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SUMMARY

Aerobic glycolysis (the Warburg effect) is a core hall-
mark of cancer, but the molecular mechanisms
underlying it remain unclear. Here, we identify an
unexpected central role for mTORC2 in cancer meta-
bolic reprogramming where it controls glycolytic
metabolism by ultimately regulating the cellular level
of c-Myc. We show that mTORC2 promotes inacti-
vating phosphorylation of class IIa histone deacety-
lases, which leads to the acetylation of FoxO1 and
FoxO3, and this in turn releases c-Myc from a sup-
pressive miR-34c-dependent network. These central
features of activated mTORC2 signaling, acetylated
FoxO, and c-Myc levels are highly intercorrelated in
clinical samples and with shorter survival of GBM
patients. These results identify a specific, Akt-inde-
pendent role for mTORC2 in regulating glycolytic
metabolism in cancer.

INTRODUCTION

Metabolic reprogramming is a core hallmark of cancer (Ward and

Thompson, 2012). Cancer cells convert the majority of their

glucose into lactate, providing a supply of glycolytic intermedi-

ates as carbon-containing precursors for macromolecular

biosynthesis. This biochemical adaptation (the Warburg effect)

occurs even in the presence of sufficient oxygen to support

oxidative phosphorylation (Dang, 2012b; Koppenol et al., 2011;

Vander Heiden et al., 2009; Warburg, 1956) and enables cancer

cells to meet the coordinately elevated anabolic and energetic

demands imposed by rapid tumor growth (Tong et al., 2009). Un-
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covering the molecular circuitry by which the Warburg effect is

activated and maintained may provide new insights into cancer

pathogenesis that might be exploited through identification of

new drug targets or detection of drug resistance mechanisms.

c-Myc is a critical regulator of cancer cell metabolism,

including the Warburg effect (Dang et al., 2009). Here, we report

an unexpected Akt-independent role for mTOR complex 2

(mTORC2) in regulating c-Myc levels and inducing metabolic

reprogramming in glioblastoma (GBM), the most common and

lethal form of brain cancer. We show that mTORC2 is required

for the growth of GBM cells in glucose, but not galactose, and

demonstrate that this is mediated by regulating the intracellular

level of c-Myc. mTORC2 is shown to control these levels by

Akt-independent phosphorylation of class IIa histone deacety-

lases (HDACs), which leads to the acetylation of FoxO1 and

FoxO3, causing release of c-Myc from a suppressive miR-34c-

dependent network. The net consequence of this series of

events is the conferral of resistance to phosphatidylinositol 3-

kinase (PI3K) and Akt inhibitor in vivo and shorter survival in

patients.

RESULTS

mTORC2 Is Required for GBM Growth in Glucose
through Myc-Dependent, Akt-Independent Signaling
To determine the role of mTORC2 in regulating glycolytic meta-

bolism, we performed genetic depletion ofmTORC2 using Rictor

shRNA in GBM cells expressing EGFRvIII, a commonly mutated

oncogene in GBM (Cancer Genome Atlas Research Network,

2008). EGFRvIII potently activates mTORC2 (p-Akt S473 and

p-NDRG1 T346; Tanaka et al., 2011) and promotes glycolytic

gene expression, tumor cell proliferation, and aerobic glycolysis

(Babic et al., 2013; Guo et al., 2009; Figures S1A–S1C available

online). In a dose-dependent fashion, Rictor shRNA knockdown

suppressed the ability of GBM cells to grow in glucose, the effect
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of which became apparent by day two, with increasing magni-

tude of effect by day three. In contrast, control and Rictor knock-

down GBM cells displayed a similar proliferation rate by day

three grown in galactose, a medium that reduces glycolytic

flux and forces cells to rely onmitochondrial oxidative phosphor-

ylation (Finley et al., 2011; Marroquin et al., 2007; Figure 1A).

Further, Rictor overexpression rendered GBM cells exquisitely

vulnerable to glucose deprivation or treatment with the glycolytic

inhibitor 2-Deoxy-D-glucose (2-DG) (Figure 1B). Rictor shRNA

knockdown also suppressed glycolytic gene expression (Figures

1C and 1D); significantly inhibited glucose consumption, lactate

production, glutamine uptake, and glutamate secretion (Figures

1E andS1E); and limited tumor cell proliferation in an in vivoGBM

xenograft model (Figure 1D). These results demonstrate that

mTORC2 promotes glycolysis, enhancing the ability of GBM

cells to grow in glucose, but also making them more dependent

on glycolysis for survival.

c-Myc siRNA knockdown phenocopied the effect of mTORC2

genetic depletion on glycolytic gene expression (Figure S1D),

raising thepossibility thatmTORC2controlsGBMglycolyticmeta-

bolism through c-Myc. Rictor siRNA knockdown suppressed

c-Myc expression, whereas Rictor overexpression potently

enhanced mTORC2 signaling and resulted in elevated c-Myc

protein levels (Figure 1H). Most importantly, c-Myc siRNA knock-

down completely abrogated the inhibitory effect of mTORC2

genetic depletion on glycolysis (Figures 1F and S1F). HIF-1a is

also implicated as a key regulator of the glycolytic phenotype in

cancer (Kaelin and Ratcliffe, 2008; Tong et al., 2009) and has

been reported to be regulated by mTOR signaling (Hudson

et al., 2002). In contrast to c-Myc, genetic depletion of HIF-1a by

siRNA knockdown did not alter the inhibitory effect of mTORC2

genetic depletion on glucose consumption, lactate production,

glutamine uptake, and glutamate secretion (Figures 1G and

S1G). Taken together, these results demonstrate that mTORC2

regulates glycolytic metabolism in GBM cells through c-Myc.

mTORC2 is thought to control glycolytic metabolism through

Akt (Dang, 2012b; Hagiwara et al., 2012; Plas and Thompson,

2005). However, Rictor knockdown almost completely sup-

pressed c-Myc expression, whereas the effect of Akt or Raptor

(mTORC1) depletion on c-Myc levels was modest (Figure 1I).

