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1. Introduction

In this paper we establish existence and uniqueness of a generalized solution to the hyperbolic Cauchy problem

∂t U +
n∑

j=1

A j∂x j U + BU = F on (0, T ) × R
n, (1)

U |t=0 = G, (2)

where U , F and G are vectors of length m and A j and B are m × m-matrices whose components are generalized functions
in the sense of J.F. Colombeau (cf. [3,4]). All coefficients and data may therefore represent functions or distributions of low
regularity. Our main focus as well as the essential methods are following up along the lines of the seminal papers [25,26,23].

Problems of the type (1)–(2) play a prominent role in models of wave propagation in highly heterogeneous media with
non-smooth variation of physical properties such as density, sound speed etc. For more details on motivations from the
natural sciences and for further mathematical aspects in the context of the theory of generalized functions we may refer
to the papers mentioned above as well as to the following series of papers on closely related research [5,22,18,16,28,10,9].
Second-order wave equations in a similar mathematical context have been discussed in [11,32,12].

Besides existence and uniqueness of generalized solutions to the Cauchy problem we are also interested in the relation
of the unique Colombeau solution to more classical and weak or distributional solution concepts, if the coefficients are
of compatible regularity. The analysis of such questions and several convergence results are also going back to earlier
investigations in [25,26,23,18].

The outline of our paper is roughly as follows. After a brief reminder of basic notions from Colombeau theory of gener-
alized functions in the following subsection, we devote a section to the details of the construction of lens-shaped domains
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and on energy estimates on such domains with explicit expressions for the constants. These estimates are then the essential
ingredients in proving several variants of existence and uniqueness results in Section 3. More precisely, Theorem 3.1 is an
extension of the main theorem in [23, p. 98] to the case of complex matrices and relaxes the required constancy of the
coefficients for large spatial distances to boundedness. Theorem 3.4 is based on GL2 -spaces and gives a result for systems of
partial differential operators which is similar to [16, Theorem 3] for the case of scalar pseudo-differential operators.

The final section investigates regularity as well as compatibility of Colombeau-type solutions with classical and distri-
butional solutions in case the coefficient matrices are sufficiently regular. Proposition 4.1 is an analog of the compatibility
proposition in [23, p. 99] and [16, Corollary 5], whereas Proposition 4.2 is a G∞-variant of the regularity result [16, Propo-
sition 6]. In Proposition 4.4 we establish convergence of the generalized solution to a weak solution for arbitrary Lipschitz
continuous coefficients, thereby accompanying the case study with discontinuous coefficients in the acoustic transmission
problem carried out in [26, Theorem 2.4 and Corollary 2.5].

Basic notation and symbols: Let Ω ⊆ R
n be open, 1 � p � ∞, k ∈ N0, then W k,p(Ω) denotes the L p-norm based Sobolev

space of order k on Ω and Hk(Ω) = W k,2(Ω). For s ∈ R, the Sobolev space Hs(Rn) is defined by Fourier transform. If
Y is a Banach space, then Ck([0, T ], Y )m denotes the m-tuples of k times continuously differentiable functions from the
interval [0, T ] to Y . Similarly, L2([0, T ], Y )m denotes the m-tuples of square-integrable functions [0, T ] → Y (in the Bochner–
Lebesgue sense). If R is a commutative ring with unit, then Mm(R) denotes the ring of square matrices of size m over R
with unit given by the identity matrix Im . For any A ∈ Mm(C), the expression ‖A‖op denotes the operator norm of A as
linear map acting on C

m . We use 〈·,·〉 to denote the standard scalar product on C
m and ‖ · ‖ for the Euclidean norm.

1.1. Colombeau algebras of generalized functions

This section serves to gather some basic notions from Colombeau theory of generalized functions. We adopt the topo-
logical viewpoint of the construction of generalized functions based on a locally convex vector space, developed in [8]. For
a comprehensive introduction to the theory of Colombeau algebras we refer to [13].

Let E be a locally convex topological vector space whose topology is given by the family of semi-norms {p j} j∈ J . The
elements of

M E := {
(uε)ε ∈ E(0,1]: ∀ j ∈ J ∃N ∈ N0 p j(uε) = O

(
ε−N)

as ε → 0
}

and

N E := {
(uε)ε ∈ E(0,1]: ∀ j ∈ J ∀q ∈ N0 p j(uε) = O

(
εq) as ε → 0

}
are called E-moderate and E-negligible, respectively. Defining operations componentwise turns N E into a vector subspace
of M E . We define the generalized functions based on E as the quotient G E := M E/N E . If E is a differential algebra, then N E

is an ideal in M E and G E is a differential algebra as well, called the Colombeau algebra based on E .
Let Ω be an open subset of R

n . By choosing E = C∞(Ω) with the topology of uniform convergence of all derivatives
one obtains the so-called special Colombeau algebra GC∞(Ω) = G(Ω). In the current article we will also use the space
E = H∞(Ω) = {h ∈ C∞(Ω): ∂αh ∈ L2(Ω) ∀α ∈ N

n
0} with the family of semi-norms

‖h‖Hk(Ω) =
( ∑

|α|�k

∥∥∂αh
∥∥2

L2(Ω)

)1/2

(k ∈ N0),

as well as E = W ∞,∞(Ω) = {h ∈ C∞(Ω): ∂αh ∈ L∞(Ω) ∀α ∈ N0} with the family of semi-norms

‖h‖W k,∞(Ω) = max
|α|�k

∥∥∂αh
∥∥

L∞(Ω)
(k ∈ N0),

and E = C∞(I × R
n), where I is an open interval, equipped with semi-norms

‖h‖m,K = max
|α|�m

∥∥∂αh
∥∥

L∞(I×K )

(
m ∈ N0, K ⊂⊂ R

n).
To avoid overloaded subscripts we use notations as in [17] and denote

GL2(Ω) := G H∞(Ω), GL∞(Ω) := GW ∞,∞(Ω) and G
(

I × R
n) := GC∞(I×Rn).

Colombeau algebras contain the distributions as a linear subspace. Their elements are equivalence classes of nets of
smooth functions, G(Ω)  u = [(uε)ε]. We say that a Colombeau function u is associated with a distribution w ∈ D′(Ω) if
some (and hence every) representative (uε)ε converges to w in D′(Ω). The distribution w represents the macroscopic
behavior of u and is called the distributional shadow of u. Not every element of a Colombeau algebra is associated with
a distribution.

In [27], the subalgebra G∞(Ω) of regular generalized functions in G(Ω) was introduced to develop an intrinsic regularity
theory in G(Ω). The subalgebra G∞ of a Colombeau algebra G E is obtained by demanding that the inverse ε-power N in the
E
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moderateness estimates can be chosen uniformly over all derivatives (cf. Definition 25.1, Chapter VII in [27]). For instance,
an element u = [(uε)ε] ∈ G(Ω) belongs to G∞(Ω) if and only if

∀K ⊂⊂ Ω ∃N ∈ N0 ∀α ∈ N
n
0:

∥∥∂αuε

∥∥
L∞(K )

= O
(
ε−N)

as ε → 0.

The subalgebra G∞(Ω) plays the same role within G(Ω) as C∞(Ω) does within D′(Ω) and satisfies the important compat-
ibility relation

G∞(Ω) ∩ D′(Ω) = C∞(Ω).

2. Standard lenses and basic energy estimates

A central element of our proof of unique solvability of the Cauchy problem will be L2-estimates performed on lens-
shaped subsets of the strip [0, T ] × R

n . Similar constructions have been used, e.g., in [2, Part I, Section 2.2], in [15,
Section 4.3], and in [7, Section 4.4]. Since we are working in a generalized functions setting, it is essential to have pre-
cise information on all dependencies of constants involved in these estimates. For this reason we devote this section to the
construction of a special variant of lens-shaped domains and to some basic estimates for these types of lenses.

