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SUMMARY

Toll-like receptor (TLR) signaling is a key component
of innate immunity. Aberrant TLR activation leads to
immune disorders via dysregulation of cytokine pro-
duction, such as IL-12/IL-23. Herein, we identify and
characterize PIKfyve, a lipid kinase, as a critical
player in TLR signaling using apilimod as an affinity
tool. Apilimod is a potent small molecular inhibitor
of IL-12/IL-23 with an unknown target and has been
evaluated in clinical trials for patients with Crohn’s
disease or rheumatoid arthritis. Using a chemical
genetic approach, we show that it binds to PIKfyve
and blocks its phosphotransferase activity, leading
to selective inhibition of IL-12/IL-23p40. Pharmaco-
logical or genetic inactivation of PIKfyve is necessary
and sufficient for suppression of IL-12/IL-23p40
expression. Thus, we have uncovered a phosphoino-
sitide-mediated regulatory mechanism that controls
TLR signaling.

INTRODUCTION

Toll-like receptors (TLRs) recognize molecules that are broadly

shared by pathogens yet are distinguishable from host mole-

cules. Activation of TLR signaling induces expression of genes

that orchestrate the inflammatory and antipathogen responses

(Takeuchi and Akira, 2010). It is known that dysregulated TLR

signaling plays a role in a number of autoimmune diseases pri-

marily due to dysregulation of cytokine production (Krieg and

Vollmer, 2007). IL-12 and IL-23 are cytokines of particular

importance: they share the common IL-12p40 subunit and are

key drivers for the development of T helper cell-type 1 (Th1)

and -type 17 (Th17) cells, respectively (Langrish et al., 2004).
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Both cytokines are clinical targets for the treatment of autoim-

mune disease (Abraham and Cho, 2009; Gately et al., 1998).

The activation of these cytokines is under tight control by

the TLR signaling network, including NFkB, IRF, MAPK, and

PI3K pathways. In addition to these signaling pathways, many

positive or negative regulators have also been recently discov-

ered to play important roles in TLR-cytokine expression. Clas-

sical genetics has played a central role in the discovery of

many key regulators in TLR biology. A number of critical nodes

were successfully identified by forward genetics. For example,

UNC93B, a key chaperone for endosomal TLRs, was identified

fromanN-ethyl-N-nitrosourea (ENU)mutagenesis-based screen

(Tabeta et al., 2006). Hypothesis-driven reverse genetics has

become a dominant approach over the past 10–15 years in

elucidating TLR signaling network using specific gene deletion

or mutation approaches (Medzhitov et al., 1997; Yamamoto

et al., 2003).

In addition to these classical gene discovery approaches, for-

ward chemical genetics has emerged as another powerful

approach to illuminate the biological function of genes, particu-

larly in the case where a gene is a multifunctional enzyme, or

its deletion/mutation leads to embryonic lethality. This is

achieved by identifying the target of a small molecular com-

pound that induces a phenotype of interest (Schreiber, 2000;

Spring, 2005; Kung and Shokat, 2005). A number of proteins

that govern fundamental cellular processes have been charac-

terized using small molecular drugs. For example, the molecular

target and mechanism of action for rapamycin, a widely used

immunosuppressant during organ and bone marrow transplan-

tation, were elucidated by forward chemical genetics (Sabatini

et al., 1994; Kunz et al., 1993; Brown et al., 1994; Chiu et al.,

1994). Rapamycin interacts with the FKBP-rapamycin-binding

(FRB) domain of the mammalian target of rapamycin (mTOR)

and inhibits its kinase activity within mTORC1 complex (contain-

ingmTOR, Raptor, andmLST8) during acute administration. This

discovery led to an explosion of studies revealing important roles

of mTOR in multiple biological processes using rapamycin as an
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inhibitor, including its function in TLR9-induced IFNa production

(Cao et al., 2008). However, the limitation of available potent

small molecules that perturb interesting biological pathways

has posed challenges in fully utilizing the potential of chemical

genetics. Although there are very few disease-modifying com-

pounds targeting the TLR-cytokine axis (Hennessy et al.,

2010), apilimod emerges as an ideal tool for additional gene dis-

covery in TLR signaling.

