DISCRETE

 MATHEMATICS
Arithmetic progressions of cycles in outer-planar graphs

Tristan Denley
Department of Mathematics, University of Mississippi, University, MS 38677, USA

Received 1 September 1999; revised 20 February 2000; accepted 26 March 2001

Abstract

A question of Erdős asks if every graph with minimum degree 3 must contain a pair of cycles whose lengths differ by 1 or 2 . Some recent work of Häggkvist and Scott (see Arithmetic progressions of cycles in graphs, preprint), whilst proving this, also shows that minimum degree $500 k^{2}$ guarantees the existence of cycles whose lengths are $m, m+2, m+4, \ldots, m+2 k$ for some m-an arithmetic progression of cycles. In like vein, we prove that an outer-planar graph of order n, with bounded internal face size, and outer face a cycle, must contain a sequence of cycles whose lengths form an arithmetic progression of length $\exp \left((c \log n)^{1 / 3}-\log \log n\right)$. Using this we give an answer for outer-planar graphs to a question of Erdős concerning the number of different sets which can be achieved as cycle spectra. © 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

At a meeting in Memphis in 1996 just a few months before his death, Paul Erdős posed the following problem:

Problem. Given a graph G, let $\mathscr{C}(G)$, the cycle spectrum of G, be the set of lengths of all cycles in G. Now let $\mathscr{C}(n)$ be the total number of distinct cycle spectra over all possible graphs on n vertices. How does $\mathscr{C}(n)$ behave? Is $\mathscr{C}(n)=\mathrm{o}\left(2^{n}\right)$ or is $\mathscr{C}(n)=\Theta\left(2^{n}\right)$?

Little progress seems to have been made on the problem in its most general sense. But the same problem still seems to be of interest if we introduce $\mathscr{C}_{\mathscr{y}}(n)$ as the number of distinct sets which can be achieved as cycle spectra by graphs of order n from a specific class of graphs \mathscr{G}.

[^0]In [2], we show that $\mathscr{C}_{\mathscr{G}}(n)=\mathrm{o}\left(2^{n}\right)$ if \mathscr{G} consists of all cubic hamiltonian graphs. Here we do the same when \mathscr{G} is the set of all outer-planar graphs with bounded face size.
The idea behind the proofs of all of these results is the same. We show that every member of \mathscr{G} contains a long sequence of cycles whose lengths form an arithmetic progression, where for us long will mean of length more than $2 \log _{2} n$. Since only o(2^{n}) subsets of $\{1,2, \ldots, n\}$ contain such an arithmetic progression it follows that there can be only $\mathrm{o}\left(2^{n}\right)$ different cycle spectra for that class.

2. The results

As we mentioned in the introduction, our arguments rely on the following lemma.

Lemma 1. There are at most $2^{n} /\left(2 \log _{2} n\right)$ subsets of $\{1,2, \ldots, n\}$ which contain an arithmetic progression of length at least $2 \log _{2} n$.

Proof. We shall put a probability distribution on the subsets of $\{1,2, \ldots, n\}$, by making each element i, for $i=1, \ldots, n$ a member of a random set A with probability $\frac{1}{2}$. Of course, this model produces the uniform distribution on the set of all subsets of $\{1,2, \ldots, n\}$.

Now, let X be a random variable which counts the number of arithmetic progressions of length $2 \log _{2} n$ in a randomly chosen set. Let us calculate $E(X)$.

$$
E(X)=\left(\# \mathrm{AP} \text { 's of length } 2 \log _{2} n\right) \times P(\text { a set contains such an AP }) .
$$

There are at most $n^{2} /\left(2 \log _{2} n\right)$ such arithmetic progressions, since there are at most $n /\left(2 \log _{2} n\right)$ possible differences for the progression. Hence,

$$
E(X) \leqslant \frac{n^{2}}{2 \log _{2} n}\left(\frac{1}{2}\right)^{2 \log _{2} n}=\frac{1}{2 \log _{2} n} .
$$

Thus, there are at most $2^{n} /\left(2 \log _{2} n\right)$ sets which contain long arithmetic progressions.

To proceed then, we need to find a way to produce long arithmetic progressions of cycles in our graphs. For this we need several lemmas.

Lemma 2. Let $d \geqslant 3$ be given. Let G be an outer-planner graph of order n in which every face, other than the outer face has size at most d, and in which the outer face is a cycle in G. Then G^{*}, the weak planar dual of G, is a tree of order at least $\lceil n / d\rceil$.

Proof. Consider the weak dual of the graph G. Since G is outer-planar its weak dual must be a forest (see Proposition 7.1.15 in [4]). Indeed, the outer face of G is a cycle and so the weak dual is actually a tree.

It remains only to show that this tree has the required number of vertices. Let G have n^{*} faces. Then

$$
d\left(n^{*}-1\right)+n \geqslant \sum_{F \text { a face of } G} l(F)=2 e(G) \geqslant 2 n,
$$

where $l(F)$ is the number of edges in the face F. Hence, this tree has order $n^{*}-1 \geqslant\lceil n / d\rceil$.

Lemma 3. Let T be a tree with maximum degree $d \geqslant 2$. Then there is an edge e so that T-e consists of two trees S and S^{\prime} for which

$$
\frac{|S|-1}{d-1} \leqslant\left|S^{\prime}\right| \leqslant|S| .
$$

Proof. We may assume that there is no edge e whose deletion creates two trees of equal order, for such an edge would satisfy the conclusion of the theorem.