Definition 2.1. A standard lens L of thickness T > 0 and radii 0 < R1 < R2 is the image set of the map ψ:
[0,1] × B R2 → R

n+1,

ψ(Θ, y) =
{

(ΘT , y) for |y| � R1,

(ΘT R2−|y|
R2−R1

, y) for |y| > R1,

where B R2 is the closed ball of radius R2, centered at the origin. We introduce slices of a lens, HΘ := ψ(Θ, B R2 ), as well
as partial lenses LΘ = ⋃

0�τ�Θ Hτ for Θ ∈ (0,1]. The latter are compact convex subsets of [0, T ] × R
n with Lipschitz

continuous boundary ∂LΘ = H0 ∪ HΘ .

The standard lens map ψ introduced in Definition 2.1 as well as its restrictions ψΘ : B R2 → HΘ , y �→ ψ(Θ, y) are
Lipschitz continuous, but not differentiable at points (Θ, y) with |y| = R1. However, since the collection of these points
is of Lebesgue measure zero with respect to ψΘ(B R2 ) = HΘ , they can be ignored when using the lens map to transform
integrals over L or HΘ into integrals over the cylinder [0, T ] × B R2 or B R2 respectively (cf. [30, Lemmas 7.25 and 7.26]).
Smooth slices HΘ are possible by an easy modification of the lens map, but not necessary for our considerations.

Lemma 2.2. If u ∈ C0([0, T ] × R
n) and L is a standard lens of thickness T ,∫

L

|u|dVn+1 � T sup
Θ∈[0,1]

∫
HΘ

∣∣u(Θ, ·)∣∣dVn, 0 � d

dΘ

∫
LΘ

|u|dVn+1 � T

∫
HΘ

∣∣u(Θ, ·)∣∣dVn.

Proof. First note that the map ψΘ : B R2 → HΘ is a (global) parametrization of the slice HΘ . The volume density on HΘ

is ρΘ(y) = √
det(DψΘ(y)T DψΘ(y)) =

√
det(D yψ(Θ, y)T D yψ(Θ, y)), where D yψ is obtained from the Jacobian Dψ by

removing the first column, more precisely Dψ = (DΘψ D yψ). Hence we have∣∣det Dψ(Θ, y)
∣∣ � ρΘ(y)

∥∥DΘψ(Θ, y)
∥∥ � ρΘ(y)T . (3)

With the help of the transformation formula for integrals and using (3) we estimate∫
L

|u|dVn+1 =
1∫

0

∫
B R2

∣∣u ◦ ψ(Θ, y)
∣∣∣∣det Dψ(Θ, y)

∣∣dy dΘ

� T

1∫
0

∫
B R2

∣∣u ◦ ψ(Θ, y)
∣∣ρΘ(y)dy dΘ � T sup

Θ∈[0,1]

∫
HΘ

∣∣u(Θ, ·)∣∣dVn,

which proves the first inequality. For the term d
dΘ

∫
LΘ

|u|dVn+1 we find

d

dΘ

∫
LΘ

|u|dVn+1 = d

dΘ

Θ∫
0

∫
B R2

∣∣u ◦ ψ(ε, y)
∣∣∣∣det Dψ(ε, y)

∣∣dy dε

� T

∫
B R

∣∣u ◦ ψ(Θ, y)
∣∣ρΘ(y)dy = T

∫
HΘ

∣∣u(Θ, ·)∣∣dVn. �

2
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For convenience of the reader we also give a full proof of a Gronwall-type estimate in [2, Appendix A, Lemma A.3],
focusing on explicit expressions for all constants appearing in the calculation.

Lemma 2.3. Let L be a standard lens of thickness T and suppose that u and f are functions of class C0([0, T ] × R
n) such that for all

Θ ∈ (0,1]
1

2

∫
HΘ

∣∣u(Θ, ·)∣∣dVn �
∫

H0

∣∣u(0, ·)∣∣dVn + α

∫
LΘ

|u|dVn+1 +
∫

L

| f |dVn+1 (4)

with α > 0. Then we have with C := 2Tα,

1

2

∫
HΘ

∣∣u(Θ, ·)∣∣dVn � eCΘ

( ∫
H0

∣∣u(0, ·)∣∣dVn +
∫

L

| f |dVn+1

)
∀Θ ∈ [0,1]. (5)

Proof. We introduce v ∈ C0([0,1]), v(Θ) := 1
2T

∫
LΘ

|u|dVn+1 for Θ ∈ (0,1] and v(0) := 0. In addition we put a :=∫
H0

|u(0, ·)|dVn + ∫
L | f |dVn+1. From Lemma 2.2 we know that 0 � v ′(Θ) � 1

2

∫
HΘ

|u(Θ, ·)|dVn for Θ ∈ (0,1]. Therefore

v ′(Θ) � a + C v(Θ), where C := 2Tα. By integrating the last equation we find v(Θ) � aΘ + C
∫ Θ

0 v(τ )dτ and Gronwall’s

lemma yields C v(Θ) � CeCΘ
∫ Θ

0 ae−Cτ dτ � (eCΘ − 1)a for all Θ ∈ (0,1]. Expressing the result in terms of u and f , we
obtain

α

∫
LΘ

|u|dVn+1 �
(
eCΘ − 1

)( ∫
H0

∣∣u(0, ·)∣∣dVn +
∫

L

| f |dVn+1

)
∀Θ ∈ (0,1].

Using assumption (4), we obtain (5). �
To a first-order operator P (t, x; ∂t , ∂x) = ∂t + ∑n

j=1 A j(t, x)∂x j + B(t, x) we assign its principal symbol σ(t, x;τ , ξ) =
τ Im + ∑n

j=1 A j(t, x)ξ j . If the matrices A j are Hermitian, then the principal symbol is Hermitian for all directions (τ , ξ) ∈
R

n+1. At a point (t, x) ∈ R
n+1 one may then define the forward cone Γ (t, x) as the set of all directions (τ , ξ) where

σ(t, x;τ , ξ) is a positive definite matrix. A hypersurface is called spacelike (with respect to the principal symbol of P ) if
its normal vector is almost everywhere contained in the forward cone. In the following lemma we will construct a lens
whose individual slices are spacelike hypersurfaces with common boundary ∂HΘ = {(0, x): |x| = R2}.

Lemma 2.4. Let (A j)1� j�n be Hermitian matrices of size m such that ‖A j(t, x)‖op � C for |x| � R A . Then a standard lens L of
thickness T > 0 with radii R1 � R A and R2 � R1 + T (1 + 2

√
nC) has a unit normal vector field νΘ on HΘ (pointing outwards with

respect to LΘ ) satisfying the inequality〈
η,σ

(
t, x;νΘ(t, x)

)
η
〉
� 1

2
|η|2 ∀(t, x) ∈ HΘ ∀Θ ∈ (0,1] ∀η ∈ R

m. (6)

Proof. For a lens of thickness T and radii R1, R2 the normal vector field on HΘ with Θ ∈ (0,1] is simply νΘ = (1,0)T for
|x| < R1 and

νΘ(t, x) = 1√
(ΘT )2 + (R2 − R1)2

(
R2 − R1

ΘT x
|x|

)
for R1 < |x| < R2. (7)

The inequality in (6) is obviously satisfied whenever |x| < R1. For |x| > R1 � R A we find by virtue of (7) that〈
η,

(
ν0

ΘIm +
n∑

j=1

ν
j
Θ A j

)
η

〉
� ν0

Θ |η|2 − C
n∑

j=1

∣∣ν j
Θ

∣∣|η|2 � (R2 − R1 − T C
√

n)√
(ΘT )2 + (R2 − R1)2

|η|2

and (R2−R1−T C
√

n)√
(ΘT )2+(R2−R1)2

� 1
2 whenever R2 � R1 + T (1 + 2

√
nC). �

A first-order partial differential operator P = ∂t + ∑n
j=1 A j∂x j + B with smooth coefficient matrices is called symmetric

hyperbolic if the matrices A j and B are uniformly bounded together with all their derivatives and the coefficients of the
principal part A j are Hermitian. Preparatory for applications to Colombeau theory we perform energy estimates for sym-
metric hyperbolic operators on standard lenses. It is important to keep explicit expressions for all constants involved to have
precise information on their ε-dependence in a generalized setting later on. We provide L2-estimates in two versions, the
second of which can be interpreted as the limiting case for lenses with infinite radius.
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Lemma 2.5. Let a symmetric hyperbolic partial differential operator P = ∂t + ∑n
j=1 A j∂x j + B be given, where A j and B are m × m

matrices.