Apilimod is a small molecule compound developed to specif-

ically block TLR-mediated IL-12/IL-23 production that has

entered clinical trials (Wada et al., 2007, 2012). It has been tested

in patients with Crohn’s disease (CD), rheumatoid arthritis (RA)

(Billich, 2007), and psoriasis (Wada et al., 2012). Although apili-

mod showed clinical improvement in patients with active CD in

a phase I/IIA trial, no significant improvement over placebo

was seen in a phase II trial (Sands et al., 2010; Burakoff et al.,

2006), though it was generally well tolerated. At the onset of

these trials, the therapeutic target(s) for apilimod was unknown,

making the assessment of efficacy and toxicity difficult due to a

lack of appropriate pharmacodynamic (PD) markers. Without

knowledge of the target, further progress in the development

or improvement of this drug is challenging.

In this study, using apilimod as an affinity probe, we found

phosphatidylinositol-3-phosphate 5-kinase (PIKfyve) to be the

molecular target of this drug. PIKfyve is a 240 kDa lipid kinase

that phosphorylates the D-5 position in endosomal phosphatidy-

linositol-3-phosphate (PI3P) to yield the 3,5-bisphosphate

(PI(3,5)P2) (Shisheva, 2008). This kinase binds to PI(3)P via its

FYVE domain. PIKfyve is critical for maintaining the proper

morphology of the endosome/lysosome. The enlarged endo-

some/lysosome structure was observed in cells expressing

PIKfyve dominant negative or siRNA (Ikonomov et al., 2001;

Rutherford et al., 2006). Vac14 and Sac3 were reported to form

a regulatory complex with PIKfyve to control the endosomal

phosphoinositide metabolism (Sbrissa et al., 2004, 2007). The

vacuolization and low PI(3,5)P2 levels in fibroblasts isolated

from Vac14 and Sac3 null mice suggest that both are required

for maximal PIKfyve activity (Jin et al., 2008; Zhang et al.,

2007; Chow et al., 2007). PIKfyve-mediated PI(3,5)P2 signaling

was reported to regulate endosomal trafficking and play a key

role in multiple biological processes, such as GLUT4 transloca-

tion and retroviral budding (Ikonomov et al., 2002; Jefferies

et al., 2008). Neurodegeneration was observed in both humans

and mice with Vac14 and Sac3 mutations (Zhang et al., 2007;

Chow et al., 2007; Jin et al., 2008), possibly due to the deficiency

of autophagy-mediated intracellular trafficking in cells lacking

PI(3,5)P2 (Ferguson et al., 2009). Here, we report that apilimod

specifically binds to PIKfyve and inhibits its lipid kinase activity

and demonstrate PIKfyve’s function in controlling TLR-mediated

cytokine expression. These findings unravel the critical role of

PI(3,5)P2 in modulating TLR signaling and control of discrete

immune cell functions.

RESULTS

Apilimod Selectively Inhibits TLR-Induced Cytokine
Expression
Apilimod is a 1,3,5-triazine derivative discovered in a cell-based

screen aimed at identifying inhibitors of IL-12 production, using
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IFNg/LPS-stimulated human peripheral bloodmononuclear cells

(PBMCs) (Wada et al., 2007). We found that in addition to this

TLR4-dependent pathway, apilimod inhibited the expression of

IL12p40 induced by other TLRs (Figure 1A; Figure S1 available

online). TLR ligand/agonist pairs used are LPS (TLR4), ssRNA

(TLR7), R837 (TLR7), and R848 (TLR7/8). This inhibitor thus

regulates the expression of IL-12 induced by multiple TLRs.

Consistent with the results in human PBMCs (Wada et al.,

2007), apilimod selectively inhibited the production of IL12p40,

whereas it had little effect on IL8 production in THP-1 cells (Fig-

ure 1B). Apilimod thus exhibited potent yet selective cellular

activity in TLR pathways. In addition, we also evaluated the

activity of apilimod in mouse cells. As shown in Figure 1C, apili-

mod selectively inhibited IFNg/LPS or R848-induced production

of IL12p40 but not CXCL2 in mouse bone marrow-derived den-

dritic cells (BMDCs). Apilimod thus exhibited selective cellular

activity across multiple species. It would therefore be important

to identify themolecular target(s) for apilimod and reveal a poten-

tial novel regulatory mechanism for TLR cytokine modulation.