These results raised the possibility that mTORC2 regulates

c-Myc and resultant glycolytic metabolism in GBM cells inde-

pendent of Akt or mTORC1.

mTORC2 Regulates c-Myc Level and Glycolysis through
FoxO Acetylation
To identify an Akt-independent mechanism by which mTORC2

could regulate glycolytic metabolism, we examined two post-

translational modifications of the FoxO family of transcription

factors. Inactivating phosphorylation by Akt and subsequent

nuclear exclusion of FoxOs is a very well-described mechanism

by which PI3K-activated tumor cells increase glycolysis (Biggs

et al., 1999; Dang, 2012b), potentially by relieving suppression

of c-Myc (Dang, 2012a; Ferber et al., 2012; Peck et al., 2013).

We reasoned that an alternative posttranslational modification

might be responsible for the Akt-independent regulation of

FoxOs by mTORC2.

Pharmacologic inhibition of PI3K or Akt potently decreased

FoxO phosphorylation, as expected (Figure 2A). However, sur-
Cell M
prisingly, elevated levels of acetylated FoxO, as well as

increased expression of c-Myc, were detected using validated

anti-acetyl-FoxO1 antibodies in GBM cells treated with

LY294002 (pan-PI3K inhibitor) or Akti-1/2 (Akt inhibitor), raising

the possibility of compensatory feedback regulation to main-

tain c-Myc expression through FoxO acetylation (Figure 2A).

By an immnoprecipitation (IP) analysis, we determined that

genetic depletion of mTORC2 by Rictor shRNA knockdown

decreased the level of acetylated FoxO1 and FoxO3 (Figure 2B).

Rictor knockdown also increased the formation of FoxO-DNA

complexes (Figure 2C), enhanced FoxO target gene expres-

sion (Figure S2A), and regulated c-Myc and glycolytic gene

expression in a FoxO-dependent fashion (Figures S2D and

S2E). Conversely, Rictor overexpression increased the level

of FoxO acetylation (Figure S2B) and suppressed the for-

mation of FoxO-DNA complexes (Figure 2C). Taken together,

these results suggest that mTORC2 controls c-Myc expres-

sion and glycolytic metabolism in GBM by regulating FoxO

acetylation.

To better understand the role of FoxO acetylation in regulating

mTORC2-dependent glycolytic metabolism, we employed a

panel of FoxO plasmids that are mutated in key phosphorylation

and/or acetylation sites (Biggs et al., 1999; Brunet et al., 2004;

Nakamura et al., 2000; van der Horst and Burgering, 2007;

Zhao et al., 2010; Figure 2D). These strategic constructs enabled

us to compare the relative role of each posttranslational modifi-

cation in regulating glycolytic metabolism. As expected, a phos-

phorylation-resistant mutant (FoxO1-3A), as well as another

phosphorylation-resistant mutant (FoxO3-TM; data not shown),

localized to the nucleus, suppressed c-Myc expression, and

induced tumor cell apoptosis (Figures 2D and 2E). An acetyla-

tion-resistant mutant (FoxO1-5KR) and an analogous FoxO3

mutant (FoxO3-4KR; data not shown), were also localized to

the nucleus, similarly suppressing c-Myc expression and

inducing GBM cell apoptosis (Figures 2D and 2E), thus suggest-

ing that either posttranslational modification of FoxO could regu-

late c-Myc expression. Therefore, we introduced a double

mutant bearing residues that induce phosphorylation resistance

and additional residues that mimic constitutive acetylation. This

FoxO1-3A-5KQ construct, which was excluded from the nu-

cleus, partially restored c-Myc levels and suppressed apoptosis

induced by the FoxO1-3A mutant (Figure S2C). These results

suggest a dominant role for FoxO acetylation relative to phos-

phorylation in regulating c-Myc and survival in GBM cells and

suggest a dual-pronged mechanism of FoxO regulation that is

conferred through two different posttranslational modifications.

To determine whether FoxO acetylation was a critical determi-

nant of the glycolytic phenotype of GBM cells, we assessed

the impact of the acetylation-resistant mutant on glycolysis.

Introduction of the FoxO1-5KR acetylation-resistant mutant

decreased glycolysis, inhibiting glucose and glutamine uptake,

and suppressed the secretion of lactate and glutamate (Fig-

ure 2F). Importantly, this inhibitory effect of the FoxO1-KR

mutant on glycolysis was completely abrogated by c-Myc siRNA

(Figure 2F). Further, upregulation of c-Myc bymTORC2 was also

completely blocked by the FoxO1-5KR mutant (Figure 2G).

Taken together, these results demonstrate that mTORC2 regu-

lates c-Myc expression and glycolysis in GBM cells through

FoxO acetylation.
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Figure 1. mTORC2 Is Required for GBM Growth in Glucose through c-Myc

(A) Growth curves of scramble or Rictor knockdown (KD) U87-EGFRvIII cells, cultured in media containing glucose or galactose. Error bars, ± SD. Immunoblot

showing the verification of Rictor KD in U87-EGFRvIII cells.

