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1. Introduction

Over the past five decades, pseudo-differential operators have become a powerful and
versatile tool in the analysis of Partial Differential Equations (PDE’s) in various contexts.
Although they may be used for global analysis (essentially in the Euclidean setting), they
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can be localised and this allows one to define them on closed manifolds. However, on
a closed manifold, one can no longer attach a global symbol to a single operator in
the calculus (although one could recover a — partial — global definition of operators on
manifolds for instance using linear connections, see [13] and the references therein). The
subject of the present paper is to define globally and intrinsically symbolic calculi on a
special class of manifolds, more precisely on any compact Lie group G. Naturally the
first aim of this article is to show that the fundamental properties of the calculi hold
true, thereby justifying the vocabulary. The second aim of this article is to prove that our
calculi coincide with the Hérmander calculi localised on G viewed as a compact manifold
— when the Hérmander calculi can be defined. We will also show that it coincides with
the calculi proposed by Michael Ruzhansky and Ville Turunen in [10]. Although this
is not the purpose of this paper, let us mention that several applications to PDE’s of
the calculi have been obtained by Michael Ruzhansky, Ville Turunen and Jens Wirth,
e.g. construction of parametrices, study of global hypoellipticity, see [12,10] and the
references therein.

It is quite natural to define pseudo-differential operators globally on the torus by
using Fourier series and considering symbols as functions of a variable in the torus and
another variable in the integer lattice, see for instance [11] and the references therein.
Michael Taylor argued in his monograph [17, Section I.2] that an analogue quantisation
is formally true on any Lie group of type 1, considering again symbols as functions of a
variable of the group G and another variable of its dual G (which is the set of equivalence
classes of the unitary irreducible representations of G). Just afterwards, Zelditch in [19]
defined a (compactly-supported) symbolic pseudo-differential calculus on a hyperbolic
manifold with a related quantisation. Pseudo-differential calculi have also been defined
on the Heisenberg group by Taylor in [17], see also [2] and [6], and in other directions
by Dynin, Folland, Beals, Greiner, Howe (see [7] and the references therein). See also
[4] for a global pseudo-differential calculus on homogeneous Lie groups (although it
may not qualify as symbolic, being defined in terms of properties of the kernels of the
operators).

It would be nearly impossible to review in this introduction the vast literature on
classes of operators defined on Lie groups (especially if one has to include all the studies
of spectral multipliers of sub-Laplacians). Instead, in this article, we focus on pseudo-
differential operators, in the sense that the operators are not necessarily of convolution
type. In this sense, studies of pseudo-differential calculi on Lie groups form a much shorter
list and the ones known to the author were mentioned directly or indirectly earlier in
this introduction.

Following the ideas in the introduction of [2], let us formalise what is meant here by
a calculus:

Definition 1.1. For each m € R, let U™ be a given Fréchet space of continuous operators
D(G) — D(G). We say that the space ¥ := U,, U™ form a pseudo-differential calculus
when it is an algebra of operators satisfying:
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1. The continuous inclusions ™ C U™ hold for any m < m’.

2. U is an algebra of operators. Furthermore if Ty € U™ T, € U™2 then 11T, €
Pmitm2 and the composition is continuous as a map ¥t x ¥z — ymatmz,

3. U™ is stable under taking the adjoint. Furthermore if 7' € ¥™ then T* € U™, and
taking the adjoint is continuous as a map ¥ — U™,

4. ¥ contains the differential calculus on G. More precisely, Diff " (G) C ¥™(G) for
every m € Ny.

5. U is continuous on the Sobolev spaces with the loss of derivatives bounded by
the order. Moreover, for any s € R and T' € W™, ||T'|| » g+, gs—m) is bounded by a
semi-norm of T" € W™, up to a constant of s, m and of the calculus.

The operator classes considered in this paper are defined in Section 3 and denoted by
ps(G), orjust WI meR, 1>p>6>0, p#0, 0 #1.

The (localised) Hérmander class of operators defined on the group G viewed as a manifold
is denoted by

ps(Gyloc), meR, 1>p>0>0, p>1-4.

