound-state, in which binding arises primarily through the 
sum of two separate contributions. One involves aspects of the 
non-Abelian character of QCD that are expressed in the strong 
running coupling and generate tight, dynamical colour-antitriplet 
quark–quark correlations in the scalar–isoscalar and pseudovector–
isotriplet channels. This attraction is magnified by quark exchange 
associated with diquark breakup and reformation, which is re-
quired in order to ensure that each valence-quark participates in 
all diquark correlations to the complete extent allowed by its quan-
tum numbers.

Combining these effects, one arrives at a properly antisym-
metrised Faddeev wave function for the nucleon and is positioned 
to compute a wide range of observables. Capitalising on this, we 
illustrated and emphasised that numerous empirical consequences 
derive from: Poincaré covariance, which demands the presence of 
dressed-quark orbital angular momentum in the nucleon; the be-
haviour of the strong running coupling as expressed, for instance, 
in the momentum-dependence of the dressed-quark mass; and 
the existence of strong electromagnetically-active scalar and pseu-
dovector diquark correlations within the nucleon, which ensure 
marked differences between properties associated with doubly-
and singly-represented valence-quarks. Planned experiments are 
therefore capable of validating the proposed picture of the nucleon 
and placing tight constraints, e.g. on the rate at which dressed-
quarks shed their clothing and transform into partons, and the 
relative probability of finding scalar and pseudovector diquarks 
within the nucleon.
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