(legend continued on next page)
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mTORC2 Controls FoxO Acetylation through Class IIa
HDACs, Independent of Akt
Acetylation of FoxOs is controlled, in part, through the balance

between histone acetyltransferases (HATs) and HDACs (van

der Horst and Burgering, 2007; Mihaylova et al., 2011; Wang

et al., 2011). Gene expression microarray analysis identified

only two genes from the HAT and HDAC families that were

differentially expressed, HDAC4 and HDAC5 (class IIa HDACs),

which were both significantly lower in EGFRvIII-expressing tu-

mors with elevated mTORC2 signaling (Figure S3A). However,

their level of downregulation in our cellular system was modest.

Therefore, we focused on other, potentially more GBM-relevant

mechanisms of regulation, including posttranslational modifi-

cation (Mihaylova et al., 2011). We tested the possibility that

mTORC2-dependent FoxO acetylation was mediated through

inactivating phosphorylation of class IIa HDACs. Genetic deple-

tion of mTORC2 with Rictor siRNA suppressed class IIa HDAC

phosphorylation, concomitant with inhibition of FoxO acetyla-

tion and loss of c-Myc expression (Figure 3A). Conversely,

Rictor overexpression markedly enhanced HDAC4, HDAC5,

and HDAC7 phosphorylation (Figure 3B). Importantly, genetic

depletion of Akt or Raptor (mTORC1) using siRNA knockdowns

did not suppress class IIa HDAC phosphorylation or regulate

levels of acetylated FoxO and c-Myc. Further, across a panel

of GBM cell lines, the level of phosphorylation of HDAC4 was

correlated with mTORC2 signaling (Figures 3C, S3B, and

S3C). Additionally, the expression level of class IIa HDACs is

inversely correlated with their phosphorylation status (Figures

3C and S3B), and future studies will be necessary to assess

the possibilities that EGFR/mTORC2 signaling controls the level

of class IIa HDACs by destabilizing them through phosphory-

lation (Potthoff et al., 2007) or decreasing their transcription

(Figure S3A). These results demonstrate a specific role for

mTORC2 in regulating class IIa HDAC phosphorylation in

GBM that is independent of Akt. Notably, this mTORC2-

HDAC-FoxO-Myc axis was also identified in other cancer

types. In EGFR-mutant H1650 non-small-cell lung cancer cells,

Rictor knockdown suppressed HDAC4 phosphorylation and

abrogated expression of acetylated FoxO and c-Myc (Fig-

ure 3D). Further, pharmacological inhibition of Akt, mTORC1,

and mTORC2 in H1650 cells, as well as in A549 non-small-

cell lung cancer cells and HeLa cervical cancer cells, confirmed

that suppression of mTORC2 signaling correlated with loss of

FoxO acetylation and suppression of c-Myc and that these ef-

fects were clearly Akt independent (Figure S3D). These results

do not exclude a role of mTORC1 in controlling c-Myc levels

in other cancer types, but rather indicate that the mTORC2-

dependent, Akt-independent, Myc-dependent pathway identi-

fied here may not be limited to GBM, but may be active in a

broader range of cancer subtypes.
(B) Cell deaths of GFP- or Rictor-overexpressing U87 cells after 48 hr treatment w

(2-DG, 10 mM). Immunoblot showing the verification of Rictor overexpression in

(C) mRNA levels of glycolysis and pentose phosphate pathway (PPP) enzymes in

(D) Cell-based immunohistochemical analysis for glycolytic enzymes and a prolife

shRNA (n = 3). Scale bar, 50 mm. NC denotes the averaged staining intensity ob

(E–G) Relative glucose consumption and lactate production in control versus Ric

(H) Biochemical analysis of c-Myc expression for Rictor overexpression in U87 c

(I) Immunoblot analysis of c-Myc in U87-EGFRvIII cells with indicated siRNAs re

All error bars, except growth curves (A), SEM. See also Figure S1.
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We next assessed the dependence of GBM cells on class IIa

HDACs for regulation of FoxO acetylation and Myc expression.

Knockdown of class IIa HDACs increased FoxO acetylation

and c-Myc expression (Figure 3E), impairing FoxO transcrip-

tional activity (Figure 3F). Genetic depletion of class IIa HDACs

with siRNA knockdown, or pharmacological inhibition of class

IIa HDACs, abrogated the effect of Rictor knockdown on

c-Myc expression (Figures S3E and S3F), indicating that

mTORC2 regulates c-Myc through class IIa HDACs. Further,

the acetylation-resistant FoxO1-5KR mutant prevented c-Myc

upregulation in response to knockdown of class IIa HDACs (Fig-

ure 3G), confirming that class IIa HDACs regulate c-Myc through

FoxO acetylation. More importantly, knockdown of class IIa

HDACs promoted GBM cell proliferation, which was reversed

by c-Myc codepletion (Figure 3H). Taken together, the findings

demonstrate that inactivating phosphorylation of class IIa

HDACs bymTORC2 controls FoxO acetylation and c-Myc levels,

promoting GBM proliferation.