The conditions on the parameters p, d for \I/Zf(;(G, loc) comes from the necessary consis-
tency when changing charts, and imply p > % In this paper, we show that our classes
of operators and the Hormander calculi coincide when the latter can be defined:

Theorem 1.2. Let p,d be real numbers with 1 > p > 6 > 0 with § # 1. Then ‘I/;f’é(G) =
UmeR\I/;’fé(G) is a calculus on G in the sense of Definition 1.1. Moreover, if p > § and
p > 1 =206, then this calculus coincides with the Hérmander calculus \I';‘;;(G, loc) =
UmGR\IjZT(;(Ga loc) on G viewed as a compact Riemannian manifold.

We will often abuse the vocabulary and refer to the collection of operators \I/zf’(;(G) as
a calculus although this is the main aim of this paper to show that it is indeed a calculus
in the sense of Definition 1.1.

The ideas and methods used in this article come from the ‘classical’ harmonic analysis
on Lie groups. We show that multipliers in the Laplace-Beltrami operator £ are also
in the calculus in a uniform way (see Proposition 6.1). For this, we use the well-known
properties of the heat kernel of £ [18] and methods regarding spectral multipliers [1]. This
enables us to use Littlewood—Paley decompositions with uniform estimates for the dyadic
pieces. This also allows us to obtain precise estimates for the kernels of the operators in
Section 6.

It seems possible to generalise many of these ideas and methods to any Lie group of
type-1 and with polynomial growth of the volume and even to some of their quotients.
The resulting calculi would certainly depend on the choice of a fixed left-invariant sub-
Laplacian. An important technical problem would come from the fact that, on a compact
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Lie group, we choose the Laplace—Beltrami operator which has a scalar group Fourier
transform. This could no longer be assumed for a general left-invariant sub-Laplacian.
Another technical issue is the use of weight theory in some parts of the proofs, for
instance see in Appendix B.

This paper is organised as follows. After the preliminaries in Section 2, we define the
symbol and operator classes in Section 3 studied in this paper. The main result is stated in
Section 3.3, where the organisation of the proofs is also explained. In Section 4, we present
some first results. In Section 5, we recall the definition of the calculus proposed by Michael
Ruzhansky and Ville Turunen in [10], and we show that it coincides with our intrinsic
definition. Section 6 is devoted to the study of the kernels associated with our symbols.
In Sections 7 and 8, we show that our calculus indeed satisfies the properties listed
in Definition 1.1 and that it can be characterised via commutators, thereby coinciding
with the Hérmander calculus. Some technical results are proved in Appendix A and
Appendix B.

Notation. Ny = {0, 1,2, ...} denotes the set of non-negative integers and Ny = {1,2,...}
the set of positive integers. [-], || denote the upper and lower integer parts of a real
number. We also set (r); := max(0,r) for any r € R. If H; and Hs are two Hilbert
spaces, we denote by % (H1,Hz) the Banach space of the bounded operators from H;
to Ho. If Hy = Ha = H then we write £ (H1,Ha) = L (H).

2. Preliminaries

In this section, we set the notation for the group and some of its natural structures,
such as the convolution, its representations, the Plancherel formula, and the Laplace—
Beltrami operator. References for this classical material may include [14] and [9].

2.1. Notation and convention regarding objects on the group G

In this paper, G always denotes a connected compact Lie group and n is its dimension.
Its Lie algebra g is the tangent space of G at the neutral element eq. It is always possible
to define a left-invariant Riemannian distance on G, denoted by d(-,-). We also denote
by || = d(z, eq) the Riemannian distance on the Riemann between x and the neutral
element eg and by B(r) := {|z| < r} the ball about eg of radius » > 0. In this paper,
Ry denotes the maximum radius of the ball around the neutral element, i.e. B(Ry) = G,
and ¢y € (0, 1) denotes the radius of a ball B(ep) which gives a chart around the neutral
element for the exponential mapping exp, : g = G.