Apilimod Binds to and Inhibits PIKfyve Kinase Activity
First, we aimed to identify the binding partners of apilimod to

yield potential molecular target(s) by employing a quantitative

chemical proteomics approach (Huang et al., 2009). A bioactive

analog of apilimod, APA10 (Figure 2A), was immobilized on a gel

matrix and incubated with a THP-1 cell extract premixed with

either DMSO or with an excess of apilimod. Unbound proteins

were removed by washing, and specifically bound proteins

were eluted, digested, and identified using LC-MS/MS. Although

a total of 974 retained proteins were identified (Table S1), only 3

proteins were significantly competed from the matrix by

increasing dose of apilimod. The three proteins identified

comprise all knownmembers of the PIKfyve regulatory complex:

PIKfyve, Vac14, and Sac3 (Figure 2B). In an independent pull-

down experiment, PIKfyve protein was competed from the

matrix with apilimod, but not with an inactive analog API09 (Fig-

ures 2A and 2C). Vac14 and Sac3 form a complex with PIKfyve,

and both are required for maintaining PIKfyve activity in convert-

ing PI3P to PI(3,5)P2. We conclude that apilimod specifically in-

teracts with the PIKfyve regulatory complex in cells.

To address the mode of action of apilimod on the PIKfyve

complex, an in vitro kinase assay measuring the conversion of

PI(3)P to PI(3,5)P2 was developed. Apilimod inhibited PIKfyve

kinase activity with an IC50 of 14 nM (Figure 2D). In contrast, api-

limod had no activity toward other lipid kinases and protein

kinases, including PIP4K, PIP5K, mTOR, PI3K, and PI4K iso-

forms (Figure 2E; Table S2). In addition, we mapped the

apilimod-binding region to the PIKfyve kinase domain (amino

acids 1,522–2,098, Figure 2F). Furthermore, in a competition

assay using fluorescence polarization of a labeled apilimod

analog (Cy5-apilimod), unlabeled apilimod showed an IC50 of

12 nM, indicating that this interaction is responsible for the

inhibition of the catalytic activity described above (Figures 2G

and 2H). These results demonstrated that apilimod is a potent

yet highly selective PIKfyve lipid kinase inhibitor.

Apilimod Inhibits PIKfyve Kinase Activity in Cells
To determine if apilimod affected PIKfyve function in cells, we

quantified cellular phosphoinositides upon apilimod treatment.
912–921, July 25, 2013 ª2013 Elsevier Ltd All rights reserved 913



Figure 1. Apilimod Selectively Inhibits TLR-Induced Cytokine Expression

The production of cytokines was measured by ELISA following overnight stimulation. Representative results were shown from three independent experiments.

(A) Inhibition of IL12p40 by apilimod following stimulation of cells with IFNg (50 ng/ml)/LPS (1 mg/ml), R837 (10 mg/ml) and R848 (10 mg/ml), or ssRNA (ORN 02,

5 mg/ml) (see also Figure S1).

(B) THP-1 cells were treated with apilimod in the presence of IFNg (50 ng/ml)/LPS (1 mg/ml). The data were analyzed using one-way ANOVAmethod (p < 0.0001),

indicating a significant effect of apilimod on TLR4-induced expression of IL12p40.

(C)Mouse BMDCswere treatedwith apilimod (1 mM) and challengedwith IFNg (50 ng/ml)/LPS (1 mg/ml) or R848 (0.1 mM). **p < 0.01 using the Student’s t test. Data

represent mean values ± SD.

Error bars represent SD.

See also Figure S1.
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As shown in Figure 3A, high-performance liquid chromatography

(HPLC) analysis of deacylated lipids revealed a specific dose-

dependent decrease of PI(3,5)P2 in HeLa cells treated with apili-

mod but not with the inactive analog API09 for 2 hr. Additionally,

a marked increase (up to 2.5-fold) of PI(3)P was observed, which

clearly demonstrated that apilimod inhibited PIKfyve activity in

cells and blocked the conversion of PI(3)P to PI(3,5)P2. Strikingly,

even a low-dose treatment of apilimod (10 nM) resulted in a

marked decrease of cellular PI(3,5)P2 levels. In contrast, all other

phosphoinositides tested were largely unchanged even when

cells were treated with 1 mM apilimod. These observations are

consistent with apilimod being a highly selective and potent in-

hibitor of PIKfyve (Figures 2D and 2E).

