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A weighted translation semigroup {S,} on L¥[R.) is defined by (S.f)(x) =
(¢(x)/d(x — £)) f(x — t) for x >t and O otherwise, where ¢ is a continuous
nonzero scalar-valued function on R, . It is shown that {S,} is subnormal if and
only if ¢? is the product of an exponential function and the Laplace-Stieltjes
transform of an increasing function of total variation one. A necessary and
sufficient condition for similarity of weighted translation semigroupsis developed.

|. INTRODUCTION

In [3] the authors initiated the study of a2 special class of semigroups of
operators on L2(R,), called weighted translation semigroups. Such a semigroup
is defined by (S:f)x) = (p(x)/d(x — 1)) f(x — ¢t} if x>t and O otherwisc,
where ¢ 1s a continuous nonzero complex-valued function on K. . These
semigroups appear to be the natural continuous analogs of weighted shifts.

It was shown in [3] that the following conditions on {S;} are equivalent:
(1) {S;} is hyponormal, (ii) the infinitesimal generator of {S;} is hyponormal,
and (iii) log | ¢ | is convex.

The question arose of cquivalent conditions that {S;} be subnormal. It
follows from results in [6] that {S,} is subnormal if and only if its infinitesimal
generator is subnormal. (This is true for arbitrary semigroups as well as weighted
translation semigroups.) The problem of finding a condition for subnormal
weighted translation semigroups analogous to (iii) for the hyponormals was
challenging.

Even in the case of a single operator 4 it may be exceedingly difficult to
determine whether 4 is subnormal. The best known methods are the following:
(1) write down a normal extension of 4, or (2) show that A satisfies the Tlalmos—
Bram criterion for subnormality [I], 37, o (dx;, 4%x;) 2 0 for each finite
collection xy ,..., ¥, , or (3) in case A is a weighted shift, show that 4 satisfies the
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Berger condition [4, pp. 895-897] that the sequence of products of the squares
of the first # weights be a moment sequence, or (4) in case A is a weighted shift,
show that the weights of A satisfy Stampfli’s iterated condition [8]. Stampfli’s
condition allows one to write down the normal extension of a subnormal weighted
shift.

Onc of the main results of this paper (Theorems 2.2 and 2.3) is that a weighted
translation semigroup {S,} is subnormal if and only if its defining function ¢ is
a Laplace-Stieltjes transform of a probability measure. This characterization
is the continuous analog of the Berger condition.

In Section 3 several methods for constructing subnormal weighted translation
semigroups are indicated. Furthermore a criterion is developed to show when
two such semigroups are similar.

Throughout the paper we shall use the notation {S;} ~ ¢ to mean that {.S,}
is the semigroup on L? (= L¥R.)) defined by (S,f)(x) = J(x)/d(x — ) f(x — 1)
for x Zx t 2> 0, and 0 otherwise. We call ¢ the symbol for {S,}. To avoid needless
difhculties, we assume that ¢ is continuous and nonzero. To insure the strong
continuity of {S,} [3, Lemma 2.1], we assume that ess SUPyer, | d(x -+ 1)/d(x) <
Met for all t and some constants M and w. Since {S,} ~¢ and {T}} ~ p arc
unitarily equivalent [3, Theorem 2.5] if and only if | $/p ' is constant, we can
and do assume that ¢ is positive-valued.

An operator 4 on a Hilbert space X 1s subnormal if and only if .4 is the
restriction of a normal operator to an invariant subspace. A semigroup {S;}
of operators on X is subnormal if and only if each S, is subnormal on X. By a
theorem of Ito {6] this is equivalent to the seemingly stronger assertion that
there exists a normal semigroup {IN,} (on a larger space) such that {S}} is the
restriction of {N;} to X By an arbitrary semigroup {S,} of operators on a Hilbert
space .\ we mean a set {5} such that S, - I, the identity operator, and for all s
andtin R, 5,5, =S, _;.{S,} is a strongly continuous semigroup if lim,_, S;f=f
for all fin A

2. A CHARACTERIZATION OF SUBNORMAL WEIGHTED TRANSLATION SEMIGROUPS

Our major objective in this section is to characterize the subnormal weighted
translation semigroups {S,} with symbol ¢. This we do in Theorem 2.2 in which
we show that {S;} is subnormal if and only if ¢2 has an integral representation

a
#) - [ 5 dple),
where p is a probability measure on [0, a]. This is analogous to Berger’s result
on subnormal weighted shifts [4]; S is a subnormal weighted shift with real
weights {A;, A; ,...} if and only if 8,2 = (A,,..., A,)*> is a moment sequence,
B2 = fg 5" dp(s), p a probability measure.
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Before proving our characterization of subnormal weighted translation
semigroups we consider arbitrary subnormal semigroups. In [2] Embry proved
that a single operator S is subnormal if and only if {S*"S"} is a Hausdorff
moment sequence: S*tS? = fz s dp(s), where p is an operator measure, of
total variation I. The following theorem is the continuous analog for semigroups.