We may identify the Lie algebra g with the space of left-invariant vector fields. More
precisely, if X € g, then we denote by X and X the (respectively) left and right invariant
vector fields given by:

Xo(x) = Oiop(zexps(tX)), and X¢(m) = Or—o¢(expq (tX)x),
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respectively, for x € G and ¢ € D(G). In this paper, D(G) denotes the Fréchet space of
smooth functions on G. One easily checks

X{o(-"HHa) = = (X¢) (=7). (1)

We denote by Diff' (G) the space of smooth vector fields on G. It is a left D(G)-module
generated by any basis of left-invariant vector fields or by any basis of right-invariant
vector fields. More generally, for k € N| Diffk'(G) denotes the space of smooth differential

operators of order k. Any element of Diff* (G) may be written as a linear combination
of an(z)X?, |a| = k, where a, € D(G), and

[ 2 a1 (253
X = XM X0,

having fixed a basis {X;,...,X,} for g. We have a similar property with the right-
invariant vector fields Xi,...,X,. We also set Diff°(G) = D(G). We denote by
Diff(G) = Ugen, Diff"(G) the D(G)-module of all the smooth differential operators on G.
The Haar measure is normalised to be a probability measure. It is denoted by dz for
integration and the Haar measure of a set F is denoted by |E].
If f and g are two integrable functions, i.e. in L'(G), we define their (non-
commutative) convolution f * g € L*(G) via

frg@)= [ fy)gly 'z)dy.
/

The Young’s inequalities holds. The convolution may be generalised to two distributions
f.9€D(G).

If k € D'(G), we denote by T, : D(G) — D(G) given via T (4) = ¢ = k the associated
convolution operator. More generally, in this paper, we will allow ourselves to keep the
same notation for a (linear) operator T': D(G) — D’(G) and any of its possible extension
as a bounded operator on the Sobolev spaces of G since such an extension, when it exists,
is unique.

2.2. Representations

In this paper, a representation of G is any continuous group homomorphism 7 from G
to the set of automorphisms of a finite dimensional complex space. The continuity implies
smoothness. We will denote this space H, or identify it with C?, where d, = dim H,,
after the choice of a basis. We see m(g) as a linear endomorphism of H, or as a
dr X dr-matrix. It is said to be irreducible if the only sub-spaces invariant under G
are trivial. If M, is equipped with an inner product (often denoted (-,-)%, ), then the
representation 7 is unitary if w(g) is unitary for any g € G. For any representation m, one
can always find an inner product on H, such that 7 is unitary. If 7 is a representation
of the group G, then
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7(X) = O=om(exp (X))

defines a representation also denoted 7 of g and therefore of its universal enveloping Lie
algebra (with natural definitions).

If 7 is a representation of G, then its coefficients are any function of the form x +—
(m(x)u,v)3,. These are smooth functions on G' and we denote by L2(G) the complex
finite dimensional space of coefficients of 7. If a basis {e1,...,e4r} of H, is fixed, then
the matriz coefficients of m are the coefficients m; ;, 1 < 4,5 < d, given by m, ;(x) =
(m(x)e;, e)m,. If f € D'(Q) is a distribution and 7 is a unitary representation, we can
always define its group Fourier transform at m denoted by

-~

m(f) = f(r) = Faf(r) € £ (M)

via

since the coefficient functions are smooth. If f is integrable and 7 unitary, we have

1Far(m)l2ae) < 15l (2)

One checks easily that the group Fourier transform maps the convolution of two dis-
tributions f1, fo € D'(G) to the matrix product or composition of their group Fourier
transforms:

Falfix f2) = fo fu.

Two representations m; and mo of G are equivalent when there exists a map U :
Hr, — Hr, intertwining the representations, that is, such that moU = Ury. In this case,
one checks easily that L2 (G) = L2_(G). If m; and Ty are unitary, U is also assumed
to be unitary. The dual of the group G, denoted by G, is the set of unitary irreducible
representations of G modulo unitary equivalence. We also consider the set Rep(G) of the
equivalence class of unitary representations modulo unitary equivalence.

Remark 2.1 (Convention). We will often identify a representation of G and its class in G
or Rep(G). In particular, we consider the Fourier transform of a function to be defined
on Rep(G) and by restriction on G.

If S is a linear mapping on the representation space of a unitary representation 7y,
then we can consider the set S of linear mappings USU ! over H,, where 71 runs over all
the representation equivalent to mg = Um U ~! via the intertwining operator U. We will
often identify S with the set S which will be then referred as a linear mapping on
where 7 € G is the equivalence class of 7.
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Theorem 2.2 (Peter—Weyl theorem). The dual G is discrete. The Hilbert space L*(G)
decomposes as the Hilbert direct sum @WEGLEF (G). Moreover, if for each ™ € G, one fizes
a realisation as a representation with an orthonormal basis of Hy, then the functions

\/Ewm,j, 1<i,j<d;, me @, form an orthonormal basis of G.