Because PIKfyve is reported to be critical for maintaining the

integrity of endosomes and lysosomes (Dove et al., 2009), we

then examined cell morphology. Upon treatment with apilimod,

we observed enlarged vacuoles in RAW264.7 cells (Figures 3B

and 3C), which were also seen upon inactivation of PIKfyve using

a dominant-negative PIKfyve mutant or RNAi (Ikonomov et al.,

2001; Rutherford et al., 2006). In contrast, treatment with

API09 did not induce vacuoles (Figure 3B). Using an early endo-
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some (GFP-FYVE) or an endolysosome (mCherry-CD63) marker,

we showed that the enlarged vacuoles originate from both early

endosome and endolysosome, which is consistent with the find-

ings in PIKfyve-deficient cells (Rutherford et al., 2006) (Figure 3D).

Hence, the vacuoles induced by apilimod are due to the disrup-

tion of PIKfyve activity. Indeed, overexpression of wild-type (WT)

GFP-PIKfyve caused the disappearance of vacuoles induced by

10 nM apilimod in A549 cells, whereas overexpression of the

dominant-negative GFP-PIKfyve-K1831E ‘‘kinase dead’’ mutant

caused more extensive vacuole formation (Figure 3E). These

data are fully consistent with PIKfyve being the cellular target

of apilimod.

PIKfyve Modulates TLR-Induced IL-12p40 Expression
To establish a functional correlation between PIKfyve and TLR-

cytokine production, we first analyzed THP-1 cells infected

with PIKfyve shRNAs. As shown in Figures 4A and 4B, knock-

down of PIKfyve in THP-1 cells led to decreased production of

IL-12p40, whereas it had little effect on IL8 production. This is

consistent with the cytokine profile observed in apilimod-treated

cells (Figure 1B).
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Furthermore, dendritic cells from mutant mice with reduced

PIKfyve activity were also defective in TLR signaling. Because

PIKfyve knockout mice are embryonic lethal (Ikonomov et al.,

2011), we utilized the spontaneous mutant mouse, ingls, which

carries a missense mutation in Vac14 (L156R) (Jin et al., 2008).

ingls mutation interrupts the interaction of PIKfyve with Vac14,

which abolishes the kinase activity of PIKfyve and reduces the

level of PI(3,5)P2, a phenotype closely mimicking that seen

during PIKfyve inhibitor application. Indeed, BMDCs from

Vac14ingls/ingls mice exhibited profound vacuole formation as

seen in apilimod-treated BMDCs from WT mice (Figure 4C). As

shown in Figure 4D, production of IL12p40 but not CXCL2 was

impaired in CD11c+ BMDCs derived from Vac14ingls/ingls bone

marrow upon treatment with IFNg/LPS or R848. These data

are consistent with the cytokine-profiling patterns observed in

cells treated with apilimod (Figure 1C). Taken together, our

data suggest that PIKfyve is the molecular target of apilimod,

revealing a link between PIKfyve and cytokine expression

induced by TLR signaling.

DISCUSSION

In this study, we characterized an important regulator of

TLR signaling through identification of the target of a small mole-

cule compound. The results uncovered a mechanism for selec-

tive regulation of TLR-driven cytokine expression mediated by

localized control of minor species of phosphoinositides in

cells. By characterizing a selective TLR-cytokine inhibitor, our

study has illustrated the power of chemical genetic approaches

in providing insights into TLR signaling. Although a PIKfyve inhib-

itor YM201636 has been described previously (Jefferies et al.,

2008), it is a weaker PIKfyve inhibitor that possesses activity

toward PI3K family members (Jefferies et al., 2008; Ikonomov

et al., 2009). Therefore, apilimod is a more desirable tool to be

used in elucidating the role of PIKfyve in important biological

processes.

Using high-content screen and cell-based high-throughput

function screen technology, a number of small molecular

agonists or antagonists for specific phenotypic changes have

been identified. Although the drug discovery pipeline is

greatly expanded with the discovery of these compounds, the

absence of efficacy target(s) and of a mechanism of action of

these leads hindered the progress of pipeline development,

such as compound optimization and safety evaluation. A

practicable drug target ‘‘fishing’’ strategy is desperately

needed to hunt for the ‘‘prey’’ of these compounds. Recently,

chemoproteomics has been shown to be a powerful tool to

address this issue (Huang et al., 2009). Our studies provided

a successful case of chemoproteomics-driven target iden-

tification. The PIKfyve regulatory complex was the only pro-

teins competed off from the affinity matrix in the presence of

active analog among the 974 proteins quantified from total

cell lysate using LC-MS/MS. This is the key step for iden-

tifying the binding partner of apilimod and enabled a rapid

target validation. Moreover, this approach could provide a rapid

and exhaustive method to predict the specificity of a

compound. As in this case, apilimod was later shown to have

no activity toward other protein and lipid kinases (Figure 2E;

Table S2).
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The target elucidation of apilimod provides a number of

benefits for drug development. First, a PIKfyve activity-based

biochemical screen could be performed to find other inhibitors.