Acetylated FoxO Regulates c-Myc through miR-34c
FoxOs antagonize c-Myc (Dang, 2012a; Ferber et al., 2012; Peck

et al., 2013), possibly by increasing the expression of miR-145

(Gan et al., 2010) and miR-34c (Kress et al., 2011), limiting

c-Myc mRNA stability and translation. In GBM cells, miR-145

and miR-34c levels were both suppressed by FoxO1/FoxO3

knockdown (Figure 4A), and introduction of miR-34c, miR-145,

or their anti-miR constructs demonstrated that these two micro-

RNAs regulate c-Myc levels in GBM cells (Figure 4B). To deter-

mine whether these microRNAs are independently regulated

by differential posttranslational modifications of FoxO, we took

advantage of the FoxO phosphorylation and acetylation mu-

tants. Introduction of the FoxO phosphorylation-resistant mutant

(FoxO1-3A) into GBM cells upregulated expression of miR-145,

but not miR-34c (Figure 4C). In contrast, introduction of the acet-

ylation-resistant mutant (FoxO1-5KR) increased the expression

of miR-34c, but not miR-145 (Figure 4C). Chromatin immunopre-

cipitation (ChIP) analysis further showed that the FoxO1-5KR

acetylation-resistant mutant was preferentially enriched in the

miR-34c promoter regions, but not in the miR-145 promoter

region (Figure 4D), and the decrease in c-Myc expression in

response to the FoxO1-5KR acetylation-resistant mutant was

reversed by anti-miR-34c, but not by anti-miR-145 (Figure 4E).

Furthermore, mTORC2 activation resulted in a decrease in

miR-34c expression, but not miR-145 expression (Figure 4F),

while Rictor knockdown partially restored the suppression of

c-Myc by anti-miR-34c, but not by anti-miR-145 (Figure 4G).

The effect of anti-miR-34c on c-Myc expression in the setting

of Rictor depletion is limited, suggesting that, in addition to the

miRNA regulation, there may exist other functions of Rictor in

control of c-Myc, considering the fact that the expression and
ith glucose deprivation (Gluc�) or the glycolytic inhibitor, 2-Deoxy-D-glucose

U87 cells.

control or Rictor KD U87-EGFRvIII cells.

rative marker Ki-67 in U87-EGFRvIII xenograft tumors with scramble or Rictor

tained by negative control of each sample.

tor KD U87-EGFRvIII cells (E), combined with c-Myc KD (F) or HIF-1a KD (G).

ells and Rictor KD in U87-EGFRvIII cells.

garding Akt, mTORC1 (Raptor), and mTORC2 (Rictor).
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Figure 2. mTORC2 Regulates c-Myc and Glycolysis through FoxO Acetylation

(A) Phosphorylated FoxO, acetylated FoxO, and c-Myc protein levels inU87-EGFRvIII treatedwithAkt inhibitor (Akti-1/2) or Pan-PI3K inhibitor (LY294002) for 24 hr.

(B) IP analysis of the association of acetyl-lysine (Ac-K) with FoxO plasmids in U87-EGFRvIII cells, which were cotransfected with GFP-FoxO1 and Flag-FoxO3

and depleted with or without Rictor.

(C) EMSA assay, with the use of nuclear extracts fromU87with Rictor overexpression or Rictor KD, showing the DNA/FoxO-protein EMSA complex. Immunoblots

for TATA binding protein (TBP) were used to normalize protein loading for nuclear extracts. Quantitative bar graph demonstrated relative DNA/FoxO complex

levels in each group.

(D) Schematic illustration of GFP-FoxO1 mutants: 3A, Akt-mediated phosphorylation resistant; 5KR, acetylation resistant; and 5KQ, constitutively acetylated.

Immunofluorescent images representing U87-EGFRvIII cells expressing GFP-FoxO1 and mutants. Scale bar, 20 mm.

(E) Immunoblot analysis on the effects of wild-type FoxO1, FoxO1-3A, and FoxO1-5KR on c-Myc and cleaved PARP.

(F) Relative glucose consumption, lactate production, glutamine uptake, and glutamate secretion in empty vector or FoxO1-5KR mutant overexpressing U87-

EGFRvIII cells with or without depletion of c-Myc.

(G) Immunoblot assessment of c-Myc in U87 cells cotransfected with Rictor-expressing vector and wild-type/mutant FoxO-expressing vector.

Error bars, SEM. See also Figure S2.
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activity of c-Myc are regulated by a variety of factors at the mul-

tiple levels (Albihn et al., 2010; Liu and Levens, 2006). Taken

together, these results indicate that acetylated FoxO increases

c-Myc levels by relieving miR-34c-dependent suppression.

Resistance to PI3K and Akt Inhibitors Is Mediated by
mTORC2-Dependent Acetylation of FoxO and
Consequent Maintenance of c-Myc Levels
Having shown that FoxO and its downstream regulation of c-Myc

are controlled through two independent and highly specific

pathways of posttranslational modification and microRNA sup-

pression, we reasoned that therapeutic resistance to PI3K or

Akt inhibitors by sustained c-Myc activity could be one critical

and potentially clinically actionable consequence. To test this

hypothesis, we examined the effect of pharmacologic inhibition

of PI3K or Akt on FoxO acetylation, c-Myc expression, and tumor

cell survival. Treatment of GBM cells with LY294002 or Akti-1/2

suppressed PI3K and Akt signaling, respectively, but failed to

promote FoxO target gene expression, concomitant with a

compensatory elevation in p-NDRG1 and Rictor levels (Figures

5A, 5B, and S4A). This continued suppression of FoxO activity

was mediated through mTORC2, because Rictor knockdown

markedly elevated FoxO target gene expression in the presence

of PI3K or Akt inhibition (Figures 5B and S4A). The restoration of

FoxO activities by the combined inhibition of mTORC2 and PI3K/

Akt was striking and could potentially be due to the fact that

mTORC2 inhibition could regulate FoxO function both through

acetylation and through Akt- and SGK1-dependent phosphory-

lation (Guertin et al., 2006; Zhao et al., 2011). Additionally, this

recovery of FoxO activity by combined inhibition of PI3K/Akt

and mTORC2 was reversed by class IIa HDACs inhibition to a

greater degree than it was by expression of a constitutively

active form of Akt (HA-Akt-E17K), suggesting the dominance of

acetylation in regulating FoxO transcriptional activity (Figures

S4B and S4C). Importantly, treatment of GBM cells with PI3K

or Akt inhibitors significantly elevated c-Myc levels, and this

was completely reversed by the acetylation-resistant FoxO1-

5KR mutant (Figure 5C), and by Rictor knockdown (Figure 5D).