The Peter—Weyl theorem yields the Plancherel formula:

/If(w)IQdﬂc =Y delln(Nllisny. | €LXHG), (3)
G re@
and the Fourier inversion formula
f@) =) d:Tr(x(x)n(f)), feD@G), zeq. (4)
7T€é

We denote by

L?‘inite(G) = Z Lgr(G)7

7T€é

the vector space formed of finite linear sum of vectors in some L2(G), 7 € G. As each
L2(G) is a finite dimensional subspace of D(G), L2 ...(G) C D(G). The Peter-Weyl
theorem can be stated equivalently as follows: L2 .. (G) is dense in L?*(G) and

dw%(ﬂ-/) = 67T:7I"I7-l;,a (5)

for any two representations m, 7’ € CA?, in the sense that d,7; ;(7') = drz=r0; ; for any
1 <1,7 <d., when 7 is realised as a matrix representation.

We will also use specific properties of representations on compact Lie groups in relation
with the Laplace—Beltrami operator, see below and in Appendix B.

2.3. The Laplace—Beltrami operator

We can decompose the Lie algebra g of G as the direct sum g = gss @ gop Where ggs
is semi-simple and g is abelian. Note that the group G can be written as the direct
product of the semi-simple Lie group Gss whose Lie algebra is g, together with the torus
Tdim 8ab with the same dimension as gap: G = Ggs X Tdim gas Fixing a scalar product
on gap and considering the Killing form on g, yield a scalar product on g = gss ®* gas.
The (positive) Laplace—Beltrami operator of the compact Lie group G is

L:=-X?—... - X2

where X1, ..., X, are left invariant vector fields which form an orthonormal basis of g.
However £ does not depend on a particular choice of such a basis. Being invariant under
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left and right translations, £ is a central operator and its group Fourier transform is
scalar:

vreG I e0,00) m(L) = ALy, (6)

We keep the same notation for £ and its self-adjoint extension on L?(G) having as
domain of definition the space of all functions f € L*(G) such that Lf € L*(G). Then £
is a positive self-adjoint operator on L?(G). The Peter—Weyl theorem yields an explicit
spectral decomposition for £ and of its spectrum:

Spec(L) = {As, 7 € G}.
For any A € R, we set:
HE = ker(L£ — M). (7)
The eigenspace corresponding to the eigenvalue A € Spec(L) is:
H = @A L2(G). (8)

If A ¢ Spec(L), ch) = 0. Note that ”HE\L) must be finite dimensional. Indeed, the
operator (I+ E)S/ 2 is Hilbert—Schmidt as its kernel is square integrable for any s > n/2
by Lemma A.5. Alternatively, this can be viewed as a general property of an elliptic
operator on the compact manifold G.

The spectral decomposition L?(G) = @AeSpec(ﬁ)Hg\ﬁ) shows that for any function
f :[0,00) — C the operator f(£) is densely defined on L?(G). By the Schwartz kernel
theorem, it admits a distributional convolution kernel which we denote by f(£)d. €
D'(Q):

f([:)(b =¢x* (f(£)66)7 (NS D(G) (9)

The group Fourier transform of this kernel is

~

F(f(L)o)(m) = f(Ar), meQG.

The Sobolev spaces H*(G) = H® may be defined as the Hilbert space which is the
closure of D(G) for the norm

¢ = |1+ £)*2¢l 126y = 6]l

If s = 0 then H® = L?(G). If s € N, then H* coincides with the space of function
f € L*(G) such that Df € L?(G) for any D € Diff*, k < s and an equivalent norm is

Plaj<s 1 X ez e)-
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Proposition 2.3. The space L% ... (G) is dense in each Hilbert space H® and in the Fréchet
space D(G) = NgerH?® = NgenH®.

Sketch of the proof of Proposition 2.3. If f € H*, we set f, := (I+ £)~%/2f € L*(G)
and fs ¢ the orthogonal projection of fs onto @, <,L2(G) C LZ ;..(G). Then one checks
easily that f; := (I+ L£)™%/2f, s € ®x,<¢L2(G) converges in H* to f. The rest of the
proof is routine using Lemma A.5. O

3. The symbolic calculus

The operator classes which are the subject of this paper are presented in this section.
We introduce the natural quantisation and our notion of symbols in Section 3.1, then
in Section 3.2 our concept of difference operators and symbol classes. Eventually, in
Section 3.3, the main theorem of this paper is stated and we present the organisation of
its proof.