(i) Let L ⊆ [0, T ] × R
n be a standard lens of thickness T that satisfies inequality (6) and put α(L) := 1 + ‖div A − B − B∗‖L∞(L) ,

where div A = ∑n
j=1 ∂x j A j . Here and in the sequel, the L∞-norm of matrix-valued functions is understood as taking the operator

norm first and then the supremum over all (t, x) ∈ L. Then for any U ∈ C∞([0, T ] × R
n)m we have

‖U‖2
L2(L)

� 2T e2Tα(L)
(‖U‖2

L2(H0)
+ ‖P U‖2

L2(L)

)
. (8)

(ii) Denote Ωt := (0, t) × R
n and β(t) := 1 + ‖div A(t, ·) − B(t, ·) − B∗(t, ·)‖L∞(ΩT ) . Then for any U ∈ C1([0, T ], L2(Rn))m ∩

C0([0, T ], H1(Rn))m the following estimate holds for all t ∈ [0, T ]:∥∥U (t, ·)∥∥2
L2(Rn)

� e
∫ t

0 β(s)ds(∥∥U (0, ·)∥∥2
L2(Rn)

+ ‖P U‖2
L2(Ωt )

)
. (9)

Proof. Applying the operator P to an arbitrary U ∈ C∞([0, T ] × R
n)m we may write

〈∂t U , U 〉 +
n∑

j=1

〈
A j∂x j U , U

〉 + 〈BU , U 〉 = 〈P U , U 〉. (10)

A short calculation shows that

2Re〈∂t U , U 〉 + 2Re
n∑

j=1

〈
A j∂x j U , U

〉 = ∂t‖U‖2 +
n∑

j=1

∂x j

〈
A j U , U

〉 − 〈
(div A)U , U

〉
.

Thus, taking two times the real part of (10) we conclude

∂t‖U‖2 +
n∑

i=1

∂x j

〈
A j U , U

〉 − 〈
(div A)U , U

〉 + 2Re〈BU , U 〉 = 2Re〈P U , U 〉. (11)

To prove (i), we rewrite (11) as

div
(‖U‖2, 〈A1U , U 〉, . . . , 〈AnU , U 〉) = 〈

(div A)U , U
〉 − 〈(

B + B∗)U , U
〉 + 2 Re〈P U , U 〉.

Integrating over a partial lens LΘ ⊆ R
n+1, the divergence theorem yields∫

∂LΘ

(
ν0

Θ‖U‖2 +
n∑

j=1

ν
j
Θ

〈
A j U , U

〉)
dS =

∫
LΘ

〈(
div A − B − B∗)U , U

〉
dV + 2 Re

∫
LΘ

〈P U , U 〉dV

where νΘ is the unit normal vector field on ∂LΘ , assumed to point outwards with respect to LΘ . Since ν0 = (−1,0)T , we
conclude from inequality (6) that∫

∂LΘ

(
ν0

Θ‖U‖2 +
n∑

j=1

ν
j
Θ

〈
A j U , U

〉)
dS � 1

2

∥∥U (Θ, ·)∥∥2
L2(HΘ)

− ∥∥U (0, ·)∥∥2
L2(H0)

.

Hence for all Θ ∈ (0,1] the term 1
2 ‖U (Θ, ·)‖2

L2(HΘ)
is bounded by∥∥U (0, ·)∥∥2

L2(H0)
+

∫
LΘ

〈(
div A − B − B∗)U , U

〉
dV + 2 Re

∫
LΘ

〈P U , U 〉dV .

The terms on the right-hand side can be estimated with the help of the Cauchy–Schwarz inequality, leading to

1

2
‖U‖2

L2(HΘ)
�

∥∥U (0, ·)∥∥2
L2(H0)

+ α(L)‖U‖2
L2(LΘ)

+ ‖P U‖2
L2(LΘ)

and Lemmas 2.3 and 2.2 imply

‖U‖2
L2(L)

� 2T e2Tα(L)
(∥∥U (0, ·)∥∥2

L2(H0)
+ ‖P U‖2

L2(L)

)
.

To prove (ii), we integrate in (11) over the spatial domain R
n , leading to

d

dt

∥∥U (t, ·)∥∥2
L2(Rn)

= −
n∑

j=1

∫
n

∂x j

〈
A j U , U

〉
dVn +

∫
n

〈(
div A − B − B∗)U , U

〉
dVn + 2Re

∫
n

〈P U , U 〉dVn.
R R R
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After integration with respect to the time variable between 0 and t we find

∥∥U (t, ·)∥∥2
L2(Rn)

�
∥∥U (0, ·)∥∥2

L2(Rn)
+

t∫
0

β(s)
∥∥U (s, ·)∥∥2

L2(Rn)
ds +

t∫
0

∥∥P U (s, ·)∥∥2
L2(Rn)

ds (12)

where we have used that
∫

Rn ∂x j 〈A j(t, x)U (t, x), U (t, x)〉dx = 0 for all j = 1, . . . ,n and for all t ∈ [0, T ] since x �→ U (t, x)

belongs to H1(Rn)m and the latter possesses C∞
c (Rn)m as a dense subspace. Employing Gronwall’s lemma we turn (12) into

the desired estimate∥∥U (t, ·)∥∥2
L2(Rn)

� e
∫ t

0 β(s)ds(∥∥U (0, ·)∥∥2
L2(Rn)

+ ‖P U‖2
L2(Ωt )

)
. �

3. Generalized solutions to the Cauchy problem

Having all necessary prerequisites at hand we draw our attention to the initial value problem (1)–(2) on the space-time
domain ΩT := (0, T ) × R

n . We will establish three statements of existence and uniqueness, each using different spaces of
initial data and right-hand side. Working with a smaller space in this respect allows to relax the asymptotic conditions on
the coefficient matrices A j and B .

The formulation of the theorems requires some notions from Colombeau theory, we want to briefly review. A generalized
function u ∈ G(Ω) is called of L∞-type if it has a C∞-moderate representative (uε)ε such that ‖uε‖L∞(Ω) = O (ε−m) as
ε → 0. It is called locally of logarithmic growth or locally log-type, if it has a C∞-moderate representative (uε)ε such that for all
K ⊂⊂ Ω , ‖uε‖L∞(K ) = O (log(1/ε)) as ε → 0 (cf. Definition 1.1 in [25]). It is called of L∞-log-type if ‖uε‖L∞(Ω) = O (log(1/ε))

as ε → 0 (cf. Definition 1.5.1 in [13]). A matrix A ∈ Mm(G(Ω)) is called Hermitian, if it has a Hermitian representative (Aε)ε ,
i.e. Aε is Hermitian for all ε < ε0 (cf. Lemma 4.3 in [24]).