Further, treatment of GBM cells with Akti-1/2 actually increased

the mRNA level of the glycolytic enzymes LDHA, HK2, PDK1,

and GLUT1, which was completely abrogated by Rictor knock-

down (Figure 5E). Taken together, these results strongly indicate

that GBM cells treated with PI3K or Akt inhibitors maintain c-Myc

levels and enhanced glycolysis throughmTORC2 feedback-pro-

moted FoxO acetylation.

Combined Inhibition of PI3K/Akt and mTORC2
Suppresses Acetylated FoxO-c-Myc Signaling and
Promotes Tumor Cell Death
If mTORC2-dependent FoxO acetylation maintains c-Myc levels

to drive PI3K or Akt inhibitor resistance, then combined suppres-

sion of mTORC2 and PI3K or Akt should decrease cellular levels

of c-Myc, potentially causing tumor cell death. Consistent with

this hypothesis, Rictor shRNA knockdown synergized with

LY294002 or Akti-1/2 to cause GBM tumor cell death (Figures

6A and 6B). Therefore, we asked whether dual pharmacologic

inhibition of PI3K and mTOR kinase could also suppress FoxO

acetylation, decrease c-Myc levels, lower glycolytic enzyme

expression, and cause tumor cell death. To test this, we treated
Cell M
the patient-derived GBM xenograft model TS516 (Rohle et al.,

2013) with the dual PI3K/mTOR inhibitor XL765 (SAR245409)

(Figure 6C). XL765 inhibited mTORC2 signaling, blocked FoxO

acetylation, increased miR-34c expression, decreased cellular

levels of c-Myc, and reduced expression of glycolytic enzymes

LDHA and HK2. Most importantly, XL765 potently reduced

tumor growth, inducing tumor cell apoptosis (Figure 6C).

Currently, no specific mTORC2 inhibitors exist, and ATP-

competitive mTOR kinase inhibitors like XL765 also affect

mTORC1 signaling. However, in the context of the mTORC2

knockdown experiments (Figures 6A and 6B), these results indi-

cate that pharmacological inhibition of mTORC2 prevents

c-Myc-dependent PI3K inhibitor resistance (Dang, 2012a; Ilic

et al., 2011; Muellner et al., 2011) through inhibition of FoxO

acetylation.

mTORC2/Acetylated FoxO/c-Myc Alterations in Clinical
Human GBMs
Toexplore the clinical implications ofmTORC2-acetylatedFoxO-

Myc signaling and assess its impact on prognosis, we performed

immunohistochemical analysis of a tissue microarray (TMA) that

contained 26 normal brain samples and 80 GBM tumor samples

(Figure 7A). Acetylated FoxO and c-Myc were both highly ele-

vated in GBMs relative to normal brain (Ac-FoxO, p = 0.013883;

c-Myc, p = 9.58832E-05), being individually upregulated in

45.0% and 58.8% of tumors, respectively (Figure 7A). mTORC2

signaling (as measured by p-NDRG1; Tanaka et al., 2011), acet-

ylated FoxO, and c-Myc were also highly correlated with each

other (Figures 7B–7D, S5A, and S5B). Immunoblot analysis of

GBM autopsy samples confirmed coordinate increases in the

mTORC2-acetylated FoxO-Myc axis, as well as glycolytic en-

zymes, in tumor tissue relative to normal brain (Figures S5C

and S5D), and elevated acetylated FoxO and c-Myc were found

to be highly correlated (Spearman’s rank correlation coefficient,

r2 = 0.8288) in this limited number of autopsy samples (n = 8).

Finally, elevated acetylated FoxO and c-Myc on TMAwere signif-

icantly associated with shorter overall survival in GBM patients

(p = 0.0367 for c-Myc, p = 0.0799 for Ac-FoxO; Figures 7E and

S5E). These results demonstrate that mTORC2 signaling, acety-

lated FoxO, and c-Myc expression are coordinately upregulated

in GBM patients with worse prognoses (Figure 7F).

DISCUSSION

The Warburg effect enables cancer cells to obtain a sufficient

supply of macromolecular precursors required for rapid cellular

proliferation while still meeting their energy requirements (Tong

et al., 2009). c-Myc plays a central role in regulating this meta-

bolic hallmark of cancer (Cairns et al., 2011; DeBerardinis

et al., 2008; Koppenol et al., 2011; Levine and Puzio-Kuter,

2010; Vander Heiden et al., 2009; Ward and Thompson, 2012).

Although many receptor signaling pathways, including Wnt,

Shh, Notch, TGF-b, and RTK signaling through the PI3K

pathway, have been implicated in Myc upregulation (Dang,

2012a), the mechanisms by which mutated growth factor recep-

tor signaling pathways engage c-Myc remain incompletely

understood.

We recently showed that EGFRvIII regulates glycolytic meta-

bolism and tumor growth through hnRNPA1-dependent
etabolism 18, 726–739, November 5, 2013 ª2013 Elsevier Inc. 731
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Figure 3. mTORC2 Controls FoxO Acetylation through Class IIa HDACs, Independent of Akt

(A) Immunoblot analysis of c-Myc, phosphorylated HDAC, and several forms of FoxO in U87-EGFRvIII cells with indicated siRNAs regarding Akt and mTOR

complex.