3.1. Symbols and quantisation

The natural quantisation and notion of symbols on (type 1 locally compact) groups
is due to Michael Taylor [17]. On compact Lie groups, G is discrete and the natural
quantisation is greatly simplified greatly. In fact, it may be viewed as a generalisation of
the Fourier series on tori.

Definition 3.1. An invariant symbol is a collection o = {o(7), 7 € CAJ} where for each
m € G, o(m) is a linear map over H, (see Remark 2.1).

Using a different vocabulary, an invariant symbol may be defined as a field of operators
over @_ sHr modulo unitary equivalence.
The space of invariant symbols is denoted by

¥ = ¥(G) = {0 invariant symbol}.
One checks easily that 3(G) is an algebra for the product of linear mappings.

Since 7 € Rep(G) may be written as a finite direct sum © = @;7; of 7; € G, any
invariant symbol may be naturally extended over Rep(G) via o(7) := @;jo(1;). We will
often identify an invariant symbol with its natural extension as a collection over Rep(G).
Example 3.2. The group Fourier transform of a distribution is an invariant symbol:

f={n(f),neGlex, [feD(Q).

As already noticed, fmay equally be viewed as a collection over Rep(G).
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The set FoD'(G) is sometimes called the space of Fourier transform or, in the case
of the tori, of Fourier coefficients. Example 3.2 shows

.FG'D/(G) C E(G)

The inclusion is strict as the following description of the image of the Sobolev spaces
implies:

Lemma 3.3.

L. Let s € R. An invariant symbol o € X is in FeH*" if and only if o, & =
(X reada(1+ )\7T)5||U||%,S(7_L7r))1/2 is finite.

2. An invariant symbol o € ¥ is in FgD'(G) if and only if there exists s € R satisfying
HO’HhS(é) < 0.

The proof of this statement follows readily from the Plancherel formula (3), the def-
inition (6) of the eigenvalue A, of £, and the fact (which follows from Proposition 2.3)
that D'(G) = User H*(G).

Definition 3.4. A symbol is a collection o = {o(z,7), (z,7) € G % @} such that for each
ze€G, o(z,:) ={o(z,n),(x,m) € G x G} is an invariant symbol.
The operator associated with o is the operator Op(c) defined on L ;. .(G) via

Op(0)é(w) = Y d'Tr (w(@)o(2,M)3(m)) ;6 € Lhne(G), € G

‘n'E(A}'

Naturally an invariant symbol is a symbol ‘which does not depend on z’. In this case,
the corresponding operator is a Fourier multiplier.

The Peter—Weyl theorem implies that if an invariant symbol ¢ is bounded in the sense
that the quantity

o]l e @y = sup lo(m)ll 2@ = sup [lo(®)l2@wn), (10)
re@ mTERep(G)

is finite, then the corresponding Fourier multiplier Op(o) is bounded on L?(G) with
operator norm

10p(0)ll 2(r2(c)) = loll 1= &) (11)

The converse holds easily: if Op(o) is bounded on L?(G) then ||a||Loo(@) is finite.

Note that, using the notation of Lemma 3.3, the properties of the Hilbert—Schmidt
norm easily imply that for any invariant symbol o we have (with quantities possibly
unbounded):
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ol @ < Calloll ) (12)

where C, := [|(1 + )\W)S/2||h0(é) is finite whenever s < —n/2 by Lemma A.5.
Naturally, any convolution operators may be viewed as a Fourier multiplier:

Example 3.5. If x € D'(G), then Op(R) extends to the group Fourier multiplier T}
D(G) — D'(G) associated with k, that is,

T.¢=Ré, ¢ €DQG).

Equivalently, T}, is the convolution operator T} : ¢ — ¢ * k.

For instance, if kK = d., is the Dirac mass at the neutral element then T, = I is the
identity operator on D(G). More generally, for any 8 € Ni, if kK = (X#)!6..(y~!) then
T, =X".