We call a partial differential operator P = ∂t +∑n
j=1 A j∂x j + B with Colombeau generalized coefficient matrices symmetric

hyperbolic, if all matrices A j are Hermitian and the entries of A j and B are of L∞-type together with all their deriva-
tives, i.e. A j, B ∈ Mm(GL∞ (Ω)). This ensures that there exists ε0 > 0 and representatives (A j

ε)ε and (Bε)ε such that Pε =
∂t + ∑n

j=1 A j
ε∂x j + Bε is a classical symmetric hyperbolic operator for all ε < ε0. The corresponding family of smooth so-

lutions to the classical Cauchy problem for fixed ε represents a candidate for the generalized solution. Yet some additional
asymptotic growth conditions in ε have to be imposed on the coefficients to obtain a moderate family of solutions. In par-
ticular, certain log-type conditions on the coefficient matrices are essential in order to use a Gronwall-type argument in the
proof (cf. [17,16,23,25,26]).

The first theorem allows for the most general initial data and right-hand side, but requires the principal coefficients
A j

ε(t, x) to be bounded uniformly in ε and (t, x) for large |x|.

Theorem 3.1. The initial value problem for a symmetric hyperbolic operator with Colombeau generalized coefficients,

∂t U +
n∑

j=1

A j∂x j U + BU = F on ΩT , (13)

U (0, x) = G(x), (14)

has a unique solution U ∈ G(ΩT )m, if

(i) initial data G ∈ G(Rn)m and right-hand side F ∈ G([0, T ] × R
n)m,

(ii) all spatial derivatives ∂xi A j as well as the Hermitian part of B are locally of log-type,

(iii) there exists R A > 0 such that ‖A j
ε(t, x)‖op = O (1) on (0, T ) × {x ∈ R

n: |x| > R A} as ε → 0.

Proof. We pick Hermitian representatives (A j
ε)ε and representatives of B , F and G . There exists ε0 > 0 such that ∀ε < ε0,

the initial value problem

∂t Uε +
n∑

j=1

A j
ε∂x j Uε + BεUε = Fε, (15)

Uε|t=0 = Gε, (16)

has a unique solution Uε ∈ C∞(Ω T )m (cf. Theorem 2.12 in [2]). We claim that the equivalence class U = [(Uε)ε] is the
unique Colombeau solution. Hence we must show that the net (Uε)ε is moderate and that negligible variations of the
coefficients and the data yield the same solution.
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Let K ⊂⊂ ΩT and assume K ⊆ (0, T ) × {x ∈ R
n: |x| � R K } and ‖A j

ε(t, x)‖L∞ � C for |x| > R A . Choose R1 > max(R A, R K )

and R2 � R1 + T (1 + 2
√

nC). Then a standard lens L of thickness T , inner radius R1 and outer radius R2 will contain K
and satisfy inequality (6) by Lemma 2.4. Thus we may apply the energy estimate (8) ε-wise and obtain

‖Uε‖2
L2(L)

� 2T e2Tαε(L)
(‖Gε‖2

L2(H0)
+ ‖Fε‖2

L2(L)

) = O
(
ε−m)

(17)

as ε → 0 for some m ∈ N0, since the norms of the data grow only like some inverse power of ε and αε(L) =
1 + ‖div Aε − Bε − B∗

ε‖L∞(L) = O (log(1/ε)) as ε → 0 by assumption (ii). We attempt to show that all derivatives of Uε sat-
isfy a similar estimate. For this purpose we introduce some convenient notations. For A ∈ Mm(C∞(Ω T )) and U ∈ C∞(ΩT )m

we define

∇̃1 A := diag(∂x1 A, . . . , ∂xn A) ∇1U := (∂x1 U , . . . , ∂xn U )T

∇̃r+1 A := ∇̃1∇̃r A ∇r+1U := ∇1∇r U

Σ̃r A := diag(A, . . . , A)nr Σr U := (U , . . . , U )T
nr .

For example, ∇̃r A is a blockdiagonal matrix built from all spatial derivatives ∂α
x A of length |α| = r. Similarly Σ̃r A is a

blockdiagonal matrix whose blocks are just nr copies of A itself.

Claim 1. The vector ∇r Uε satisfies an equation of the form

∂t∇r Uε +
n∑

j=1

Σ̃r A j
ε∂x j∇r Uε + B̃r

ε∇r Uε = Q r−1
ε Σr Uε + ∇r Fε (18)

where B̃1
ε = Σ̃1 Bε + (∂xi A j

ε)1�i, j�n, B̃r+1
ε = Σ̃1 B̃r

ε + (∂xi Σ̃
r A j

ε)1�i, j�n for r � 1, and Q r−1
ε is a purely spatial partial differential

operator of order r − 1 with coefficients depending linearly on spatial derivates of A j
ε and Bε up to order r.

We present the case r = 1 in detail and proceed by induction. Differentiating (15) with respect to xk yields

∂t∂xk Uε +
n∑

j=1

A j
ε∂x j ∂xk Uε +

n∑
j=1

∂xk A j
ε∂x j Uε + Bε∂xk Uε + ∂xk BεUε = ∂xk Fε.

One would like to read this as an equation for ∂xk Uε , but since the equations are coupled one has to consider the system

∂t∇1Uε +
n∑

j=1

Σ̃1 A j
ε∂x j ∇1Uε +

n∑
j=1

∇̃1 A j
ε∂x j Σ

1Uε + Σ̃1 Bε ∇1Uε = −∇̃1 BεΣ
1Uε + ∇1 Fε.

There are no derivatives of Uε on the right-hand side and the only term that does not fit into our concept on the left-hand
side can be rewritten in the following way,

n∑
j=1

∇̃1 A j
ε∂x j Σ

1Uε = (
∂xi A j

ε

)
1�i, j�n∇1Uε

so that ∇1Uε satisfies the system

∂t∇1Uε +
n∑

j=1

Σ̃1 A j
ε∂x j ∇1Uε + B̃1

ε∇1Uε = Q 0
εΣ1Uε + ∇1 Fε

where B̃1
ε = Σ̃1 Bε + (∂xi A j

ε)1�i, j�n and Q 0
ε = −∇̃1 Bε . We proceed by induction with respect to the differentiation index r.

Applying ∂xk to the induction hypothesis (18) we find

∂t∂xk∇r Uε +
n∑

j=1

Σ̃r A j
ε∂x j ∂xk∇r Uε +

n∑
j=1

∂xkΣ̃
r A j

ε∂x j ∇r Uε + B̃r
ε∂xk∇r Uε

= −∂xk B̃r
ε∇r Uε + ∂xk

(
Q r−1

ε Σr Uε

) + ∂xk∇r Fε.

Just like in the case r = 1 we try to write these k systems as one big system. It is easy to see that the right-hand side
can be written as Q r

εΣ
r+1Uε + ∇r+1 Fε with Q r

ε a purely spatial partial differential operator of order r with coefficients
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depending linearly on spatial derivates of A j
ε and Bε up to order r + 1. Furthermore we can rewrite the lower-order terms

on the left-hand side as B̃r+1
ε ∇r+1Uε , which finally leads to

∂t∇r+1Uε +
n∑

j=1

Σ̃r+1 A j
ε∂x j ∇r+1Uε + B̃r+1

ε ∇r+1Uε = Q r
εΣ

r+1Uε + ∇r+1 Fε,

where indeed B̃r+1
ε = Σ1 B̃r

ε + (∂xi Σ̃
r A j)1�i, j�n.

Since ‖Σ̃r A j
ε‖op = ‖A j

ε‖op, the estimate (6) is also valid for the symmetric hyperbolic operator P r = Inrm∂t +∑n
j=1 Σ̃r A j∂x j + B̃r . By (8) in Lemma 2.5(i) we therefore have∥∥∇r Uε

∥∥2
L2(L)

� 2T e2Tαr
ε(L)

(∥∥∇r Gε

∥∥2
L2(H0)

+ ∥∥Q r−1
ε Σr Uε + ∇r Fε

∥∥2
L2(L)

)
(19)

where

αr
ε(L) := 1 + ∥∥div Σ̃r Aε − B̃r

ε − (B̃r
ε)

∗∥∥
L∞(L)

= O
(
log(1/ε)

)
as ε → 0,

since the Hermitian part of B̃r
ε can be constructed from the Hermitian part of Bε as well as first-order derivatives ∂xi A j

ε .
From the fact that ‖Uε‖2

L2(L)
= O (ε−m) and by iterative application of (19) for r = 1,2,3, . . . we conclude that

∀r ∈ N0 ∃m ∈ N0:
∥∥∇r Uε

∥∥2
L2(L)

= O
(
ε−m)

as ε → 0. (20)

It remains to show this asymptotic estimate for derivatives involving also the t-coordinate.