Turorem 2.1. Let {S,} be a strongly continuous semigroup. {S;} is subnormal
if and only if there exists an integral representation of {S,*S,} of the form

(1
S8, = | s dp,
0

where p is an operator measure of total variation 1, and

Proof. Assume first that {.S,} is subnormal and that {N,} on Y is the minimal
normal extension of {S,}. Then {N,*N} is a semigroup of self-adjoint operators
and by [5, Theorem 22.3.1, p. 588] there exists a spectral resolution ¢ such that
NAN, = [*° ¢t do(s) and 2, = lim,_,. 72 log | N,*N, ||. Let P be the projection
of Y onto X and define 7 == PaP. We have

S,*S, = PN*N,P

wy

[ ; ets dr(s)

%o
st dp(s),
()

where p = 7o log. Finally €0 - lim, o, || NN 0 = im0 || S5, 1Y, since
{N,} is the minimal normal extension of {S}}.

Now assume that {.S,} has the stated integral representation. Then for fixed ¢,
SFrSm = S%,S,, = [o (5" do, so that {SF"S¢} is a Hausdorff moment
sequence. By [2], this implies that .S, is subnormal. Consequently, by [6],
{S,} is subnormal and the proof is complete.

TuroreM 2.2. The weighted translation semigroup with symbol ¢ is subnormal
if and only if there exists a probability measure p on an interval [0, a] such that,
on R, ,

w@:fﬂ@m (1)

Proof. Note that if {S,} is the weighted translation semigroup with symbol ¢,
then for each fin L2, (S,*S,f)(x) = ($2(x + t)/d*(x)) f(x) a.e. dx.
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Assume first that ¢3(x) = ﬂ: s* dp(s), p a probability measure on [0, a]. Define

Pl ) = (1) [ o= dolr)
forsin [0, @] and x in R, . For each xin R, , p(s, x) is a nondecreasing function
of s and p(a, x) - : | and p(0, x) == 0. Thus for cach x in R_, p( , x} defines a
Borel measure on [0, a]. Furthermore,

~fL

[ dots, ) = g [ o)

= ¢*(x + 1)/d*(x),

for all # and x in R". We conclude first that ¢*(x 4 )/¢%(x) << &', so that the
semigroup {S,} with symbol ¢ is strongly continuous [3]. Second, since
(S/ASSYx) — (2 + D)) F(3) — o dpls, ) f(x), we conclude, by ap-
plying Theorem 2.1, that {S,} is subnormal.

Conversely, we assume that {S,} is subnormal and S*S, -= fg st dp. We shall
consider p to be a nondecreasing operator-valued function on [0, 4], continuous
from the right on (0, @) with p(@) =1 and p(0) =: 0. Integrating by parts,
we have

S8 = at— [ p(s) dst.
0

Now if E is a measurable subset of R, and fis an element of L2 such that f = 0
a.e. on E, then

0 = (s + 08N S0 = () — [ (o) ) d

a.e. on E. Thus fg (p(s) f)(x) g(s) dx == O a.e. on E for all continuous g on R, .
We conclude that (p(s) f)(x) = O for all s and almost all x in E. Thus L¥E) is
invariant under p(s) for each measurable E, implying that p(s) is a multiplication
operator on L? and that there exist functions p(s, ) such that, for f in L2

(p(5) F)) = p(s, %) f(x). Consequently,

(s + O F) 1) = [ 5 dols ) 1)

Choosing f to be the characteristic function of [0, 1] and x == 0, we have
$:(1) = [ st dp(s, 0).
Y

It remains to be shown that p(s, 0) 1s nondecreasing and of total variation 1.
Since p(s) is nondecreasing, it follows from the definition of p(s, x) that for
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each pair s and ¢ of real numbers (s < #), p(s, ¥) < p(2, x) for almost all x.
We conclude that, except on a set £ of measure zero, p(s, ) << p(¢, x) for all x
and all rational s and ¢. Since p(s) is continuous from the right, p(s, ) = p(t, x)
for all s and ¢ and all » ¢ £. Finally, since p(a) : I and p(0) = 0, we conclude
that p(s, 0) generates a probability measure; the proof is complete.