If an operator T' € Z(L?(Q)) is invariant under left-translation, that is, T'(f (zo-))(z) =
(Tf)(zox), ,m0 € G, f € L*(G), then the Schwartz kernel theorem implies that it
is a right convolution operator in the sense that there exists x € D'(G) such that
T=T,:¢— ¢*xronDG). Eq. (11) yields

1Tkl 2(22(c)) = sup | Far(m)|| 2@, (13)
TeG

If T is a linear operator defined on L2 .. (G) (and with image some complex-valued
functions of z € G), then one recovers the symbol via

o(z,m) =m(x)"(Tr)(x), thatis, [o(z,7m));;= Z’ﬂ'kl (Trg;)(x), (14)

when one has fixed a matrix realisation of w. This can be easily checked using (5). This
shows that the quantisation Op defined above is injective. Moreover (14) makes sense
for any m € Rep(G) and one checks easily that this coincides with the natural extension
of o(z,-) to a collection over Rep(QG).

Definition 3.6. If ¢ = {o(z, ), (z,7) € G x G} is a symbol, then it extends naturally
to the collection {7 (z)*(Op(o)m)(z), (x,7) € G x Rep(G)}. We will often keep the same
notation for o and the extended collection over G x Rep(G).

Definition 3.7. A symbol o = {o(z,7), (x,7) € G x G} has (resp.) continuous, smooth,
integrable, square-integrable entries in x when, having fixed one (and then all) matrix
realisation of each 7 € é, the entries of o(x,m) are respectively continuous, smooth,
integrable, square-integrable in .
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3.2. Difference operators and symbol classes

Here we introduce our concepts of difference operators and of classes of symbols.
For each 7,m € Rep(G) and o € X(G), we define the linear mapping A,o(m) on
Hr ® Hy via:

Aro(m):=c(t@n)—o(ly, ). (15)

The restriction of Ao () to any occurrence of p € G in a decomposition of T@ T, 7 € G
defines the same mapping over H,. Therefore (15) defines a ‘partial invariant symbol’
on any p € G occurring in 7T ® m, T € G. Let us extend this tr1v1a11y by defining the
mapping to be zero for any p € G never appearing in any 7 @ m, w € G.

Definition 3.8. The operation A, defined via (15) and extended trivially acts on 3(G)
and is called the difference operator associated with 7 € Rep(G).

Example 3.9. The dual of the torus T = R/27Z, is T = {er, € Z} where e;(x) = '™,
x € T. Note that ey ® e,, = epysp. If the invariant symbol o is the Fourier transform of
f € D'(T) as in Example 3.2,

. . 1
that is, o= f, o(e)=f({)= o
71'

then the difference operator A., is given via

~ ~

A, flem) =o(er @ em) — o(1® em) = F(L+m) — f(m).

Hence, for ¢ = +1, A., is the usual discrete (forward or backward) difference operator
on the lattice Z.

We also define the iterated difference operators as follows. For any a € N and for any
a=(7,...,7,) € Rep(G)?, we write

A% :=AL . AL, || := a.
If 7 € Rep(G) and o € &, then A% (7) is a mapping over
HEY =H,, ®...0 Hr, @ Hr.

We adopt the following conventions: if a = 0 and a = ), we define A* to be the identity
operator on X(G). We also set

Rep(G)? =0 and Rep(G)* := Uzen,Rep(G)*.



3416 V. Fischer / Journal of Functional Analysis 268 (2015) 3404—3477

We can now define our classes of symbols.
Convention. In this paper, p and § are two real numbers satisfying
1>p>62>0.

Definition 3.10. Let m € R. The set S)'5(G) is the space of all the symbols o =
{o(z,7),(z,7) € G x G} with smooth entries in z (in the sense of Definition 3.7) such
that for each a € Rep(G)® and D € Diff® there exists C' > 0 satisfying

) m— ea+6

V(@ m) € (2,G)  [Delr0 (2, 7)l| pzgee) < C(1+ Ar (16)

In this definition, it appears that one should check a non-countable number of condi-
tions for each symbol. Let us show that it is in fact countable and furthermore that this
defines a Fréchet structure on S7s.

As the group G is compact, any differential operator D € Diff’ may be written as a
linear combination of X#, |3| = b, with smooth coefficients on G, see Section 2.1. Thus
o € S'5(G) if and only if the symbol o has smooth entries in 2 and satisfies the condition
in (16) for any D = X 8 € N, and any a € Rep(G)*.