Claim 2. All mixed derivatives ∂ l
t∇r Uε satisfy an equation of the form

∂ l
t∇r Uε = Rr,l

ε Σr Uε + ∂ l−1
t ∇r Fε (21)

where Rr,l
ε is a linear partial differential operator of order r + l involving t-derivatives only up to order l − 1. Moreover, the coefficients

of Rr,l
ε are linear combinations of spatial derivatives of A j

ε and Bε up to order r + 1 and time derivatives of A j
ε and Bε up to order l − 1.

The case l = 1 follows immediately from (18) by putting

Rr,1
ε Σr Uε := Q r−1

ε Σr Uε −
n∑

j=1

Σ̃r A j
ε∂x j ∇r Uε − B̃r

ε∇r Uε

since Q r−1
ε is a purely spatial operator of order r − 1. Applying the operator ∂t to the induction hypothesis (21) gives

∂ l+1
t ∇r Uε = ∂t

(
Rr,l

ε Σr Uε

) + ∂ l
t∇r Fε

and Rr,l+1
ε Σr Uε := ∂t(Rr,l

ε Σr Uε) is of course an operator of order r + l + 1 with time derivatives only up to order l. As
an obvious implication of the Leibniz rule, its coefficients are linear combinations of derivatives of A j

ε and Bε with spatial
derivatives of order r + 1 at most, since the coefficients of the operator Q r−1

ε depend (only) on spatial derivatives of A j
ε and

Bε up to order r + 1.
Successively making use of (21) for l = 1,2,3, . . . yields in combination with (19) that

∀l, r ∈ N0 ∃m ∈ N0:
∥∥∂ l

t∇r Uε

∥∥
L2(L)

= O
(
ε−m)

as ε → 0 (22)

and by the Sobolev embedding theorem on domains with locally Lipschitz boundary (cf. Theorem 4.12, Part II in [1]) and
the fact that K ⊆ L this implies

∀α ∈ N
n+1
0 ∃m ∈ N0:

∥∥∂αUε

∥∥
L∞(K )

= O
(
ε−m)

as ε → 0, (23)

i.e. the class [(Uε)ε] is moderate, since K ⊂⊂ ΩT was arbitrary. For the uniqueness part we choose negligible nets (F ε)ε
and (Gε)ε to represent right-hand side and initial data. From the energy estimates (17), (19), and Eq. (21) it is then easy
to see that the corresponding solution [(U ε)ε] will also be negligible. By Theorem 1.2.3 in [13] it actually suffices to show
the negligibility estimate for the zeroth derivative only, i.e. in terms of L2-estimates for all derivatives of U ε with order
� �(n + 1)/2�. �

If the O (1)-condition on A j
ε(t, x) for large |x| is dropped, one cannot work with the same lens for all values of ε anymore,

but has to use an ε-indexed family of standard lenses. However, since the growth of the volumes of these lenses is under
control, we can still keep many aspects of the solvability result by subjecting initial data and right-hand side to the stricter
growth conditions of the space GL∞ .
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Theorem 3.2. Consider the alternative conditions

(i′) initial data G ∈ GL∞(Rn)m and right-hand side F ∈ GL∞(ΩT )m,
(ii′) all spatial derivatives ∂xi A j as well as the Hermitian part of B are of L∞-log-type.

Then there exists a unique U ∈ G(ΩT )m satisfying Eq. (13) and such that (14) holds in the following sense: U |t=0 is equal to the image
of G under the canonical map GL∞(Rn)m → G(Rn)m.

Proof. The loss of condition (iii) and the alternative version of (i) have no effect on the applicability of Theorem 2.12
in [2] for fixed ε < ε0. So we still get a solution candidate [(Uε)ε] from the ε-wise construction of a family (Uε)ε . After
choosing a compact set K ⊂⊂ ΩT , we again aim at building a standard lens around it such that (6) in Lemma 2.4 is
satisfied. Assuming that K ⊆ (0, T ) × {x ∈ R

n: |x| � R K }, we fix its thickness T and its inner radius R1 > R K . Since we now
have an ε-dependent bound ‖A j

ε‖L∞ � Cε−m , we choose a family of radii R2ε = R1 + T (1 + 2
√

nCε−m), thereby obtaining
a family of standard lenses (Lε)ε with outer radii R2ε = O (ε−m) as ε → 0, all containing the compact set K . We put
α′

ε = 1 + ‖div Aε − Bε − B∗
ε‖L∞(ΩT ) , i.e. the supremum taken over the whole domain ΩT . Employing estimate (17) ε-wise

for the lens Lε leads to

‖Uε‖2
L2(Lε)

� 2T e2Tα′
ε
(‖Gε‖2

L2(H0ε)
+ ‖Fε‖2

L2(Lε)

)
� 2T e2Tα′

ε
(
Voln(H0ε)‖Gε‖2

L∞(Rn) + Voln+1(Lε)‖Fε‖2
L∞(ΩT )

) = O
(
ε−m)

for some m ∈ N0, since both Voln(H0ε) and Voln+1(Lε) grow only like some inverse power of ε as ε → 0 and α′
ε =

O (log(1/ε)). Analogously using the higher order energy estimate (19) yields∥∥∇r Uε

∥∥2
L2(Lε)

� 2T e2Tα′ r
ε
(∥∥∇r Gε

∥∥2
L2(H0ε)

+ ∥∥Q r−1
ε Σr Uε + ∇r+1 Fε

∥∥2
L2(Lε)

)
� 4T e2Tα′ r

ε
(
Voln(H0ε)

∥∥∇r Gε

∥∥2
L∞(

Rn
) + ∥∥Q r−1

ε Σr Uε

∥∥2
L2(Lε)

+ Voln+1(Lε)
∥∥∇r+1 Fε

∥∥
L∞(ΩT )

) = O
(
ε−m)

as ε → 0

as the term ‖Q r−1
ε Σr Uε‖2

L2(Lε)
can be estimated via pulling out L∞-norms of derivatives of the coefficients and α′ r

ε :=
1 + ‖div Σ̃r Aε − B̃r

ε − (B̃r
ε)

∗‖L∞ = O (log(1/ε)). With the help of (21) it is then easy to see that

∀l, r ∈ N0 ∃m ∈ N0:
∥∥∂ l

t∇r Uε

∥∥
L2(Lε)

= O
(
ε−m)

(ε → 0).

Since K ⊆ Lε for all ε < ε0 and by the Sobolev embedding theorem we conclude that for all α ∈ N
n+1
0 there exists m ∈ N0

such that ‖∂αUε‖L∞(K ) = O (ε−m) as ε → 0. The uniqueness part is completely analogous to the corresponding part in the
proof of Theorem 3.1. �

Theorem 3.2 is applicable even for coefficients and data which are both associated to highly singular and periodic
distributions. Denoting the delta distribution at y by δy = δ(·−y), it is possible to consider, e.g., principal coefficients
A j(t, x) ≈ ∑

κ∈N
m
0

δlκ (x) Ã j(t) and initial data G(x) ≈ ∑
κ∈N

m
0

δqκ (x) with real numbers l,q > 0, representing m-dimensional
lattices of Dirac measures with lattice constants 1/l and 1/q, respectively.

