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Suppose (X, d) is a metric space and (To,..., T,,} is a family of quasi- 
nonexpansive self-mappings on X. We give conditions sufficient to guarantee that 
every possible iteration of mappings drawn from {T,, ,..., T, 1 converges. As a conse- 
quence, if C,,..., C,v are closed convex subsets of a Hilbert space with nonempty 
intersection, one of which is compact, and the proximity mappings are iterated in 
any order (provided only that each is used infinitely often), then the resulting 
sequence converges strongly to a point of the common intersection. 

INTRODUCTION 

This paper was motivated by the following question: Suppose H is a 
Hilbert space and CO,..., C, are closed convex subsets of H with nonempty 
intersection. Denoting the proximity map of H on Ci by Pi, under what 
circumstances can we iterate (P,, P, ,..., P,v} randomly and obtain a 
convergent sequence? By a random iteration we mean one of the form 

xg E H, 

x, = P r(n)Xn- I (n 2 1X 

where (r(n)} is an arbitrary sequence drawn from (O,..., N}. 
Prager [ 1 ] showed that such a random iteration always converges if H is 

finite-dimensional and the Ci are linear subspaces of H, while Amemiya and 
Ando [2] proved weak convergence when H is infinite-dimensional and the 
Ci are closed linear subspaces. Under recurrence, selection, or periodicity 
hypotheses-which are, of course, nonrandom-more is known (cf. [3-61). 
On the other hand, nothing is known about random iterations when H is not 
a Hilbert space (but see [7, 81). 

We prove the strong convergence in Hilbert space when one of the Ci is 
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compact (and, of course, ni Ci # IZI), provided the compact proximity 
mapping is used infinitely often in the iteration. We state a more general 
version of this, involving quasi-nonexpansive mappings; the crux of the 
argument is that a finitely generated semigroup of quasi-nonexpansive 
mappings is uniformly quasi-nonexpansive if each generator is strongly 
quasi-nonexpansive. 

Replacing compactness with symmetry about the origin, we are able to 
prove a similar result-with weak convergence replacing strong 
convergence-but only for three sets. Strong convergence remains unresolved 
in this case, as does weak convergence for more than three sets or without 
symmetry. 

1. STRONGLY QUASI-NONEXPANSIVE MAPPINGS 

Throughout this section, (X, d) denotes a metric space (not necessarily 
compact or complete). A mapping T: X+ X is said to be quasi-nonexpansive 
if for each f in F(T), the fixed-point set of T, and for each x in X. 

d(Tx,f) < dbf). (1.1) 

T is strictly quasi-nonexpansive if the inequality in (1.1) holds strictly when 
TX # x. T is said to be strongly quasi-nonexpansive if for each f in F(T) and 
E > 0 there exists 6 > 0 such that 

d(x, f ) - d(Tx, f ) < 6 3 d(x, TX) < E. (1.2) 

(This implies T is quasi-nonexpansive.) Equation (1.2) is analogous to strong 
nonexpansiveness, introduced in Bruck and Reich [6]; indeed, a mapping 
strongly nonexpansive in the sense of [6] is strongly quasi-nonexpansive in 
the sense of (1.2), uniformly in f E F(T). 

Finally, a family 3 of self-mappings of X is said to be uniformly quasi- 
nonexpansive if each T in 5‘~ is quasi-nonexpansive, the common fixed-point 
set F(,Y) = r) (F(T): TE Y] is nonempty, and for each f in F(,Y) and 
E > 0 there exists 6 > 0 such that (1.2) holds for each T in 9. 

Paralleling the proofs of Proposition 1.1 and Lemma 2.1 of [ 61, we easily 
prove: 

LEMMA 1.1. If T, and T, are strongly quasi-nonexpansive and F(T,) fl 
F(T,) # 0, then T, T, is strongly quasi-nonexpansive and F(T, T,) = 
W,) n W’,). 

If (T,,..., TV} are quasi-nonexpansive mappings on X, we denote by 
CT,,,..., TN) the multiplicative semigroup generated by {T,,..., TV) (including 
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the identity I). The lemma guarantees that if each Ti is strongly quasi- 
nonexpansive then each element of (T,,..., T,) is also strongly quasi- 
nonexpansive, provided the Ti have a common fixed-point. Establishing the 
uniform quasi-nonexpansiveness of (T,,..., 7’,) seems to require an additional 
hypothesis. We say that T satisfies condition (P) provided 

d(x,, TX,) + 0 as n + co * (x,) has a convergent subsequence. 