The integral representation (1) for the symbol ¢ of a subnormal semigroup
leads easily to

CoOROLLARY 2.3. {S,} #s subnormal if and only if ¢* is the product of an
exponential and a Laplace-Stieltjes transform of a monotone funciion o of total
variation 1,

$Hx) - a® | e do(s). (2)
Ja

Proof. In (1), first substitute f == s/a. Then substitute u = —logt and
olu) = 1 — plae™®).

For a general discussion of Laplace-Stieltjes transforms we refer the reader
to [9]. Several facts concerning the symbols ¢ associated with subnormal semi-
groups are easily obtained. For example, if we define ¢(z) = [, e~ do(s) for
Re 2 > 0, then $2 is well-defined (Theorem 3.1, p. 47) and is analytic for
Re 2z > 0 (Theorem 53, p. 57). An immediate result of this fact is that if {S;} ~ ¢
is subnormal, then ¢ is C* on (0, o0). In particular, if ¢ is not differentiable on
(0, o), then {S,} ~ ¢ is not subnormal. We note that any ¢ for which log¢
is convex, but ¢ is not, C* gives rise to a hyponormal, nonsubnormal weighted
translation semigroup.

A second observation is that if ¢; and ¢, are symbols for subnormal semigroups
and ¢,(x) = ¢o(x) for each x in an infinite subset of R, with a cluster point in

R,\{0}, then ¢, = ¢, . In particular, if ¢;(x) - - 4e’® on some interval, then
$y(x) = Aev* for all x and {S,} ~ ¢ is quasinormal. This is analogous to a result
of Stampfli [7] concerning subnormal weighted shifts: If {A,, A;,...} is the
weight sequence for a subnormal weighted shift and A;, == A;.,; for some integer %,
then A, = A, forall k = 1.

3. ExaMmpLES OF SUBNORMAL WEIGHTED TRANSLATION SEMIGROUPS
In this section we examine some methods in which Theorem 2.2 may be
used to construct subnormal weighted translation semigroups.

(i) Perhaps the simplest application of Theorem 2.2 is when dp is a
point mass, that is, p is defined on an interval [0, ¢] by

p(s) == 0 for 0 <s <d,
- for d-<s<c.
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It then follows that ¢2(x) == ff, §* dp(s) = d”. Conversely, we can show that
if ¢(x) == a®, then dp is a point mass. It was shown in [3] that the semigroups
arising in this way are precisely the quasinormal weighted translation semigroups.

(i1} Let {a,}n_y be a sequence of nonnegative real numbers such that
S a, == 1. Let g(s) = ¥ _o(n + 1) a,s?, 0 <<s << 1. Then g is increasing and
integrable over [0, 1). Let dp(s) == g(s) ds. Then set ¢*(x) == f; s¥g(s) ds =
S oy, (m - Df(n 1+ x). It follows that ¢ is the symbol for a subnormal
weighted translation semigroup. If we choose ¢, == 1 and a,,., = O foralln >0,
we see that (1 -+ x)71/2 is such a symbol. This last gives us an example of a
subnormal, nonquasinormal weighted translation semigroup.

(i) Since a convex combination of increasing functions of total variation
one is again such a function, we see that the set {¢* :¢ =~ 0 and {S;} ~¢ is
subnormal] is convex.

(iv) Since the product of two absolutely convergent Laplace-Stieltjes
transforms is again a Laplace-Stieltjes transform [5, p. 216], we see that {¢:
{S,} ~ ¢ is subnormal} is a semigroup under multiplication in C*(R.).

Remarks. (a) Categories (iii) and (iv) above indicate that the set of ¢’s
which are the symbols for subnormal semigroups has a reasonable algebraic
structure in C*(R,). Further development of this structure will be of interest.

(b) As noted in [3], if {S;} ~ ¢ and if for each 7 > 0 we set M, = closed
linear span {$X[,/ (ninn : 7 == 0}, where X, , is the characteristic function of
the interval (a, b), then M, is invariant for S, and the restriction of S, to M is a
weighted shift with #th weight (j;’;ﬂ)t &*(x) dx/f::_l)tqﬁz(x) dx)'/2. 1t was shown,
moreover, that {S,} is subnormal if and only if each of these shifts is subnormal.
Thus, Theorem 2.2 enables one to construct large numbers of subnormal weighted
shifts without resorting to Berger’s theorem a correspondingly large number
of times.

(¢) A slightly different connection between Berger’s representation for
subnormal weighted shifts and our representation for subnormal weighted
translation semigroups is arrived at as follows. If {S;} ~ ¢ is subnormal, then
o x) = fg s% dp(x), for some probability measure p. In particular, $2(n) =
fo s dp(s). Thus {$*(n)} is a moment sequence and, by Berger's theorem,
{p(n)fp{n — 1)} are the weights of a subnormal weighted shift.