Remark 3.3. The conditions in Theorem 3.2 allow for infinite propagation speed near spatial infinity as ε → 0. In general
this may cause non-uniqueness of solutions, see Example 17.1 in [27]. Using the space GL∞ for initial data and right-hand
side avoids non-uniqueness, yet null “solutions” with non-vanishing initial data still exist. In fact, any initial data G in the
kernel of the canonical map GL∞ (Rn)m → G(Rn)m yield U = 0.2

Initial data and right-hand side decaying at spatial infinity (|x| → ∞) make it possible to relax the conditions on A j and
B even a bit further. More precisely, the required asymptotic behavior of A j

ε and Bε + B∗
ε can be made less restrictive with

respect to the time variable. We use mixed norms ‖A‖L1,∞(ΩT ) := ∫ T
0 ‖A(s, ·)‖L∞(Rn) ds for any A ∈ Mm(C∞

b (Ω T )). We say
that an element A ∈ Mm(GL∞ (ΩT )) is of L1,∞-log-type, if it has a representative (Aε)ε such that ‖Aε‖L1,∞(ΩT ) = O (log(1/ε))

as ε → 0. A similar norm was introduced in Definition 2.1 in [5].

2 Consider the scalar equation ∂t u + 1
ε ∂xu = 0 with u|t=0 = ϕ , where ϕ ∈ D(R) and ϕ(0) = 1. Then the unique Colombeau solution is the class [(ϕ(x −

1
ε t))ε] = 0 in G((0, T ) × R) since for all K ⊂⊂ (0, T ) × R we have supp(ϕ(x − 1

ε t) ∩ K = ∅ for ε small enough.
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Theorem 3.4. In the initial value problem (13)–(14) assume that

(i′′) initial data G ∈ GL2 (Rn)m and right-hand side F ∈ GL2 (ΩT )m,
(ii′′) all ∂xi A j as well as the Hermitian part of B are of L1,∞-log-type.

Then there exists a unique solution U ∈ GL2 (ΩT )m to the initial value problem (13)–(14).

Proof. Fixing Hermitian representatives of A j and representatives of B , F and G , we may use Theorem 2.6 in [2] to provide
solutions Uε ∈ C∞([0, T ], H∞(Rn))m to the classical initial value problem for each ε < ε0. To show moderateness, we plug
Uε into the energy estimate (9) and find

‖Uε‖2
L2(ΩT )

� T sup
0�t�T

∥∥Uε(t, ·)
∥∥2

L2(Rn)
� T eβε

(‖Gε‖2
L2(Rn)

+ ‖Fε‖2
L2(ΩT )

) = O
(
ε−m)

as ε → 0, (24)

where βε := ‖div Aε − Bε − B∗
ε‖L1,∞(ΩT ) = O (log(1/ε)) as ε → 0. In Claim 1 in the proof of Theorem 3.1 it has been shown

that the vector ∇r Uε satisfies an equation of the form

∂t∇r Uε +
n∑

j=1

Σ̃r A j
ε∂x j ∇r Uε + B̃r

ε∇r Uε = Q r−1
ε Σr Uε + ∇r Fε (25)

where Q r−1
ε is a purely spatial partial differential operator of order r − 1, Σ̃r A j

ε are simply blockdiagonal matrices consisting

of A j
ε-blocks and B̃r

ε depends solely on Bε and spatial derivatives ∂xi A j
ε . Thus, plugging ∇r Uε into (9) yields

sup
0�t�T

∥∥∇r Uε(t, ·)
∥∥2

L2(Rn)
� eβr

ε
(∥∥∇r Gε

∥∥2
L2(Rn)

+ ∥∥Q r−1
ε Σr Uε + ∇r Fε

∥∥2
L2(ΩT )

)
, (26)

where βr
ε = 1 + ‖div Σ̃r Aε − B̃r

ε − (B̃r
ε)

∗‖L1,∞(ΩT ) . Iteratively applying (26) shows that for all r ∈ N there exists m ∈ N0 such
that ‖∇r Uε‖2

L2(ΩT )
= O (ε−m). Finally, successively employing Eq. (21) for l = 1,2,3, . . . one finds that the asymptotic growth

of ‖∂t∇r Uε‖2
L2(ΩT )

, ‖∂2
t ∇r Uε‖2

L2(ΩT )
, ‖∂3

t ∇r Uε‖2
L2(ΩT )

, . . . is also moderate. Altogether we therefore have

∀α ∈ N
n+1
0 ∃m ∈ N0:

∥∥∂αUε

∥∥
L2(ΩT )

= O
(
ε−m)

as ε → 0

and hence [(Uε)ε] ∈ GL2 (ΩT ). To show uniqueness, we assume negligible data (F ε)ε ∈ NL2 (ΩT ) and (Gε)ε ∈ NL2 (Rn).
The energy estimates used to prove moderateness then immediately imply negligibility of the corresponding solution
[(U ε)ε]. �

Note that in Theorem 3.4, thanks to the L1,∞-norms in condition (ii′′) no logarithmic scaling of the mollifier is required
to model a lower order coefficient of the form B(t, x) ≈ δ(t)B̃(x) where δ represents the delta distribution and B̃ is bounded.

Remark 3.5. For the existence and uniqueness results presented in this section, there exist versions which are also global
in time. In correspondence with Theorem 3.1, given coefficients A j and B in Mm(GL∞ (Rn+1)), data F ∈ G(Rn+1)m and G ∈
G(Rn)m , one obtains a global solution U ∈ G(Rn+1)m if all ∂xi A j as well as the Hermitian part of B are locally log-type and

A j
ε = O (1) as ε → 0 outside a cylinder R × B R A . Analogously extending the respective asymptotic growth conditions from

ΩT to R
n+1 yields “global in time”-variants of Theorems 3.2 and 3.4. Concerning “global in time”-solutions, the requirements

on the coefficients with regard to the dependence on t can be somewhat relaxed. It suffices to demand the estimates in
the assumptions of the theorems only locally in time, i.e. for all I ⊂⊂ R. A similar observation was made in Remark 1.5.3
in [13].

4. Regularity of the generalized solutions and distributional limits

To justify the term “generalized solution”, compatibility with classical smooth and distributional solutions should be
investigated. When the coefficients are smooth, the unique Colombeau solution should be equal to the respective classical
solution in a certain sense. As in [16] and [23], the following proposition establishes compatibility with the classical results
for smooth and distributional data.

Proposition 4.1. (i) In Theorem 3.1, additionally assume that A j and B have components in C∞
b (Ω T ). If F ∈ C∞(Ω T )m and G ∈

C∞(Rn)m, then the generalized solution U ∈ G(ΩT )m is equal to the classical smooth solution.
(ii) Suppose that A j and B in Theorem 3.4 are smooth. For some s ∈ R let F0 ∈ L2([0, T ], Hs(Rn))m and G0 ∈ Hs(Rn)m and denote

by U0 the unique distributional solution to (1)–(2) in C0([0, T ], Hs(Rn))m. Define generalized data by F := [(Fε)ε] ∈ GL2 (ΩT )m and
G := [(Gε)ε] ∈ GL2 (Rn)m, where Fε and Gε are moderate regularizations such that Fε → F0 in L2([0, T ], Hs(Rn))m and Gε → G0
in Hs(Rn)m as ε → 0. If U = [(Uε)ε] is the corresponding generalized solution in GL2 (ΩT )m, then Uε → U0 in C0([0, T ], Hs(Rn))m.



1176 G. Hörmann, C. Spreitzer / J. Math. Anal. Appl. 388 (2012) 1166–1179
Proof. (i) Since we may choose the constant nets (F )ε and (G)ε as representatives of the classes of F and G in G , we obtain
the classical smooth solution to problem (1)–(2) as a representative of the unique Colombeau solution.