Clearly, the deletion of any edge e in T creates two subtrees T_{1} and T_{2}, which we can envisage as being rooted at the ends of e. We orient the edges of T so that each edge is directed from the root of the smaller subtree to the root of the larger. Observe that each vertex must have out-degree 1 or 0 . For suppose that a vertex x has two edges directed out, $x \vec{y}$ and $\overrightarrow{z z}$. Then, y is the root of a tree T_{y} which has larger order than the subtree rooted at x-indeed T_{y} contains more than half of the vertices of T. Similarly, T_{z} is a subtree which has larger order than another subtree rooted at x and also contains more than half of the vertices of T. However, T_{y} and T_{z} are disjoint, which is a contradiction.

Clearly, each leaf of T has out degree 1 . It is easy to see by induction that this implies the existence of an internal vertex x with out-degree 0 . Consider the subtrees $T_{1}, T_{2}, \ldots, T_{k}$ rooted at the neighbours of $x, v_{1}, v_{2}, \ldots, v_{k}$ and choose e to be the edge joining x to v_{i}, where T_{i} has the largest order amongst these trees.

Then, clearly,

$$
\frac{1}{k-1} \sum_{j \neq i} v\left(T_{j}\right) \leqslant v\left(T_{i}\right) \leqslant 1+\sum_{j \neq i} v\left(T_{j}\right) .
$$

Hence e divides the tree into two subtrees with the required properties.

We are now in a position to use this structure to show that all outer-planar graphs, with bounded internal face size and outer face a cycle, have long arithmetic progressions of cycles. For this we need a result of Bourgain (see [1]).

Theorem A (Bourgain [1]). Let A and B be sets of integers in $\{1,2, \ldots, N\}$ with densities $\alpha=|A| / N$ and $\beta=|B| / N$. Then, provided that N is large enough, $A+B=\{a+b: a \in A, b \in B\}$ contains an arithmetic progression of length L whenever

$$
L<\exp \left[c(\alpha \beta \log N)^{1 / 3}-\log \log N\right]
$$

for some constant c.
Theorem 4. Let $d \geqslant 3$ be a natural number. There is a constant $c>0$ such that if n is large enough every outer-planar graph of order n in which every internal face has size at most d and the outer face is a cycle, contains a sequence of $\exp \left[c(\log n)^{1 / 3}-\log \log n\right]$ cycles whose lengths form an arithmetic progression.

Proof. Consider such an outer-planar graph G and let T be the tree of size at least $\lceil n / d\rceil$ guaranteed by Lemma 2 . Since every face of G contains at most d vertices, T must have maximum degree at most d. Hence, Lemma 3 gives a partition of T into two trees S and S^{\prime}, divided by an edge $e=a_{0} b_{0}$, so that both S and S^{\prime} each have at least n / d^{2} vertices (in fact, the lemma gives more, but this will be enough for our purposes).

We shall now use these two trees S and S^{\prime} to form the two subsets A and B which we shall use in Bourgain's result.

Consider the subtree S, rooted at a vertex a_{0}. Then in G the vertex a_{0} is a face of G, bounded by a cycle C_{0}. Let $a_{0}, a_{1}, \ldots, a_{k}$ be the vertices of S, numbered as in a depth first search from a_{0}, and let C_{i} be the cycle in G which bounds the face corresponding
to vertex a_{i}. Then $C_{0}, C_{0} \oplus C_{1}, C_{0} \oplus C_{1} \oplus C_{2}, \ldots, C_{0} \oplus \cdots \oplus C_{k}$ are k cycles in G, each of different lengths. These lengths will be the elements of A.

We could similarly consider the subtree S^{\prime}, rooted at b_{0}, and let B be the different lengths of the cycles formed from the bounding cycles $D_{0}, D_{1}, \ldots, D_{l}$ of its face vertices.

To complete the proof we need to observe some facts about A and B. First observe that A and B are both subsets of $\{1, \ldots, n\}$ of size at least n / d^{2}, and so their densities do not vary with n, as required in Theorem A. Finally, notice that each member of the set $A+B$ corresponds to a length one greater than the length of a cycle of the form $C_{0} \oplus \cdots \oplus C_{s} \oplus D_{0} \oplus \cdots \oplus D_{t}$. The result follows.

To conclude we can use Theorem 4 to contribute to Erdős' question, at least for the class or outer-planar graphs.

Corollary 5. Let $d \geqslant 3$ be given. Let \mathscr{A} be the set of outer-planar graphs whose internal faces are of size at most d. Then $\mathscr{C}_{\mathscr{A}}(n)=\mathrm{o}\left(2^{n}\right)$.

Proof. First, suppose that G contains a block of order at least $n-\log _{2} n$. Then this block alone is an outer-planar graph whose external face is a cycle. Hence, by combining Theorem 4 with Lemma 1 we see that such graphs only contribute $o\left(2^{n}\right)$ distinct cycle spectra.

However, if every block of G has order less than $n-\log _{2} n$ then every cycle in G must have length less than $n-\log _{2} n$. Hence, the cycle spectrum of G must be a subset of $\left\{1,2, \ldots, n-\log _{2} n\right\}$, of which there are only $2^{n-\log _{2} n}=2^{n} / n$. The result follows.

3. Uncited reference

Acknowledgements

The author would like to send his heartiest thanks to the referees for their observations, suggestions and corrections during the writing of this paper.

References

[1] J. Bourgain, On Arithmetic Progressions in Sums of Sets of Integers, A tribute to Paul Erdős, Cambridge University Press, Cambridge, 1990, pp. 105-109.
[2] T.M.J. Denley, A.D. Scott, Arithmetic progressions of cycles in Hamiltonian graphs, preprint.
[3] H. Häggkvist, A.D. Scott, Arithmetic progressions of cycles in graphs, preprint.
[4] D.B. West, Introduction to Graph Theory, Prentice-Hall, Englewood Cliffs, NJ, 1996, xv+512pp.

[^0]: E-mail address: denley@hilbert.math.olemiss.edu (T. Denley).