As any representation in Rep(G) is a finite sum of irreducible representatlons in G
it suffices to check the condition in (16) only for a € G = UGGNOG We can restrict
this even more: recall that the (compact) group G admits a finite set of fundamental

representations:
Fund(G) C G C Rep(@),

in the sense that any representation in G will occur in a tensor product ®,7; of 7; €
Fund(G). Hence it suffices to check the condition in (16) only for a € Fund(G)* :=
Ugen, Fund(G)®.

These observations imply that a symbol o with smooth entries in z is in S;’fé(G) if
and only if the following quantities are finite for all a,b € Ny:

m—pla|+5|8]
lollsm, G),ab = max sup (L4 A)" = ||X£Aa0(x77r)||$ o
pe €Fund(G)*, BENT . o

i |$EMJMSb 0 (,m)EGXG

It is a routine exercise to show that the functions || - | ST (G),asby G b € Ny, are semi-
norms on 5" (G) and that S7";(G) then becomes a Fréchet space. One checks easily that
if

my <msg, p1 2> pa, 61<02, 1>p;>6;2>0,i=12 = S5 CS"% .

(17)

and this inclusion continuous. This shows the property in Part (1), of Definition 1.1.
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Definition 3.11. We say that a symbol is smoothing when it is in
S57F(G) = NmerS,’5(G).

One checks easily that indeed, S™>°(G) does not depend on p and §. It is naturally
endowed with a projective topology.

Remark 3.12. In the case of the torus (see Example 3.9), Fund(T) = {e4;} and the class
of symbol S5(T) coincides with the one considered in [11].

3.8. The main result

We can now define the classes of operators on G we are studying:
ps(G) == O0p(5775(G)),  meRU{—o0}

and restate our main result.
For m € R, the space U}';(G) inherits the Fréchet topology via the semi-norms
| - H\IfZT;(G)»aab defined by:

ITlwm, )b = lollsr,@)ap when T'= Op(o).

The properties of inclusion similar to (17) hold. The smoothing operators are defined in
a similar manner as well.

Let us now restate the main result of this paper (which was also given in the intro-
duction):

Theorem 3.13. Let p,d be real numbers with 1 > p > § > 0 with 6 # 1. Then \I'Z,Ol;(G) =
UmeR‘I’ng(G) is a calculus on G in the sense of Definition 1.1. Moreover, if p > 0 and
p > 1 =4, then this calculus coincides with the Hormander calculus W5%(G, loc) =
UmE]R\IJZf(;(G, loc) on G viewed as a compact Riemannian manifold.

Implicit in the theorem is the fact that any operator T € \I/zfa(G) extends uniquely
to a continuous operator D(G) — D(G). This is proved in Lemma 4.11.

Although it is the aim of this paper to show that \Ilz%(G) is a calculus, we will abuse
the vocabulary and refer to it as the intrinsic (p, §)-calculus.

Another important result of the paper is the fact that the Laplace operator and its
spectral calculus are part of the calculus:

Proposition 3.14. For any function f : Spec(L) — C, the spectral multiplier f(L) is

in W'y provided that supyegpec(c) (1 +A) 772 [f(A)] < oo.
Moreover, the symbol given by f(x,\z) is in ST"s provided that the function f : G x
Spec(L) — C satisfies

VB € Ny sup (1+)\)7m+;w|Xff(:E,>\)| < 0.
AESpec(L)
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In fact, in Appendix A, we will also prove a property as in Proposition 3.14 but for
multipliers in ¢£, uniformly in ¢ € (0,1); this property is stated in Proposition 6.1 and
this is the main technical argument of this paper. It enable us to use Littlewood—Paley
decompositions and analyse precisely the singularity of the kernels, and these two results
are the keys to show the rest of the properties of the calculus.

The proof of Theorem 3.13 is organised as follows. In Section 4, we show that the
symbol classes form an algebra, that the differential calculus is in the intrinsic calculus
and we define our notion of kernels associated with a symbol. In Section 5, we recall
the definition of the calculus proposed by Michael Ruzhansky and Ville Turunen and we
show that it coincides with our intrinsic definition. Section 6 is devoted to the study of
the kernels associated with our symbols. In Section 7, we show that our calculus satisfy
the properties of composition and adjoint as in Parts (2) and (3) of Definition 1.1. In
Section 8, we show that our operators are bounded on Sobolev spaces as in Part (5) of
Definition 1.1 and that it can be characterised via commutators. This implies that our
calculus coincides with the Hérmander calculus when the latter is defined and concludes
the proof of Theorem 3.13. In Appendix A, we prove Propositions 3.14 and 6.1. In
Appendix B, we show a bilinear estimate used in Section 8.