For continuous T this is equivalent to: F(T) is compact and for each E > 0 
there exists 6 > 0 such that d(x, TX) < 6 =X d(x, F(T)) < E. When T is the 
proximity map of a Hilbert space onto a closed convex subset C, for 
example, (P) is equivalent to the compactness of C. 

An idea of Amemiya and Ando [2] can be used to prove: 

LEMMA 1.2. Suppose a semigroup of quasi-nonexpansive self-mappings 
of X is ftnitely generated. If the generators have a common fixed-point, are 
uniformly continuous, are strong!v quasi-nonexpansive, and satisjjl condition 
(P), then the semigroup is uniformly quasi-nonexpansive. 

We shall prove a more precise version of Lemma 1.2. since we do not 
want to assume that each generator satisfies (P): 

LEMMA 1.2’. Suppose T, ,..., TV are strongly quasi-nonexpansive, 
uniformly continuous, and have a commonfixed-point. If T,, satisfies (P) then 
(To,..., T,) is “T,,-front loaded” uniformly quasi-nonexpansive in the sense 
that for each E > 0 and common fixed-point f, there exists 6 > 0 such that for 
anv S in (T,,,..., TV), 

d(x, f) - d(ST,x, f) < 6 + d(x, ST,x) < E. 

Proof. By induction on N. The case N = 0 follows because 

d(x,f)-d(T,x,f)~d(x,f)-d(Tljx,f) 

and because d(x, T,,x) small implies d(x, F(T,J) is small (by condition (P)). 
which in turn implies d(x, Ttx) is small. 

Now assume the lemma is true for a certain N > 0, and consider 
generators T,, ,..., TN+, . Suppose we are given fO in n.fZd F(T,) and E > 0. 
Note first that we can choose Q > 0 such that 

Nfl 

d(x, T,x) < a for 0 < k < N + 1 3 d X, n F(T,) < 42. (1.3) 
k=O 
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(If this were not so, we could find a sequence ix,,) such that d(x,, Tkx,,) -+ 0 
as n + co for each k, yet 

d 
( 
x,, n W-J 2 E/2. 

1 
(1.4) 

k 

Since To satisfies (P), some subsequence of {x,) converges; without loss of 
generality we may assume {x”) itself converges to some x*. Since the Tk are 
continuous and d(x,, Tkxn) + 0, x* E F(Tk) for each k, surely contradicting 

(l-4)*) 
Second, by uniform continuity we can choose c > 0 such that 

d(X, J’) < < =S d(T,X, Tk Y) < a/3 

for each 0 < k < N + 1. 

(1.5) 

Finally, by the induction hypothesis we can choose 6 > 0 such that if Q is 
generated by a proper subset of (To ,..., TN+, }, then 

4x, A,) - d(QT,x, fo) < 6 * 4x, QT,x) < min{a/J, 4, (1.6) 

moreover, since each Tk is strongly quasi-nonexpansive, such that 

d(X, fo) - d( TkX, f,) < 8 3 d(X, TkX) < a/3 (O<k<N+ 1). (1.7) 

Now let SE (To,..., TN+ ,) and suppose d(x, f,) - d(ST,x, f,) < 6. 
Without loss of generality we may assume all of the T, are needed to 
generate S. For any Tk, then, we can find P, in (To,..., TN+ ,) and Qk in 
(T,, ,..., Fk ,..., T,,,, 1) such that S = P, Tk Qk (i.e., Qk consists of the part of 
some factorization of S which is prior to the first occurrence of Tk; it may 
happen that Qk = Z). 

Now 

d(x, T,X) < d(X, Qk T,x) + d(Qk T,x, Tk Qk T,x) + d(T, Qk Tax, T/P). 

Since 

d(Qk T,,x, f,) - d(T, Qk Tax, f,> < d(Xv f,) - d(SToxv fo) < 6, 

we have by (1.7) 

Since we also have 

d&?/c T,x, Tk Qk Tdc) < a/3- 

4x, f,> - d(Qk Toxv fo) Q d(x, fo) - WTox, fo> < 6, 

(1.8) 

(1.9) 
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by (1.6) we have 

and 

4~ Qk 7.0~) < o/3, 

d(x, Qk T,x) < t-. 

By (1.5) the latter implies 

d(T,x, TkQk T,x) < a/3. 