(B) Immunoblot showing change in phosphorylated class IIa HDACs from U87 cells overexpressing GFP or Rictor DNA plasmids.

(C) Immunoblot analysis for the status of p-EGFR, p-NDRG1, and class IIa HDACs in several glioma cell lines.

(D) Immunoblot analysis of phosphorylated HDAC, acetylated FoxO, and c-Myc in EGFR-mutated, non-small-cell lung cancer (NSCLC) cells (H1650) with

indicated KD regarding Akt and mTOR complex.

(E) Immunoblot showing change of acetylated FoxO and c-Myc in U87 cells with indicated siRNAs against class IIa HDACs.

(F) qRT-PCR from U87 cells of FoxO target genes following siRNA-mediated depletion of HDAC4/5.

(legend continued on next page)
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Figure 4. Acetylated FoxO Regulates c-Myc through miR-34c

(A) Relative expression of miR-145 and miR-34c in scramble versus FoxO KD U87 cells.

(B) Myc protein levels in U87-EGFRvIII cells with miRNA mimics and U87 with miRNA inhibitors.

(C) Relative expression changes of miR-145 and miR-34c in U87-EGFRvIII cells transfected with indicated FoxO plasmids.

(D) ChIP analysis on U87-EGFRvIII cells transfected with control vector or GFP-FoxO1-5KR and assessed for GFP-FoxO1 recovery on binding elements (BEs) in

miR-34c promoter (Kress et al., 2011) and miR-145 promoter (Gan et al., 2010) regions.

(E) 5KR-FoxO1-mediated downregulation of c-Myc was reverted by the inhibition of miR-34c, but not miR-145, in U87-EGFRvIII cells.

(F) mRNA changes of miR-145 and miR-34c in U87 cells transfected with empty vector (EV) or Rictor-expressing vector.

(G) Immunoblot assessment of c-Myc change in U87-EGFRvIII cells cotransfected with shRictor and miRNA inhibitors.

Error bars, SEM.
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alternative splicing of the Myc binding partner Max (Babic et al.,

2013). This alternatively spliced product, Delta Max, promotes

GBM cell proliferation in glucose and is required for tumor

growth in a Myc-dependent fashion (Babic et al., 2013). Taken
(G) Immunoblot showing c-Myc amount from U87 cells bearing siRNAs against c

(H) Cell proliferation assay of scramble or class IIa HDAC KDU87 cells, combined

and scramble siRNA cells, or siHDAC/siMyc cells. Error bars, ± SD.

All error bars, except growth curves (H), SEM. See also Figure S3.

Cell M
together with the results presented here, a model is emerging

in which aberrant growth factor receptor signaling in GBM

engages c-Myc signaling through two complementary and

interlacing mechanisms: (1) alternative splicing of Delta Max
lass IIa HDACs, combined with overexpression of FoxO DNA plasmids.

with or without c-Myc depletion. p < 0.01 for comparison between siHDAC cells

etabolism 18, 726–739, November 5, 2013 ª2013 Elsevier Inc. 733
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Figure 5. Resistance to PI3K and Akt Inhibitors Is Mediated by mTORC2-Dependent Acetylation of FoxO and Consequent Maintenance of

c-Myc

(A) mTORC2 activation under Akt/PI3K inhibition in U87-EGFRvIII cells shown by western blotting for p-NDRG1 protein and qRT-PCR for Rictor mRNA.

(B) qRT-PCR analysis for FoxO target genes in U87-EGFRvIII cells treated by PI3K/Akt inhibitors for 24 hr, combined with or without Rictor KD. Targeting both

PI3K/Akt and mTORC2 dramatically restores FoxO activity.

(C) qRT-PCR from U87-EGFRvIII cells of c-Myc gene following treatment with PI3K/Akt inhibitor, transfected with or without FoxO1-5KR.

(D) Immunoblot assessment of c-Myc in U87-EGFRvIII cells treated by PI3K/Akt inhibitors, combined with or without Rictor KD.

(E) mRNA levels of Myc-regulated metabolic enzymes in U87-EGFRvIII cells treated by an Akt inhibitor, combined with or without Rictor KD.

Error bars, SEM. See also Figure S4.
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(Babic et al., 2013) to modulate c-Myc function and (2) control of

cellular levels of c-Myc through mTORC2, as demonstrated

here. Importantly, both mechanisms are required for GBM

growth through their effects of Myc-dependent glycolytic meta-

bolism, because genetic depletion of either Delta Max (Babic

et al., 2013) or mTORC2 (Figure 1) blocks the ability of GBM cells

to utilize glucose, but not galactose, for tumor cell proliferation in

a c-Myc dependent fashion. These mechanisms also appear to

be cooperative, acting at different points of c-Myc regulation,
734 Cell Metabolism 18, 726–739, November 5, 2013 ª2013 Elsevier
thus highlighting the role for c-Myc in GBM pathogenesis and

suggesting that its pathogenicity, at least in part, may be medi-

ated through upregulation of glycolytic metabolism.

A surprising implication of this study arises from the observa-

tion that GBM cells treated with PI3K or Akt inhibitors maintain

c-Myc levels and enhanced glycolysis through mTORC2

feedback-promoted FoxO acetylation. We show that FoxO and

its downstream regulation of c-Myc are tightly controlled

through two independent and highly specific pathways of
Inc.
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Figure 6. Combined Inhibition of PI3K/Akt and mTORC2 Suppresses Acetylated FoxO-Myc Signaling and Promotes Tumor Cell Death

(A) TUNEL staining in U87-EGFRvIII cells treated by PI3K/Akt inhibitors for 24 hr, combinedwith or without Rictor KD. Green, TUNEL staining; blue, DAPI staining.