(ii) By Theorem 2.6 in [2] we have for all t ∈ [0, T ]∥∥Uε(t, ·) − U0(t, ·)
∥∥2

Hs(Rn)
� C

(
‖Gε − G0‖2

Hs(Rn) +
t∫

0

∥∥Fε(τ , ·) − F0(τ , ·)∥∥2
Hs(Rn)

dτ

)
,

where the constant C does not depend on ε, since all coefficient matrices A j and B are assumed have components in
C∞(Ω T ). Taking the supremum over all t ∈ [0, T ] and letting ε → 0 gives the convergence in C0([0, T ], Hs(Rn))m . �

We may interpret Proposition 4.1(ii) as a statement on the regularity of the generalized solution, measured in terms
of Hs-norms of the associated distribution. Yet this concept of regularity is restricted to situations where distributional
limits exist and is therefore not applicable if initial data or right-hand side are not associated to any distribution. Intrinsic
regularity theory in Colombeau algebras is based on the subalgebra G∞(Ω) of regular generalized functions in G(Ω) and
has been investigated in the context of hyperbolic partial differential equations in [21,19,28,10,9]. In the study of intrinsic
regularity of generalized solutions to partial differential equations, the notion of slow-scale nets was introduced in [20] and
has proven to be essential in many circumstances (cf. [21,10,9]). A net (rε)ε of complex numbers is said to be of slow-scale
if |rε|p = O (1/ε) as ε → 0 for all p � 0. As in [16] we call a net (sε)ε of complex numbers a slow-scale log-type net if there
is a slow-scale net (rε)ε of real numbers, rε � 1, such that |sε| = O (log(rε)) as ε → 0. Generalized functions satisfying the
moderateness estimates with slow-scale nets in place of the inverse powers ε−N are called slow-scale regular. They represent
a different notion of regularity than regular generalized functions.

Proposition 4.2. In Theorem 3.1, assume all coefficients A j and B to be slow-scale regular generalized functions. In addition suppose
that all log-type conditions are replaced by slow-scale log-type estimates. Then F ∈ G∞([0, T ] × R

n)m and G ∈ G∞(Rn)m implies
U ∈ G∞(ΩT ).

Proof. Fix a standard lens L of thickness T with initial surface H0. Then there exists M ∈ N0 such that for all r, l, we have∥∥∂ l
t∇r Fε

∥∥
L2(L)

= O
(
ε−M)

as well as
∥∥∇r Gε

∥∥
L2(H0)

= O
(
ε−M)

as ε → 0.

Since all coefficient depending factors in the L2-estimates (17) and (19) are of slow-scale, for each α ∈ N
n
0 we obtain

a certain slow-scale net (rε)ε of positive real numbers such that ‖∂α
x Uε‖L2(L) = O (rεε−M). Finally, by (21) we only pick up

slow-scale factors with each time derivative applied to ∂α
x Uε , and so we have∥∥∂ l

t∂
α
x Uε

∥∥
L2(L)

= O
(
ε−M−1) as ε → 0

for all l ∈ N0 and α ∈ N
n
0. This proves the assertion. �

The intrinsic regularity property holds also for the generalized solutions obtained from Theorems 3.2 and 3.4 respec-
tively, if all log-type conditions are replaced by slow-scale log-type estimates and all coefficients are slow-scale regular
generalized functions. Note that all these conditions are automatically satisfied when the coefficients are smooth (like in
Proposition 4.1(i)).

Despite its G∞-regularity, the solution in Proposition 4.2 may not be associated to any distribution. In the remaining part
of this section we want to investigate distributional limits of the generalized solution when the coefficients are non-smooth.
To this end we consider the generalized Cauchy problem (13)–(14) with data and coefficient matrices as regularizations. For
convenience of the reader we first collect some basic properties of regularizations of W k,p-functions obtained by convolution
with a mollifier.

Lemma 4.3. Let ρ ∈ D(Rn),
∫

Rn ρ(x)dx = 1, supp(ρ) ⊆ B1 , and put ρε(x) = ε−nρ(x/ε). Given u ∈ W k,p(Rn), k ∈ N0 , 1 � p � ∞
we put uε := u ∗ ρε . Then we have

(i) [(uε)ε] ∈ GL∞(Rn) and ‖∂αuε‖W k,p(Rn) = O (ε−|α|) as ε → 0,

(ii) ‖uε − u‖W k,q(Rn) → 0 as ε → 0 for u ∈ W k,q(Rn) with 1 � q < ∞, and

(iii) if u is bounded and uniformly continuous, then ‖uε − u‖L∞(Rn) → 0 as ε → 0. In particular, for u ∈ W k,∞(Rn) we have
‖uε − u‖W k−1,∞(Rn) → 0 as ε → 0.

Proof. Here, all norms are taken on the domain R
n . (i) If u ∈ W k,p(Rn) and α ∈ N

n
0 we may estimate ‖∂αuε‖L∞ =

‖(∂αρε) ∗ u‖L∞ � ‖∂αρε‖Lp′ ‖u‖Lp with 1/p + 1/p′ = 1 by Young’s inequality and we have ∂αρε = ε−|α|(∂αρ)ε which yields
‖∂αuε‖L∞ = O (ε−|α|), hence [(uε)ε] ∈ GL∞(Rn). Moreover we find∥∥∂αuε

∥∥
W k,p = max

|β|�k

∥∥∂α+βuε

∥∥
L p � max

|β|�k

∥∥(
∂αρε

) ∗ ∂βu
∥∥

L p � ‖∂αρ‖L1‖u‖W k,p

ε|α| .

For (ii) and (iii) we refer to [6, Theorem 8.14]. �
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The following proposition is concerned with the generalized Cauchy problem (13)–(14) when both data and coefficient
matrices are obtained from convolution regularizations of non-smooth coefficient matrices A j

0 and B0, right-hand side F0
and initial data G0.

Proposition 4.4. In the initial value problem (13)–(14), assume that the entries of A j
0 and B0 are bounded and Lipschitz continuous

with respect to x, G0 ∈ H1(Rn)m, and F0 ∈ L2([0, T ], H1(Rn))m. Define corresponding generalized coefficients and data satisfy-
ing the assumptions in Theorem 3.4.3 Then there exists U0 ∈ C0([0, T ], L2(Rn))m ∩ H1(ΩT )m such that Uε → U0 in the norm
L∞([0, T ], L2(Rn)) for every representative (Uε)ε of the unique Colombeau solution U ∈ GL2 (ΩT )m.

Proof. First observe that ‖∂ j Uε‖L2(ΩT ) = O (1) as ε → 0 for all j. For the spatial derivatives ∂x j Uε this follows from the
estimates (24) and (26) by virtue of the uniform boundedness of β1

ε = 1 +‖div Σ̃1 Aε − B̃1
ε − (B̃1

ε)
∗‖L1,∞(ΩT ) as well as (Gε)ε

and (Fε)ε in the respective norms (see Lemma 4.3). The L2-norm of the time derivative ∂t Uε can then be estimated directly
by means of the equation. We show that the ε-wise constructed family of solutions to the Cauchy problem (15)–(16), (Uε)ε ,
is a Cauchy net in C0([0, T ], L2(Rn))m . For indices 0 < ε̃ < ε small enough we obtain from (9)

sup
0�t�T

∥∥Uε(t, ·) − U ε̃(t, ·)
∥∥

L2(Rn)
� CT

(‖Gε − G ε̃‖L2(Rn) + ‖Fε − PεU ε̃‖L2(ΩT )

)
,

where CT is independent of ε and Pε = ∂t + ∑n
j=1 A j

ε∂x j + Bε = ∂t + ∑n
j=1(A j

ε − A j
ε̃

+ A j
ε̃
)∂x j + Bε − B ε̃ + B ε̃ . Thus, the

energy inequality yields

‖Uε − U ε̃‖L∞([0,T ],L2(Rn)) � CT

(
‖Gε − G ε̃‖L2(Rn) + ‖Fε − F ε̃‖L2(ΩT )

+
n∑

j=1

∥∥A j
ε − A j

ε̃

∥∥
L∞(ΩT )

‖∂x j U ε̃‖L2(ΩT ) + ‖Bε − B ε̃‖L∞(ΩT )‖U ε̃‖L2(ΩT )

)

The convergence properties of the nets (Gε)ε , (Fε)ε , (A j
ε)ε , (Bε)ε and the uniform boundedness of ‖∂x j U ε̃‖L2(ΩT ) im-

ply that (Uε)ε is a Cauchy net in the norm L∞([0, T ], L2(Rn)), thus there exists U0 ∈ C0([0, T ], L2(Rn))m such that
‖Uε − U0‖L∞([0,T ],L2(Rn)) → 0 as ε → 0. Since ‖∂ j Uε‖L2(ΩT ) � C , we have for any ϕ ∈ D(ΩT )m ,∣∣〈∂ j U0,ϕ〉∣∣ =

∣∣∣ lim
ε→0

〈∂ j Uε,ϕ〉
∣∣∣ � lim

ε→0

∣∣〈∂ j Uε,ϕ〉∣∣ � C‖ϕ‖L2(Rn).