Second, the safety issues, particularly ‘‘on-target’’ versus ‘‘off-

target’’ effects of compound, could bemonitored and addressed

during the development. More importantly, the target identifica-

tion provides an opportunity to shed light on the molecular

mechanism of PIKfyve inhibition-mediated TLR signaling defect.

This not only expands the therapeutic indications for apilimod

but also enables the expansion of the PIKfyve network down-

stream of TLR signaling to reveal more druggable nodes that

could potentially bypass the on-target toxicity induced by

PIKfyve inhibition.

It is well established that inositol phospholipids play a critical

role in intracellular signaling, and several of these specifically

regulate TLR pathways. For example, Kagan and Medzhitov

proposed that PI(4,5)P2-mediated TIRAP recruitment to the

plasma membrane is required for the delivery of MyD88 to

TLR4 (Kagan and Medzhitov, 2006). Also, class I PI3K inhibitors

abolish endosomal TLR-induced type I IFN production in pDC

by blocking nuclear translocation of IRF7, but not the uptake

and endosomal trafficking of ligands (Guiducci et al., 2008).

In contrast, PI3K could function as a negative regulator for

TLR-induced IL-12 synthesis in DCs and THP-1 cells (Fukao

et al., 2002). Here, we show that a mammalian PI kinase,

PIKfyve, regulates TLR signaling via modulation of PI(3)P and

PI(3,5)P2 levels. Interestingly, PI(3)P and PI(3,5)P2 are two of

the least-abundant phosphoinositide species in cells (�0.25%

of cellular inositol lipids) yet are critical for the maintenance of

a normal endosomal compartment. Their critical role becomes

clear in the presence of PIKfyve inhibitors: where treated cells

form large vacuoles of endosomal/lysosomal origin (Figure 3D).

It remains to be seen how PIKfyve-dependent modulation of

endosomal PI(3)P and PI(3,5)P2 levels regulates specific TLR-

cytokine expression. Because the PIKfyve kinase knockin

mice are embryonic lethal (data not shown), apilimod will

become an important tool to dissect the function of PIKfyve

lipid kinase activity in TLR pathways as well as other biological

processes.

In summary, we uncovered a role of PIKfyve in selectively

regulating TLR signaling. Our results thus propose an additional

druggable node for selective regulation of TLR-induced IL-12/

IL-23 expression and, in turn, provide opportunities for pharma-

cological intervention in IL-12/IL-23-mediated diseases.

SIGNIFICANCE

Selective low molecular weight inhibitors of aberrant cyto-

kine expression are a highly desirable therapy to treat

autoimmune disorders (Dinarello, 2010). Although several

small molecule signaling modulators are under investiga-

tion, such as p38 and IKKb inhibitors, there are very few

disease-modifying compounds that target the TLR-

cytokine axis and none of which that has a known mech-

anism of action (Hennessy et al., 2010). Our results un-

cover the molecular and therapeutic target of a clinically

evaluated anti-inflammation drug that inhibits TLR-driven

IL-12/IL-23 production. This report demonstrates a role

for PIKfyve in TLR signaling and illustrates the power of
912–921, July 25, 2013 ª2013 Elsevier Ltd All rights reserved 915



Figure 2. Apilimod Binds to and Inhibits PIKfyve Kinase Activity

(A) Structure of apilimod, its analogs, and IC50 values for IFNg (50 ng/ml)/LPS (1 mg/ml)-induced IL-12p40 secretion in THP-1 cells.

(B) Scatterplot depicting proteins identified in a quantitative chemical proteomics experiment. Proteins are plotted as a function of the percent competition with

apilimod relative to DMSO, on the y axis, versus the interaction specificity (e value) on the x axis (see also Table S1 for protein list for apilimod quantitative

chemical proteomics).

(C) U2OS cell lysates were preincubated with DMSO or indicated competitor compound for 30 min before adding beads with immobilized APA10. The PIKfyve

captured on the beads was detected by western blot.