In [3] it was shown that if {S;} ~¢ and {7} ~p, then {S,} and {T}} are
unitarily equivalent if and only if | ¢/p | is constant. We conclude this paper by
establishing a necessary and sufficient condition for similarity of weighted
translation semigroups. Before doing so, however, it is necessary for us to review
some of the basic properties of invertibly weighted shifts and show how these
properties relate to weighted translation semigroups. In this regard we wish
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If {A,},_; is a sequence of invertible operators on a Hilbert space H such
that sup, | 4,, || << 20, then the operator S defined on L(H) = H® H @ - by

Sy, Xy e == <0, Ay, Aogxy el

is called the invertibly weighted shift with weight sequence {4,}. Let S and T
be invertibly weighted shifts with weight sequences {4,} and {B,}, respectively,
and define S, = 4,4, , - 4;, S, =1, and define {T,} similarly in terms
of {B,}. Let X" be an operator on L(H) with matrix [X;;];_, relative to the
decomposition H @& H @ - of I,(H). It is shown in [7] that S = X7'if and
only if

(¥

0, r <l ],
~2 SSX LT F

Now, if {S;} ~ ¢, then each S| is unitarily equivalent to an invertibly weighted
shift. To see this fix ¢ > 0 and for each f e LA(R,) write f = 3., @ f,,, where
J» €L¥0, t)is given by f,(x) = f(x + nt). This establishes a unitary equivalence
between LAR,) and L(L*0, t)). Moreover, this equivalence identifies S, with
the invertibly weighted shift S with weight sequence {multiplication by

q’)n/(ﬁnvl}fsl N

THeoREM 3.1, The weighted translation semigroups {S;} ~é and {T)} ~p
are similar if and only if ¢/p and p|¢ ave bounded.

Proof. From [3, Lemma 2.1] we sce that there is no loss in generality in
assuming that ¢ and p are positive valued. Suppose there exist constants a and b
so that, for each x in R, , 0 < a << ¢(x)/p(x) < b < ov. Then one easily verifies
that the operator 4 given by multiplication by ¢/p is invertible and satisfies
AT, == 8,4 for each t 2> 0. Conversely, suppose {S,} and {7} are similar.
Let X be an invertible operator satisfying S, X == X7, for all ¢ 2= 0. Fix ¢t > 0.
By the remarks concerning invertibly weighted shifts preceding this theorem
we have, for 7 > j,

#( y y - ” —
X9 = SPSP) XY, (T,

where the ¢ superscript is used as a reminder that all decompositions, matrices,
etc. are with respect to LAR.) = L(L*0, 1)). Also S{” is the operator on L0, 1)
given by

(SS) = (Bl —+ nt)ib(@)) f (),

and similarly for {T%"}. Note that || S | - supy-pes (¢ -+ nt)/(x)). Now we

see that for each n =0, XOTO = SHX. Also, since X is invertible and



SUBNORMAL SEMIGROUPS 275

T,X-t = X-15,, X-1 has a lower triangular matrix with respect to the de-
composition in question, and (A1) == (Y{)) 1. Thus

(IR 6 el

XTI T
Letting ¢ = ] X' [] || X1 | we see that, for every ¢ > 0 and every positive integer
n, SUPgcact (Blx 4 nt)jd(x)) << ¢ supgeyee (p(x + nt)/p(x)). Now, since ¢ and p
are bounded above and away from 0 on [0, l] there is a constant d so that,
forallz >z 0andall te [O 1], sup0\7<,¢( + nt) < d - supgeges p(X - nl). We
shall show that ¢(y) =2 d - p(¥) for all ¥ 2= 0. As%ume the contrary. Then, for
some v > 0, ¢(y) > (/ p(»). By continuity this strict inequality must hold on
some interval (a, b). But then there is a number ¢ in (0, 1] (any t < (b — a)/2
will do) and an integer # so that (nt, (n - 1)¢) C (4, b). But then we would have
SUPgeypey DX -+ 1E) > d - supgeac p(x — nt), which is impossible. Thus () =0
d - p(v) for all y. By reversing the roles of ¢ and p, we see that both ¢/p and
pid are bounded, completing the proof.

Remark. Theorem 3.1 shows that a weighted translation semigroup may
be similar to a subnormal weighted translation semigroup without its symbol
enjoving any of the smoothness properties associated, via Theorem 2.2, with
the symbol of a subnormal weighted translation semigroup. Indeed, even using
the isometric semigroup {U,} associated with ¢(x) = 1, we see that if {7} ~p
then {7} and {U,} are similar if and only if p and 1/p are bounded; that is,
the graph of p lies in a finite horizontal strip which is bounded away from the
X-axis.
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