Hence ∂ j U0 ∈ L2(Rn)m , thus U0 ∈ C0([0, T ], L2(Rn))m ∩ H1(ΩT )m . �
The conditions on the coefficient matrices in Proposition 4.4 are typical assumptions in results on weak solutions. For

a comparison of solution concepts for linear first-order hyperbolic differential equations with non-smooth coefficients we
refer to [14].

Corollary 4.5. The initial value problem (1)–(2) with A j
0 , B0 , G0 and F0 as in Proposition 4.4 has a unique weak solution U0 ∈

C0([0, T ], L2(Rn))m ∩ H1(ΩT )m, equal to the distributional limit of the generalized solution.

Proof. We show that the distributional limit of the generalized solution U = [(Uε)ε] is the unique weak solution. First
observe that the limit U0 of Uε is continuous in time, so it satisfies the initial condition, i.e. U0|t=0 = G0. Moreover we
have Uε → U0 in L2(ΩT )m and thus also BεUε → B0U0 in L2(ΩT )m . The proof of Proposition 4.4 shows that ‖Uε‖H1(ΩT ) is
uniformly bounded. By the weak compactness theorem there exists a weakly-∗ convergent subsequence (U 1

nk

)k∈N with limit

Ũ0 ∈ H1(ΩT )m (cf. Theorem 6.64 in [29]). Thus ∂t U 1
nk

→ ∂t Ũ0 weakly-∗ in L2(ΩT )m and Ũ0 = U0 ∈ C0([0, T ], L2(Rn))m ∩
H1(ΩT )m .

We have |〈∂x j U 1
nk

, (A j
1

nk

− A j
0)ψ〉| � ‖∂x j U 1

nk

‖L2(ΩT )‖(A j
1

nk

− A j
0)ψ‖L2(ΩT ) for any ψ ∈ L2(ΩT )m , hence 〈A j

1
nk

∂x j U 1
nk

,ψ〉 =
〈∂x j U 1

nk

, (A j
1

nk

− A j
0)ψ〉 + 〈∂x j U 1

nk

, A j
0ψ〉 converges to 〈∂x j U0, A j

0ψ〉. Therefore we obtain

〈(
∂t +

k∑
j=1

A j
0∂x j + B0

)
U0,ψ

〉
= lim

ε→0

(
〈∂t Uε,ψ〉 +

n∑
j=1

〈
A j

ε∂x j Uε,ψ
〉 + 〈BεUε,ψ〉

)
= lim

ε→0
〈Fε,ψ〉 = 〈F0,ψ〉.

3 The conditions in Theorem 3.4 are automatically satisfied when regularizing via convolution with a mollifier as in Lemma 4.3.



1178 G. Hörmann, C. Spreitzer / J. Math. Anal. Appl. 388 (2012) 1166–1179
To prove uniqueness, suppose V 0 ∈ C0([0, T ], L2(Rn))m ∩ H1(ΩT )m is a solution such that P V 0 = F0 and V 0|t=0 = G0.
We may regularize this solution so that Vε → V 0 in C0([0, T ], L2(Rn))m and in H1(ΩT )m . Then Vε|t=0 → G0 in L2(Rn)m

and necessarily limε→0(∂t Vε +∑n
j=1 A j

ε∂x j Vε + Bε Vε) = F0 in L2(ΩT )m irrespective of the regularizations chosen. Applying
the basic energy estimate (9) to the difference Uε − Vε yields

sup
0�t�T

∥∥Uε(t, ·) − Vε(t, ·)
∥∥

L2(Rn)
� CT

(‖Gε − Vε‖L2(Rn) + ‖Fε − P Vε‖L2(ΩT )

) → 0

as ε → 0 and therefore U0 = V 0 in C0([0, T ], L2(Rn))m . �
Note that the statement in Corollary 4.5 is not just a compatibility result, in fact we directly obtain a unique weak

solution to the initial value problem with non-smooth coefficients merely by studying properties of the generalized solution
when the coefficients and data are regularized distributions. In case of smooth coefficients, the methods applied in the
proofs of Proposition 4.4 and Corollary 4.5 would lead to the corresponding classical existence and uniqueness results as
well (see Proposition 4.1).

Remark 4.6. (a) In order to get more information on the regularity of the distributional shadow U0 and its dependence on
the regularity of the coefficients A j

0, B0 and data F0, G0, it is essential to have precise estimates on the speed of convergence
of the regularized objects (cf. the notion of “strong association” in [31]). For example, rapid convergence in the principal part
guarantees the existence of a distributional shadow under regularity assumptions on the initial data G0 and right-hand side
F0 which are weaker than those in Proposition 4.4. To be more precise, we have the following statement: In Theorem 3.4,
let all A j

0 be Lipschitz continuous and let B0 be uniformly continuous and bounded. Given G0 ∈ L2(Rn)m and F0 ∈ L2(ΩT )m ,
define generalized coefficients A, B and data F , G such that as ε → 0∥∥A j

ε − A j
0

∥∥
L∞(ΩT )

max
(‖∂x j Bε‖L∞(ΩT ),‖Gε‖H1(Rn),‖Fε‖L2([0,T ],H1(Rn))

) → 0.

Then the corresponding generalized solution U = [(Uε)ε] still has a distributional shadow U0 ∈ L2(ΩT )m such that Uε → U0
in L2(ΩT )m for any of its representatives (Uε)ε .

The proof strategy is the same as in the proof of Proposition 4.4, showing that (Uε)ε is a Cauchy net in L2(ΩT )m , the
main difference now being that ∂x j Uε is not bounded, but kept under control by the factors stemming from the coefficients.

(b) To illustrate that the conditions discussed in (a) are realistic, we gather the following estimates on the convergence
speed of convolution regularizations: Let ρ ∈ S(Rn) with

∫
Rn ρ(x)dx = 1 and

∫
Rn xαρ(x)dx = 0 for all |α| < m ∈ N, s ∈ R

and put ρε := σ−n
ε ρ( ·

σε
) where σε → 0 as ε → 0. Then we have

(i) u ∈ W m,∞(Rn) �⇒ ‖ρε ∗ u − u‖L∞(Rn) = O (σm
ε ) as ε → 0,

(ii) u ∈ L1(Rn) �⇒ ‖ρε ∗ u − u‖Hs(Rn) = O (σm
ε ) as ε → 0 for all s � − n

2 − 1 − m,
(iii) u ∈ Hs(Rn) �⇒ ‖ρε ∗ u − u‖Hs(Rn) → 0 and ‖ρε ∗ u − u‖Hs−m(Rn) = O (σm

ε ) as ε → 0.

Here, (i) is shown by Taylor expansion of u, (ii) can be proved by considering the action on a test function and Taylor
expansion of the latter, and (iii) follows from the definition of the Sobolev norms in terms of the Fourier transform.
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