(legend continued on next page)
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Figure 3. Apilimod Inhibits PIKfyve Kinase Activity in Cells

(A) HeLa cells metabolically labeled with [3H]inositol for 72 hr and treated with two doses of apilimod or the inactive analog API09 for 120 min. Lipids were

extracted, deacetylated, and analyzed by HPLC. Data were normalized with cells treated with DMSO vehicle control and analyzed using the Student’s t test (*p <

0.05, **p < 0.01), showing a significant difference of the indicated phosphoinositide levels between API09 and apilimod-treated samples. Error bars represent SD.

(B) Images of RAW264.7 cells treated with DMSO, apilimod (10 nM), or API09 (10 nM) for 3 hr. The results are representative from three independent experiments.

(C) Electron microscope images of RAW264.7 cells treated with apilimod (200 nM) for 6 hr.

(D) RAW264.7 cells stably expressing GFP-FYVE (early endosome marker) or mCherry-CD63 (endolysosome marker) were treated with DMSO or apilimod

(100 nM) for 60 min. Images were acquired using a Zeiss LSM510 confocal microscope with 633 lens. Scale bar, 5 mm.

(E) A549 cells transfected with GFP-PIKfyve (mouse) or GFP-PIKfyve K1831Emutant (mouse) were treated with 10 nM apilimod for 4 hr and imaged using a Zeiss

Axiovert microscope. Arrows indicate GFP-positive cells. The results are representative from three independent experiments.
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chemical genetic approaches. The identification of PIKfyve

as the molecular target of apilimod yields an additional

signaling node within the TLR signaling cascade that

could be targeted in inflammatory conditions and allows

the optimization of the compound for further development.
(D) The effect of apilimod on human PIKfyve kinase activity was measured in vitr

(E) Lipid kinase inhibition profiling for apilimod (see also Table S2 for protein kina

(F) The binding of apilimod with indicated human PIKfyve truncants was assesse

(G) The KD of Cy5-apilimod to PIKfyve kinase domain was determined.

(H) The IC50 of apilimod for the interaction between Cy5-apilimod and PIKfyve ki

See also Table S2.
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More importantly, we demonstrate that apilimod is a

potent and highly selective PIKfyve inhibitor and provide

the scientific community with a powerful tool to eluci-

date the role of PIKfyve kinase activity in multiple cellular

processes, including endolysosomal integrity, receptor
o by quantifying the ratio of synthesized PI(3,5)P2 to an internal standard.

se inhibition profiling for apilimod).

d using a APA10-based Sepharose HP affinity resin.

nase domain was determined. Error bars represent SD.
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Figure 4. PIKfyve Modulates TLR-Induced IL12p40 Expression

(A) THP-1 cells expressing indicated shRNAs were lysed and blotted with indicated antibodies.

(B) THP-1 cells expressing indicated shRNAs were stimulated with IFNg (50 ng/ml)/LPS (1 mg/ml) overnight. The cytokine production was measured by ELISA.

**p < 0.01 using the Student’s t test indicating a significant difference on IL12p40 production between cells expressing control (NT) and PIKfyve shRNA.

(C) Images of BMDCs from WT and ingls mice and those from WT BMDCs treated with DMSO or apilimod (1 mM).

(D) BMDCs from WT or ingls mice were challenged with IFNg (50 ng/ml)/LPS (1 mg/ml) or R848 (0.1 mM). The cytokine production was measured by ELISA

following overnight stimulation. Representative results are from three independent experiments. **p < 0.01 using the Student’s t test indicating a significant

difference between the samples from WT and ingls mice with the same treatment.

Error bars represent SD.
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trafficking, autophagy, and neurodegeneration among

others.
EXPERIMENTAL PROCEDURES

Constructs and Reagents

The lentivirus mCherry-CD63 was made as previously described by Kim

et al. (2008). pENTR-PIKfyve (mouse) was purchased from Invitrogen.

pENTR-PIKfyve K1831E was created using QuikChange XL Site-Directed
918 Chemistry & Biology 20, 912–921, July 25, 2013 ª2013 Elsevier L
Mutagenesis Kit (Stratagene). pENTR-PIKfyve (human) was purchased from

GeneCopoeia. The PIKfyve WT and kinase-dead mutant were subcloned

into pcDNA6.2/N-EmGFP-DEST vector (Invitrogen) using LR clonase.

All the control and gene-specific shRNAs used in the experiments were

ordered from the Sigma-Aldrich MISSION shRNA collection. The control NT

shRNA is the pLKO.1-puro nonmammalian shRNA control. This control con-

tains a shRNA insert that does not target human and mouse genes.