(B) Quantified TUNEL-positive U87-EGFRvIII cells treated by PI3K/Akt inhibitors, combined with or without Rictor KD in the bar graph.

(C) An EGFR-amplified patient-derived TS516 GBM tumor sphere was implanted into immunodeficient mice that were subsequently treated with the dual PI3K/

mTOR inhibitor XL765. Representative immunoblots displaying the status of FoxO acetylation, c-Myc and glycolytic enzyme expression, and apoptotic tumor cell

death (cleaved PARP). Relative expression of miR-34c is shown in the box graph. Tumor volumes were measured by using length and width for vehicle-treated

(n = 5) and XL765-treated (n = 5) groups.

Error bars, SEM.
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posttranslational modification and microRNA suppression. One

pathway, inactivating phosphorylation of FoxO by Akt, is a

well-characterized mechanism enabling PI3K-activated tumor

cells to engage c-Myc (Biggs et al., 1999; Bouchard et al.,

2004; Delpuech et al., 2007; Dang, 2012a; Peck et al., 2013) by

relieving FoxO-dependent miR-145 suppression of c-Myc.

(Gan et al., 2010). In contrast, the results shown here identify a

central mechanism of regulation of the FoxO-Myc axis to control

glycolysis, as we demonstrate that mTORC2 controls the acety-

lation of FoxO through class IIa HDACs, independent of Akt.

The pathway identified here complements the previously

demonstrated ability of mTORC2 to regulate glycolysis in the

liver and in cancer cells through Akt activation (Dang, 2012b;

Hagiwara et al., 2012; Plas and Thompson, 2005), providing
Cell M
yet another important signalingmechanism bywhich growth fac-

tor receptormutations and tumor suppressor losses promote the

Warburg effect in cancer (Bensaad et al., 2006; Christofk et al.,

2008; Dang, 2012b; Faubert et al., 2013; Tong et al., 2009; Van-

der Heiden et al., 2009; Ward and Thompson, 2012). Thus,

mTORC2 emerges as a particularly critical regulator of cancer

cell metabolism through two mechanisms: Akt-dependent and

Akt-independent signaling, each one regulating cellular levels

of c-Myc by distinct posttranslational modifications of FoxO to

relieve suppression of c-Myc through distinct suppressive

microRNA networks. FoxO is a key intermediate between growth

factor receptor PI3K signaling and c-Myc; thus, it is not sur-

prising that the FoxO-Myc axis (Biggs et al., 1999; Bouchard

et al., 2004; Delpuech et al., 2007; Dang, 2012a; Peck et al.,
etabolism 18, 726–739, November 5, 2013 ª2013 Elsevier Inc. 735
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Figure 7. mTORC2 Signaling, Acetylated FoxO, and c-Myc Expression Are Highly Intercorrelated in Biopsy Samples and Associated with

Poor Prognosis in GBM Patients

(A) Ac-FoxO and c-Myc immunostaining of GBM tissuemicroarray (TMA) comprising 80 GBM samples and 26 normal brain tissue samples. View of the TMA slide

and an example of a negative core and a positive core at highmagnification to show cytoplasmic staining of Ac-FoxO and cytoplasmic/nuclear staining of c-Myc.

Ac-FoxO and c-Myc are both individually upregulated in 45.0% and 58.8% of tumors, respectively.

(B) Immunohistochemical analysis of TMAs based on correlation of Ac-FoxO with c-Myc.

(C) Bar graph showing differential association of Ac-FoxO-positive or -negative tumors with p-NDRG1 IHC positivity based on TMA.

(D) Differential association of c-Myc ± tumors with p-NDRG1 immunopositivity based on TMA. p value was determined by c2 for independence test (B–D).

(E) Kaplan-Meier survival analysis for overall survival of 36 primary and secondary GBM samples classified by c-Myc expression. Log rank (Mantel-Cox) test was

used to determine p values for Kaplan-Meier survival curve analyses.

(F) mTORC2 inhibits FoxO activity via acetylation, which could bypass PI3K/Akt inhibition, leading to the upregulation of c-Myc, a key downstream effector of cell

proliferation and tumor metabolism in GBM.

See also Figure S5.
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2013) has evolved to be regulated by this dual-pronged post-

translational control. mTORC2 regulates both mechanisms of

FoxO-c-Myc axis regulation, and this nominates it as a critical

metabolic regulator in cancer that must be suppressed, in addi-

tion to Akt, to abrogate c-Myc-dependent glycolysis and tumor

growth.

EXPERIMENTAL PROCEDURES

Image Analysis-Based Scoring of Immunohistochemistry

Quantitative image analysis was performedwith Soft Imaging System software

(Olympus MicroSuite Analytical Suite). Representative images from each

immunostained section were photographed using a Colorview II camera

mounted on anOlympusBX61microscope. Imageswere captured from repre-

sentative regions of the tumor with sufficiently high tumor cell content based

on hematoxylin and eosin staining evaluation. Borders between individual cells

were approximated using a filter function. The amount of reaction product per

cell was determined by measuring mean saturation per cell in the red-brown

hue range. One thousand to fifteen hundred cells per case (on average) were

measured for each marker. Negative control staining was also performed for

each section without primary antibodies to determine the threshold for

immunopositivity.