Summing (1.9), (l.lO), and (1.11) and using (1.8) thus yields 

d(x, T,x) < a (O<k<N+ 1). 

In view of (1.3), this means 

or finally, since 

(1.10) 

(1.11) 

d(x, ST,+) d 4x,./-) + dW’ox,f) d 2dk.f) 

for any f in n:Td F(T,), we have 

d(x, ST,x) < E. Q.E.D. 

The application of Lemma 1.2 to random iterations is immediate: 

THEOREM 1.1. Suppose To ,..., TA, are strongly quasi-nonexpansive, 
uniformly continuous, and have a common fixed-voint. If To satisfies 
condition (P), then any random iteration 

x0 E x, 

xtl = Tr(d,- I (n> 1) 

for which r(n) = 0 for injlnitelq, many n, converges to a point of lim SUP~+~ 
Wr,d 

Proof. Let f be a common fiied-point of the Ti. Since the Ti are quasi- 
nonexpansive, Wnvf 11 is a nonincreasing sequence, and therefore 
converges to a limit. It follows from the strong quasi-nonexpansiveness of the 
mappings Ti that lim,,, d(x,, x,- ,) = 0. 

Whenever k is an integer such that n(k) = 0, we have for each n > k 

X, = s, TOXk- , 
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for some S, in (T,,,..., T,,,). By Lemma 1.2’, therefore, if E > 0 is given we 
can choose k so large that 

d(x,,-q-,) <E for all n > k. 

This obviously implies (x,} is Cauchy. We do not need to assume X is 
complete, because for infinitely many k we have xk = T,x,-, , while 
lim n-a, d(x,, x,- ,) = 0; since TO satisfies (P), (x,} has a convergent subse- 
quence, and hence (x,} itself converges. 

Let x* denote the limit. Since lim n-sG d(x,, x,- ,) = 0, for any i for which 
r(n) = i infinitely often we have T,x* =x*, i.e., x* E lim sup,,, F(T,.,,,). 

Q.E.D. 

COROLLARY 1.1. Suppose (X,d) is a compact metric space and 
(To,..., TN} are continuous, strictly quasi-nonexpansive self-mappings of X 
with a common faed-point. Then every random iteration drawn from 
{To,..., TN} converges. 

Proof It is a simple exercise to show that a continuous, strictly quasi- 
nonexpansive mapping on a compact space satisfies condition (P) and is 
strongly quasi-nonexpansive and uniformly continuous. Q.E.D. 

COROLLARY 1.2. Suppose C, ,..., C, are closed convex subsets of a 
Hilbert space H with nonempty intersection. Let Pi denote the proximity map 
of H on Ci. If C, is compact, then any random iteration of {P,,,..., P,$!} which 
uses P, infinitely often, converges strongly. 

Proof: The proximity map of H onto a closed convex subset C of H is 
the resolvent (I + A)- ’ of the subdifferential A of the indicator function of 
C; and as such is strongly nonexpansive (cf. [6]). In particular, proximity 
mappings in Hilbert space are strongly quasi-nonexpansive. Thus the 
corollary follows directly from the theorem. Q.E.D. 

Of course in both corollaries the limit is in the lim sup of the fixed-point 
sets. 

2. A NON-COMPACT CASE 

Compactness plays an important role in Theorem 1.1 via Condition (P). It 
remains an open problem whether compactness is necessary in Corollary 1.2, 
but in its absence we do have a curious special case. 

THEOREM 2.1. Suppose H is a Hilberr space and C,, C, , C, are 
symmetric closed convex subsets of H (that is, Ci = -Ci). If the proximity 
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mappings P,, P,, P, are iterated in any order, then the resulting sequence 
converges weakly. 

It will be seen that the restriction to three sets is critical to our method of 
proof. This based on more explicit estimate possible in the case of two sets: 

LEMMA 2.1. Let P,, P, be the proximity mappings of a Hiibert space H 
onto symmetric closed convex sets C,, C,. Then the iteration 

xo E H, 
X ZntI=POXznr XZn+Z==P,xz,+, (n>O) (2.1) 

converges strongly, with estimate 

II-%I -xml12 G 3 1142 -3 llXnllZ (n>m> 1). (2.2) 