PIKfyve antibody was purchased from Abnova. Tubulin antibody was

purchased from Abcam. All TLR ligands were purchased from InvivoGen. All

ELISA kits were obtained from R&D Systems.
td All rights reserved
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Cell Culture

THP-1, U2OS, RAW264.7, and A549 cells were purchased from ATCC and

maintained under standard conditions described in the ATCC instructions.

Human PBMCs were isolated using Ficoll (GE Healthcare). The isolation and

in vitro differentiation of mouse bone marrow cells were performed as previ-

ously described by Gilliet et al. (2002). Cell differentiation was confirmed by

CD11c staining.

Compound Affinity Pull-Down and Mass Spectrometry Analysis

Compound affinity purification, mass spectrometry, and data analysis were

performed essentially as previously described (Huang et al., 2009), except

that the cell lysate was made from THP-1 cells, and apilimod bioactive

analog APA10 was coupled to NHS (N-hydroxysuccinimide)-activated

Sepharose 4 beads. The e value on x axis indicates the frequency of each

protein that was detected in prior proteomics experiments. Small e values

are considered advantageous because this suggests a specific protein

interaction.

Expression of Human PIKfyve

HEK293T cells were seeded in 6-well plates at a density of 5 3 105 cells per

well in DMEM containing 10% FCS. After 24 hr, when a confluency of about

50% had been reached, the cells were transfected with an expression plasmid

encoding human PIKfyve as a fusion protein with GST. Transfection was done

using FuGENE (Roche; 3 ml per well) and 1 mg/well of the DNA. Forty-eight

hours after the transfections, cells were washed with ice-cold PBS and then

scraped into 0.5 ml ice-cold lysis buffer (50 mM HEPES [pH 7.5], 150 mM

NaCl, 1 mM EDTA, 1% Nonidet P-40, 10 mM b-glycerophosphate, protease

inhibitor [Roche]). Following centrifugation, the supernatant was harvested,

followed by addition of glutathione Sepharose beads (GE Healthcare; equili-

brated with lysis buffer; approximately 100 ml of packed beads/ml of lysate).

After 1 hr incubation with end-over-end agitation, the beads were washed

three times with lysis buffer with 1% Nonidet P-40, then three times with lysis

buffer without NP40. Beads were collected by centrifugation at 500 3 g and

used directly in the enzyme assay.

In Vitro Kinase Assay

A total of 5 ml of the compound or its dilution series in the assay buffer

(25 mM HEPES buffer, 1 mM DTT, 5 mM glycerophosphate, 2.5 mM

MgCl2, 2.5 mM MnCl2, 120 mM NaCl, 1 mM EDTA), 10 ml of human PIKfyve

enzyme purified from HEK293 cell lysates, and 5 ml 50 mM ATP solution

were preincubated for 5 min at the room temperature. Then, 5 ml of the di-

C8 PI(3)P substrate (Echelon Biosciences) was added into the wells to

have the final concentration of the substrate at 10 mM to initiate the reaction.

The reactions were allowed to proceed at room temperature for 2 hr and then

quenched by adding 25 ml acetonitrile/water (50:50 v/v) solution, which also

contained 25 mM EDTA and 1 mM di-C8-sPI(3,4)P2 (internal standard;

Cayman Chemical). After centrifugation, the plate was sealed for LC-MS/

MS analysis. The MS/MS data were acquired on a Thermo TSQ triple-

quadruple MS system (Thermo Fisher Scientific) coupled to a Thermo LX2

HPLC system. The LC system was run in the reverse-phase chromatography

mode using a Waters XBridge C18 column (2.1 3 30 mm, 3.5 mm). The LC

mobile phase contained 0.1% dimethylisopropylamine (DMIPA) in either

water (mobile A) or acetonitrile (mobile B). The flow rate was 0.8 ml/min

with a rapid gradient from 5% to 95% B in 1.2 min. The injection volume

was 5 ml. The MS/MS transition for PI(3,5)P2 was 745.06 / 158.98 with

23 eV as collision energy, whereas the transition for internal standards was

761.06 / 158.98.

All other kinase assays were performed internally by Novartis kinase-

profiling service except for assays for PIP4K and PIP5K. The effect of apilimod

on PIP4K and PIP5K isoforms was determined by Millipore IC50 Profiler

Service.

