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Abstract

A question of Erdős asks if every graph with minimum degree 3 must contain a pair of
cycles whose lengths di1er by 1 or 2. Some recent work of H3aggkvist and Scott (see Arithmetic
progressions of cycles in graphs, preprint), whilst proving this, also shows that minimum degree
500k2 guarantees the existence of cycles whose lengths are m;m+2; m+4; : : : ; m+2k for some
m—an arithmetic progression of cycles. In like vein, we prove that an outer-planar graph of
order n, with bounded internal face size, and outer face a cycle, must contain a sequence of
cycles whose lengths form an arithmetic progression of length exp((c log n)1=3− log log n). Using
this we give an answer for outer-planar graphs to a question of Erdős concerning the number of
di1erent sets which can be achieved as cycle spectra. c© 2002 Elsevier Science B.V. All rights
reserved.

1. Introduction

At a meeting in Memphis in 1996 just a few months before his death, Paul Erdős
posed the following problem:

Problem. Given a graph G, let C(G), the cycle spectrum of G, be the set of lengths
of all cycles in G. Now let C(n) be the total number of distinct cycle spectra over
all possible graphs on n vertices. How does C(n) behave? Is C(n)= o(2n) or is
C(n)=	(2n)?
Little progress seems to have been made on the problem in its most general sense.

But the same problem still seems to be of interest if we introduce CG(n) as the number
of distinct sets which can be achieved as cycle spectra by graphs of order n from a
speciEc class of graphs G.
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In [2], we show that CG(n)= o(2n) if G consists of all cubic hamiltonian graphs.
Here we do the same when G is the set of all outer-planar graphs with bounded face
size.
The idea behind the proofs of all of these results is the same. We show that every

member of G contains a long sequence of cycles whose lengths form an arithmetic
progression, where for us long will mean of length more than 2 log2 n. Since only o(2n)
subsets of {1; 2; : : : ; n} contain such an arithmetic progression it follows that there can
be only o(2n) di1erent cycle spectra for that class.

2. The results

As we mentioned in the introduction, our arguments rely on the following
lemma.

Lemma 1. There are at most 2n=(2 log2 n) subsets of {1; 2; : : : ; n} which contain an
arithmetic progression of length at least 2 log2 n.

Proof. We shall put a probability distribution on the subsets of {1; 2; : : : ; n}, by mak-
ing each element i, for i=1; : : : ; n a member of a random set A with probability 1

2 .
Of course, this model produces the uniform distribution on the set of all subsets of
{1; 2; : : : ; n}.
Now, let X be a random variable which counts the number of arithmetic progressions

of length 2 log2 n in a randomly chosen set. Let us calculate E(X ).

E(X )= (#AP’s of length 2 log2 n)× P (a set contains such an AP):

There are at most n2=(2 log2 n) such arithmetic progressions, since there are at most
n=(2 log2 n) possible di1erences for the progression. Hence,

E(X )6
n2

2 log2 n

(
1
2

)2 log2 n

=
1

2 log2 n
:

Thus, there are at most 2n=(2 log2 n) sets which contain long arithmetic
progressions.

To proceed then, we need to End a way to produce long arithmetic progressions of
cycles in our graphs. For this we need several lemmas.

Lemma 2. Let d¿ 3 be given. Let G be an outer-planner graph of order n in which
every face; other than the outer face has size at most d; and in which the outer
face is a cycle in G. Then G∗; the weak planar dual of G; is a tree of order at
least �n=d�.
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Proof. Consider the weak dual of the graph G. Since G is outer-planar its weak dual
must be a forest (see Proposition 7:1:15 in [4]). Indeed, the outer face of G is a cycle
and so the weak dual is actually a tree.
It remains only to show that this tree has the required number of vertices. Let G

have n∗ faces. Then

d(n∗ − 1) + n¿
∑

F a face of G

l(F)= 2e(G)¿ 2n;

where l(F) is the number of edges in the face F . Hence, this tree has order
n∗ − 1¿ �n=d�.