Proof: Put f(x) = max(fo(x),fi(x)}, where L(x) = l/2 d(x, C,)‘. Being 
the maximum of two continuous convex functions, f itself is a continuous 
convex function. It is well-known that gradf,(x) = x - P,(x), and it is easy to 
see that the subdifferential LJJ off, defined by 

af(x)= (wEH: f(y)>f(x)+(w,y-x) for ally in H), 

is given by 

af(x) = coWdfi(xkUx) =fix)I 

(where co denotes the convex hull). In particular, af (x) = x - Pi(x) if x is in 
Ci and not in C,-i. Thus the iteration defined by (2.1) assumes the form 

X n + 1 E X” - 8f (x,) (n > 0). (2.3) 

Moreover, since Co and C, are symmetric, f is an even function. 
It is also well-known that PO and P, are firmly nonexpansive, i.e., 

11(X-y) - (PiX -piY)l12 < IIx -YI12 - llpix -piYl12’ 

Taking x = x, and y = 0, we find 

IIL, -xnl12 G IIxnl12 - II-%+ll12. (2.4) 

It follows that (11x” ) is nonincreasing. So is (I/x, - x, +, II}; for when n is odd 
we have x,+ , =P,xn, and 11x,--x,+1 lI=Ilx,-~,~,ll~II~,-x,-,11 since 
X n-, = P, x,-~ E C, and Plx, is the point of C, closest to x,. A similar 
argument for n even completes the proof that {11x, - x, f i II} is nonincreasing. 
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Thus (2.1) is a descent method for f: f(x,+ ,) <f(x,) for all n. Let 
n>i> 1. Then 

J-t-9) >.flx,) =ft-x,h 

since f is even, while by the subdifferential inequality, 

ftmxn) >f(xi) + (%lxi), -x, - xi)* 

Combining these and noting that xi -xl+, E af(x,) by (2.3), we conclude 
that 

(xi-xi+l9 X, + xi) > O whenever n > i > 1. (2.5 1 

But surely for n > m we have the identity 

IIX, -xnl12 = llTnl12 - IIXnl12 + w, --%,-d 
n-1 

=Ilx~l12~Ilx~~12+2 1 (xi+l-xi,xn)e 
i=m 

Thus by (2.5) we have 

n-1 
lIxn-xX,I12~Ilx~I12~lIxnl12+2 x (Xi-Xi+*rXi) 

i=m 

n-l 

= 2(llxml12 - llxnl12) + C /Ixi -xi+ I II*’ (2.6) 
i=m 

We are finally led to (2.2) by combining (2.4) with (2.6). Q.E.D. 

The identity used in deriving (2.6) was used in a similar context by 
McCormick and Rodrigue [9 ]. 

Proof of Theorem 2.1. Consider the iteration 

xo E H, 

xtl =prwLI~ n> 1. 

If only two of the indices 0, 1, 2 appear infinitely often in (r(n)) then the 
iteration is essentially of the form PO y, P, PO y, POP, P,y,..., since Pi = Pi. It 
is known (cf. [6]) that in this case {x,} converges strongly to a point of 
con c,. 

Thus we may assume all three indices 0, 1, 2 appear infinitely often in 
{r(n)}. Consider a positive integer m, and find the smallest integer n > m 
with the property that x,+, = Pzx,. This means that in the iteration, the 
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terms between x, and x, were obtained by iterating only P, and P, , and thus 
by Lemma 2.1, 

11% -4z G 3 11-412 - 3 IIxnl12. (2.7) 

Thus 

II-~, - P*%?ll ,< II&n -&II + lk - P*%II + llP*% - PAnIl 

~2ll%l --%ll + II% -&I+III 

( since x, + , = P2x, and P, is nonexpansive). Therefore, by the 
Cauchy-Schwarz inequality and (2.4), (2.7) we have 

II4n--Pz~nll* ~6ll~,-~mll* +3 Ik,--X,+,11* 

< 18 11-412 - 18 IIx,+ 1 II*. 

(The constant 18 can be improved.) Since { ]]xJ) converges, therefore 
lim m-m Ilx, -f’2x,II = 0. B y symmetry we now have 

lim I]x, - Pix,(l = 0 (i=O, 1,2). 
m-m 

It follows that all weak subsequential limits of (x,) lie in C, n C, n C,. 
By a theorem of Reich [lo], however, limm,,(x,, u, - u2) exists for every 

u,, uj in n Ci. It readily follows that (x,,,] can have at most one weak subse- 
quential limit in n Ci. Thus (x,} does indeed converge weakly, as claimed. 

Q.E.D. 