Measurement of Cellular Inositol Lipid Levels

HeLa cells were incubated for 72 hr in inositol-free DMEM (MP Biomedicals)

supplemented with 10% dialyzed FBS (Invitrogen) and 25 mCi/ml 3H-myo

inositol (MP Biomedicals). Compounds were then added to the cells and incu-

bated for 120 min. Prior to lipid extraction, cells were washed twice with PBS

and incubated 15 min in inositol-free DMEM supplemented with 10% dialyzed
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acid in ice for 15 min, scraped, and centrifuged. Pellets were washed

twice with ice-cold 1 ml 0.1 M EDTA and deacylated as described by Kirk

et al. (1990). Deacylated phosphoinositides were separated using HPLC

(Shimadzu) using a flow rate of 0.5 ml/min and a gradient of degassed H20

(pump A) and 1 M (NH4)2HPHO4 (pH 3.8) (pump B) as follows: 0% B for

5 min; 0%–4% B for 15 min; 4% B for 80 min; 4%–12% B for 20 min; 12%

B for 60 min; 12%–80% B for 40 min; 80% B for 35 min; and 80%–0% B

for 5 min. Peaks were identified using deacylated 32P-standards of PI(3)P,

PI(3,4)P2, PI(3,5)P2, and PI(3,4,5)P3, and internal standards. Radioactivity

was detected by an online flow scintillation analyzer (B-RAM; LabLogic

Systems).

Apilimod/PIKfyve Truncant-Binding Assay

The Sf9 insect cells expressing PIKfyve truncants with an N-terminal His tag

were lysed in 50 mM Tris (pH 8.0), 0.3 M NaCl, 10% glycerol, 2 mM TCEP,

and 0.05% Tween, including a cocktail of protease inhibitors (cOmplete

EDTA-Free). The supernatant was filtered and loaded on a SpinTrap device

(GE Healthcare) containing NHS-activated Sepharose HP coupled to the

apilimod derivative APA10. After 30 min incubation, the resin was washed

with TBS. A first elution step was performed with 10 mM apilimod in TBS. A

second elution step was performed with 100 mM glycine buffer (pH 2.7). The

eluate was quantitatively precipitated using sodium deoxycholate and tri-

chloroacetic acid. The pellet was dissolved in 30 ml sample buffer for SDS-

PAGE and western blot.

PIKfyve Kinase Domain/Apilimod Affinity Fluorescence Polarization

Assay

Tomeasure the Cy5-apilimod/PIKfyve kinase domain-binding affinity, an equal

volume of 10 nM Cy5-apilimod and of different concentrations of PIKfyve

kinase domain proteins was incubated in 384 black microtiter plates for

90 min. After a short spin, fluorescence polarization was measured on a

PerkinElmer EnVision or a Molecular Devices Analyst GT plate reader. The

KD was determined by fitting a hyperbola using the program Prism (GraphPad

Software). Each data point was derived from n = 4 wells.

Competition by unlabeled apilimod was measured under the same condi-

tions. Its IC50was determined by fitting of a sigmoidal dose-response curve

using the Prism.

Virus Production and Infection

Lentivirus shRNA was packaged in 293T cells via cotransfection of pLP1,

pLP2, and pLP/VSVG. Retrovirus was packaged in 293T cells via cotransfec-

tion of Gag-Pol and VSVG. RAW cells were infected with supernatant contain-

ing virus plus polybrene (Sigma-Aldrich; final concentration 8 mg/ml) overnight.

The stable cell lines were maintained in medium containing puromycin

(6 mg/ml) or G418 (400 mg/ml). THP-1 cells were infected with supernatant con-

taining lentivirus plus polybrene and HEPES (final concentration 10 mM) via

spin infection (90 min, 2,100 rpm). The stable cell lines were maintained in

medium containing puromycin (2 mg/ml).

Live-Cell Imaging

For live-cell imaging, cells were seeded into a P35 glass bottom dish (MatTek)

(4 3 105 cells/dish) and maintained in phenol red-free DMEM supplemented

with 5% FBS and 25 mMHEPES (pH 7.4). Images were acquired using a Zeiss

LSM510 Meta confocal microscope with a Plan-Apochromat 633/1.4 Oil DIC

lens. Zeiss LSM Image Browser was used for imaging analysis.

Mouse Breeding

Mouse strains ingls (stock number 003095) and C57 BL/6 were purchased

from Jackson Laboratory. All mice were maintained according to NIBR animal

guidelines. The use of mice in this study is approved by Novartis Institutional

Animal Care and Use Committee as well as Office of Animal Welfare

Compliance.
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