Tissue Microarray

TMA was constructed as reported previously (Guo et al., 2009), and immuno-

histochemical staining was performed as described previously (Choe et al.,

2003; Lu et al., 2009) to analyze the expression of Ac-FoxO, c-Myc,

p-NDRG1, and Rictor in 80 GBM samples and 26 normal brain samples. Cores

were scored by a pathologist, and tumor staining intensity was compared to

normal brain tissue.

Subcellular Fractionation and Electrophoretic Mobility Shift Assay

Nuclear fractionation was prepared from subconfluent 10 cm plates using a kit

according to the manufacturer’s instructions (Active Motif). Electrophoretic

mobility shift assay (EMSA) was carried out using EMSA ‘‘Gel-Shift’’ Kit (Pano-

mics). Nuclear extracts were incubated with a biotin-labeled oligonucleotide

containing the consensus binding sequence for human FoxO (50-CAAAACAA
CAAAACAACAAAACAA-30), and the transcription factor-bound oligonucleo-

tide was separated from unbound oligonucleotide by electrophoresis on a

6%polyacrylamide gel. After being transferred to nylonmembrane (GEHealth-

care), the biotin-labeled bands were visualized using horseradish peroxidase-

based chemiluminescence.

Mutagenesis

To generate the 5KR (using FoxO1) and 5KQ (using FoxO1 and FoxO1-AAA)

mutants, we replaced the previously reported major acetylation sites, (van

der Horst and Burgering, 2007; Zhao et al., 2010) K245, K248, K262, K265,

and K274, with arginine or glutamine, respectively. To generate the 4KR

mutant (using FoxO3), we replaced the acetylation sites (van der Horst and

Burgering, 2007) K242, K259, K271, and K290 with arginine. We carried out

site-directed mutagenesis using the QuikChange Kit (Stratagene).

Metabolite Measurements

Glucose, lactate, glutamine, and glutamate in the media of cultured cells were

measured using the BioProfile Basic 4 analyzer (Nova Biomedical). Fresh me-

dia with 1% FBS were added to a 6-well plate of subconfluent cells, and

metabolite concentration in the media was measured 24 hr later by compari-

son with blank media without cells and normalized to the number of cells in

each well.

Real-Time RT-PCR and miRNA Studies

Total RNA was extracted by the use of RNeasy Plus Mini Kit (QIAGEN). First-

strand cDNA was synthesized by the use of SuperScript III Transcriptase

(Invitrogen). Real-time RT-PCRwas performedwith the iQ SYBRGreen Super-

mix (Bio-Rad) on an iCycler (Bio-Rad) following the manufacturer’s instruc-

tions. Primer sequences are available upon request. MicroRNAs were

extracted by mirVana miRNA Isolation Kit (Applied Biosystems). MicroRNA
Cell M
reverse transcription was conducted by TaqMan MicroRNA Reverse Tran-

scription Kit (AppliedBiosystems), andmiR-145,miR-34c, andRNU19 expres-

sion was detected by TaqMan MicroRNA Assays (Applied Biosystems).

b-actin was used as an endogenous control for qRT-PCR, and RNU19 was

used as an endogenous control for miRNA assays.

Glucose-Dependent Cell Proliferation and Cell Death Assay

Cells were placed in 96-well plates at 2.5 3 103 cells/well in 100 ml of growth

medium and then incubated in each condition of treatment. For the measure-

ment of glucose-dependent proliferation, DMEM containing glucose (Cellgro)

or no-glucose DMEM (Gibco) supplemented with 4.5 g/l galactose (Sigma)

was used as previously reported (Finley et al., 2011). Cell proliferation was

examinedwith Cell Proliferation Assay Kit (Millpore) according to the manufac-

turer’s instructions. The absorbance of the treated and untreated cells was

measured with a microplate reader (Bio-Rad) at 420–480 nm. For the

glucose-dependent cell death assay, cells were cultured with no-glucose

DMEM + 10% FBS + galactose (4.5 g/l) or DMEM + 10% FBS + 2-Deoxy-D-

glucose (2-DG, 10 mM) for 48 hr, and live/dead cells were quantified by cell

counting with trypan blue exclusion and TC10 Automated Cell Counter (Bio-

Rad). Data represent the mean ± SD of three independent experiments.

Animal Studies

TS516 tumor sphere lines originated from a GBM patient at Memorial Sloan-

Kettering Cancer Center, or U87 and U87-EGFRvIII cell lines were implanted

into immunodeficient SCID/Beige mice for subcutaneous xenograft studies.

SCID/Beige mice were bred and kept under defined-flora pathogen-free

conditions at the Association for Assessment of Laboratory Animal Care-

approved Animal Facility of the Division of Experimental Radiation Oncology,

UCLA. For subcutaneous implantation, exponentially growing tumor cells in

culture were trypsinized, enumerated by trypan blue exclusion, and resus-

pended at 3 3 106 cells/ml in a solution of Dulbecco’s phosphate-buffered

saline and Matrigel (BD Biosciences). Tumor growth was monitored with cali-

pers by measuring the perpendicular diameter of each subcutaneous tumor.

Tumors were treated with a PI3K/mTOR dual inhibitor (XL765; 60 mg/kg) or

normal saline every day for 19 days. Mice were euthanized if tumors reached

14 mm in maximum diameter or animals showed signs of illness. All experi-

ments were conducted after approval by the Chancellor’s Animal Research

Committee of UCLA.

Statistical Analysis

Unpaired Student’s t tests were performed unless otherwise noted. Error bars

represented SEMunless otherwise noted, and statistical significance was indi-

cated as *p < 0.05, **p < 0.01, and ***p < 0.001.

SUPPLEMENTAL INFORMATION
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