3. INTERLEAVING ITERATIONS 

Throughout this section (X, d) again denotes a metric space. A special role 
is played by mappings which satisfy, for some f, E X and increasing 
function 2: ]O, co)-+ ]O, co), 

4x9 7-x) < WbLl)) - w(mfo)) (3.1) 

for all x E X. Their importance arises from an observation made by Golub et 
al. [4]: if X is a Hilbert space, C is a closed convex subset of X, and the 
closed ball of radius 6 > 0, centered at f,, is entirely contained in C, then 
there exists ,l = A, such that (3.1) holds for T= the proximity map of X on 
C. Indeed, if T is a nonexpansive mapping in Hilbert space with 
BG(f)=W), then 

23 (lx - WI < 11x-f II* - II TX -f It*. 

The importance of (3.1) in iterations arises from: 
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LEMMA 3.1. Suppose two mappings T, and T, satisfy (3.1) for the same 
A and fO. Then T, T, also satisfies (3. l), with the same 13 and fO. 

Proof This is trivial, because 

d(x, T, T,x) < d(x, T,x) + d(T,x, T, T,x) 

< Whfo)) - W(T,x&)) + WV,x~.fiJ) - WT, 1 TzxJJ) 

= WCU,)) - W(T, TA&)). QED. 

We shall call a sequence (T,,) of self-mappings of X iteration-normal if for 
all x, E X the iterates 

x,, = T,,x,-, (n> 1) 

converge and the same is true of every shift (T,, T,, , ,...I of the original 
sequence. 

THEOREM 3.1. Let (X, d) be complete. If IT,,} is iteration-normal, each 
T,, is nonexpansive, and {P,) is a sequence of self-mappings of X which 
satisfy (3.1) for some increasing A: [0, co)+ [O, co) and some 
f, E nF=, F(T,,), then the sequence {T, , P, , T,, P, ,... } obtained by 
“shuffling” (T,,} with {P,} is also iteration-normal. 

Proof. Since the hypotheses are invariant under a shift, it suffices to 
show that 

(x0, P,xo, T,P,xo, P,T,P,-G~--I (3.2) 

converges for any x, E X. To this end, define (x, } by 

x, = T,P,,x,-~ (n > 1). 

Thus (x,) is the sequence of even-numbered terms of (3.2) (taking x, as the 
zeroth). Temporarily fix m and define y,, y, + , ,... by 

For any i > m, 

Y, =x,7 

Y,= T,,Y,-, (n > m). 

d(xiv Yi)=d(TiPiXi-l, TiYi-1) 

< d(PiXi- 1, Yi- 1) 

<<(xi-,,yf-l) + d(xi-1, Pixi-l) 

<d(xi-,v~-l) +13(d(xi-,,f,))-‘(d(Pixi-,,f,)), 



RANDOM PRODUCTS OF CONTRACTIONS 329 

since Ti is nonexpansive. Because f0 is a tixed-point of Ti this leads to 

d(XiV Yi> < d(xi- 19 Yi- 1) + lCdtxi- 1 ?fO)> - n(d(xi~f,)) (i > m). 

Summing for i = m + l,..., n and telescoping, we get 

We deduce from (3.3) that {A(d(x,,f,))} is nonincreasing, hence convergent. 
Put L = lim A(d(x,,f,)). Then (3.3) implies 

lim sup 4x,, 4’,) < 44x, Jo)) - L. 
n-m 

Since (T,,} is iteration-normal, however, ( JJ,,,} converges to a point f, (which 
depends on m, in general); and we therefore have 

lim sup d(x,,f,) < W(x,,f,)) -L. 
n--Z?= 

Since L is independent of m, this shows If,,,) is Cauchy and hence 
convergent. For f= lim f, we therefore have 

lim sup d(x,,f) < lim sup d(.u,.f,) + d(f,.f) 
n+cc n-cc 

G w(x,Lfo)) -L + 4fm.f) 

for any m > O-which proves {x,} converges to J 
The odd-numbered terms of (3.2) are given by (P,x,); and since 

we have lim d(x,, P,x,) = 0, finally proving that (3.2) converges. Q.E.D. 

Note that if we take each T,, = I, Theorem 3.1 asserts that (P,} can be 
iterated in any order, with the resulting sequence converging. Note also that 
we do not identify the limit in terms of the fixed-point sets of the T,, P,. 