Lemma 3. Let T be a tree with maximum degree d¿ 2. Then there is an edge e so
that T − e consists of two trees S and S ′ for which

|S| − 1
d− 1

6 |S ′|6 |S|:

Proof. We may assume that there is no edge e whose deletion creates two trees of
equal order, for such an edge would satisfy the conclusion of the theorem.
Clearly, the deletion of any edge e in T creates two subtrees T1 and T2, which we

can envisage as being rooted at the ends of e. We orient the edges of T so that each
edge is directed from the root of the smaller subtree to the root of the larger. Observe
that each vertex must have out-degree 1 or 0. For suppose that a vertex x has two
edges directed out, x̃y and x̃z. Then, y is the root of a tree Ty which has larger order
than the subtree rooted at x—indeed Ty contains more than half of the vertices of T .
Similarly, Tz is a subtree which has larger order than another subtree rooted at x and
also contains more than half of the vertices of T . However, Ty and Tz are disjoint,
which is a contradiction.
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Clearly, each leaf of T has out degree 1. It is easy to see by induction that this
implies the existence of an internal vertex x with out-degree 0. Consider the subtrees
T1; T2; : : : ; Tk rooted at the neighbours of x; v1; v2; : : : ; vk and choose e to be the edge
joining x to vi, where Ti has the largest order amongst these trees.
Then, clearly,

1
k − 1

∑
j �=i

v(Tj)6 v(Ti)6 1 +
∑
j �=i

v(Tj):

Hence e divides the tree into two subtrees with the required properties.

We are now in a position to use this structure to show that all outer-planar graphs,
with bounded internal face size and outer face a cycle, have long arithmetic progressions
of cycles. For this we need a result of Bourgain (see [1]).

Theorem A (Bourgain [1]). Let A and B be sets of integers in {1; 2; : : : ; N}
with densities �= |A|=N and �= |B|=N . Then; provided that N is large enough;
A + B= {a + b: a∈A; b∈B} contains an arithmetic progression of length L when-
ever

L¡ exp[c(�� logN )1=3 − log logN ]

for some constant c.

Theorem 4. Let d¿ 3 be a natural number. There is a constant c¿ 0 such that
if n is large enough every outer-planar graph of order n in which every inter-
nal face has size at most d and the outer face is a cycle; contains a sequence
of exp[c(log n)1=3 − log log n] cycles whose lengths form an arithmetic
progression.

Proof. Consider such an outer-planar graph G and let T be the tree of size at least
�n=d� guaranteed by Lemma 2. Since every face of G contains at most d vertices, T
must have maximum degree at most d. Hence, Lemma 3 gives a partition of T into
two trees S and S ′, divided by an edge e= a0b0, so that both S and S ′ each have
at least n=d2 vertices (in fact, the lemma gives more, but this will be enough for our
purposes).
We shall now use these two trees S and S ′ to form the two subsets A and B which

we shall use in Bourgain’s result.
Consider the subtree S, rooted at a vertex a0. Then in G the vertex a0 is a face of G,

bounded by a cycle C0. Let a0; a1; : : : ; ak be the vertices of S, numbered as in a depth
Erst search from a0, and let Ci be the cycle in G which bounds the face corresponding
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to vertex ai. Then C0, C0⊕C1, C0⊕C1⊕C2; : : : ; C0⊕· · ·⊕Ck are k cycles in G, each
of di1erent lengths. These lengths will be the elements of A.
We could similarly consider the subtree S ′, rooted at b0, and let B be the di1er-

ent lengths of the cycles formed from the bounding cycles D0; D1; : : : ; Dl of its face
vertices.

To complete the proof we need to observe some facts about A and B. First observe
that A and B are both subsets of {1; : : : ; n} of size at least n=d2, and so their densities
do not vary with n, as required in Theorem A. Finally, notice that each member of the
set A + B corresponds to a length one greater than the length of a cycle of the form
C0 ⊕ · · · ⊕ Cs ⊕ D0 ⊕ · · · ⊕ Dt . The result follows.

To conclude we can use Theorem 4 to contribute to Erdős’ question, at least for the
class or outer-planar graphs.

Corollary 5. Let d¿ 3 be given. Let A be the set of outer-planar graphs whose
internal faces are of size at most d. Then CA(n)= o(2n).

Proof. First, suppose that G contains a block of order at least n−log2 n. Then this block
alone is an outer-planar graph whose external face is a cycle. Hence, by combining
Theorem 4 with Lemma 1 we see that such graphs only contribute o(2n) distinct cycle
spectra.
However, if every block of G has order less than n − log2 n then every cycle in

G must have length less than n − log2 n. Hence, the cycle spectrum of G must be
a subset of {1; 2; : : : ; n − log2 n}, of which there are only 2n−log2 n =2n=n. The result
follows.

3. Uncited reference

[3]
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