When X is a subset of a Banach space we shall call a sequence (T,,} of 
self-mappings of X weakly iteration-normal if for each x0 in X the iteration 
x, = T,,x,-, (n > 1) converges weakly, and the same is true of every shifted 
sequence {T,, T,, , ,... ). Using the weak lower-semicontinuity of the norm, 
we can prove the following by an argument similar to that of Theorem 3.1. 
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THEOREM 3.2. Suppose X is a weakly compact subset of a Banach space 
and (T,,} is weakly iteration-normal on X. Suppose {P,} is a sequence of self- 
mappings of X which satisfy (3.1) for some increasing J. and some 
f, E OF=, F(T,). Then {T,, P,, T,, Pz ,... }, obtained by “shuffling” {T,,} 
with {P,,}, is also weakly iteration-normal. 

We omit the proof. We point cut that in both theorems a more general 
kind of “shuffling” can be permitted: it suffices that every term of (T,,} is 
used in the shuffled sequence, and in the same order, whereas any number of 
P’s can be used, including none, and without preserving order. This is 
because the identity map satisfies (3.1), and any product of maps satisfying 
(3.1) also satisfies (3.1). 

COROLLARY 3.1. Suppose (C,: a E A } is a family of closed convex sets 
in Hilbert space, while K,, K,, K, are symmetric closed convex sets with 
K, n K, n K, (7 int n {C,: a E A} # 0. Then when the proximity mappings 
of these sets are iterated in any order, the resulting sequence converges 
weakly. 

Proof Combine Theorem 3.2 with Theorem 2.1. 

4. REMARKS 

The essential restriction in our results on random iterations, that the pool 
from which the mappings are drawn be finite, can be relaxed but not 
eliminated. Consider, for example, rays emanating from the origin in R’, 
making angles 0= to < <, < ... < r, < ... with the positive x-axis, where 
c, + co and A<,, = r& - {,-, < 1 for all n. If we begin with a point on the 
positive x-axis and successively project on these rays, the resulting vector x, 
makes an angle <,, with the positive x-axis, and has length 

So if we choose (&I so C (At;,)’ < co, the set of accumulation points of 
(x”} consists of a circle of positive radius; in any event, (x, } does not con- 
verge. 

However, the number of mappings may be infinite provided the number of 
distinct fixed-point sets is finite. More precisely, the following version of 
Lemma 1.2’ remains valid: 

LEMMA 4.1. Suppose (X, d) is a metric space and .? is an equicon- 
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tinuous, uniformly quasi-nonexpansive family with a common fued-point. If 
{F(T): T E 9} is finite, each F(T) is compact, and .Y satisfies condition (P) 
uniformly: 

for each E > 0 there exists 6 > 0 such that 

T E Y, d(x, TX) < 6 =S d(x, F(T)) < E, 

then the generated semigroup (.V) is uniformly quasi-nonexpansive. 

We omit the proof, remarking only that it is by induction on the number 
of distinct fixed-point sets; otherwise it is very similar to the proof of 
Lemma 1.2’. (Note that the hypothesis of equicontinuity, which was 
equivalent to uniform continuity in Lemma 1.2’, is needed here.) 

One application of Lemma 4.1 is the following: suppose X is a uniformly 
convex Banach space and A,, A, ,..., A, are m-accretive mappings. Define the 
resolvents by J!, = (I + lAi)-‘, and for 6 > 0 put .&, = {J: : ), > 6, 
0 < i <N}. If each Ai has a compact resolvent, and n A; ‘(0) # 0, then ‘96 
satisfies the hypotheses of Lemma 4.1 and, accordingly, mappings drawn 
from ,Yi can be iterated in any order, with the resulting sequence converging 
strongly. The uniform quasi-nonexpansiveness can be proved as in [6], 
whereas the uniform (P) condition follows from the resolvent identity 

J.,x = J, ((1 -;) J.,x+;x). 

(It even suffices to assume only that A,, has compact resolvents, provided 
infinitely many are used in the iteration.) 

Note added in proof The argument of Lemma 1.2’ that d(x, Tkx) < a for 0 & k < N + 1 
is valid only for 0 < k < N + 1 (because the induction hypothesis (1.6) should be that Q is 
generated by a proper subset of (To...., T,., , }? including r,,). The case k = 0 has a trivial 
proof, however: since 

d(x.f) - d(T,x,f) < d(x,f) - d(ST,x.f) < 6. 

by (1.7) we actually have d(x, T,x) < a/3. 
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