4. First properties
4.1. The algebra of symbols

In this section, we summarise properties of the classes of symbols which are easily
obtained.

Proposition 4.1.
L. If o € S75(G), then for any o, B € Ng, XBA%s € SZ{plaH&W(G) and
HXanUHsgng"*‘”'f",a,b Sab,a,B,m ||U|‘s;’jgﬂ"*‘+5'f",a+|a|,b+|5|'

2. If o € S]'5(G), then the symbol
o ={o(z,7)*, (z,7) € G x G}
is in S)'5(G) and
o™ s a6, = lollsm, a0
3. If o1 € §7'5(G) and o2 € S5 (G) then the symbol o = o102 is in S;'f§+m2 (Q) and

Il grng 72 0y Saom 191115778 aollo2 L2
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Proof. The first property in this statement is straightforward from the properties of the
tensor product and of the representations. The second one follows from

{Aro(m)} = A (0%)(m).

For the last one, we notice that our difference operators generally do not satisfy exactly
a Leibniz property since one can check that for any 01,09 € X(G) and 7,7 € G,

A (o102) (1) = Ar(01) (1) 02(I; @ 1) + 01 (T @ ) As(02)(7).

However taking the supremum over m € G of the & (Hrg-)-norm of the expression above,
this yields (see (10)):
[1A7(0102) | oo (&) < A7 (0) | oo @y 02l oo (@) + o1l oo (@) A7 (02) | Lo (9

with quantities possibly infinite. More generally, it is not difficult to prove recursively
that we have for any a € Fund(G):

1A%010) i) S Co D0 1A% (@) | A% (02) ey (18)

lon [+]az|=|al

And this easily implies the last property in the statement above. O
Consequently, we have:

Corollary 4.2. The classes of symbols UperS)'s form an algebra stable under taking the
adjoint. Moreover the operations of composition and taking the adjoint are continuous.

Furthermore if o is smoothing, then for any o € S5, the symbols oo and ooo are
also smoothing.

Note that the calculus is invariant under translations in the following sense:

Lemma 4.3. If T € v then for all x, € G, the operator 7'IUT7'I_O1 is in Vs where
Te, o [ f(zo -) is the left translation. Furthermore, if k. is the kernel of T and
o = Op YT is its symbol, then TxOTTx_Ol has Ky, . as kernel and o(x,x,7) as symbol,
and

-1
1T llwysa,0 = 172, T72, Loz a0
4.2. The differential calculus
We can now give important examples of operators in the intrinsic calculus. Namely

we prove that the differential calculus, that is, UkeNODika, is included in W75, We start
with studying the case of the operator X7:



3420 V. Fischer / Journal of Functional Analysis 268 (2015) 3404—3477

Lemma 4.4. Let f € Nij and o € Fund(G)*. Then if |f| < |a| then A% = 0. If |5] > ||
then there exists C' = Cqo g such that

VreG  |A(X)P|| gpgee) < COL+ Ap) 5 lad+n),

Proof. We may assume 3 # 0. Since X? maps H® to H*~1%! the map (I + £)~181/2x#
is bounded on L?(G) and this implies (see (11))

sup (1+ Ae) ™12 1w (X)) 3,y < 00 (19)
TeG

This shows the case oo = 0, i.e. A =1.
Let us now consider any 7 € G and |f| = 1, that is X# = X; for some j =1,...,n.
To avoid confusions, let us define o € ¥ via o(7) = 7(X;). One computes easily

(r@m)(X;) = 7(X;) ® Iy, + Iy, @ m(X)
for any 7,7 € Rep(G), thus
Aro(m) = 7(X;) @I, (20)
and by (19),
1270 (M) 20,00 < IT(X) |24, < Ci(1+Ar)2,
If 7, m0,m€ 67 we have by definition of A;;:
Ar Aro(m) =Ano(n@7) — Aro(ly,, ®7),

but by (20), both terms A,,o (7 ®7) and Ar,o (I3, ®7) are equal to 72(X;) @1y, @1y, .
Therefore A, A,,0 = 0. This shows Lemma 4.4 in the case |8| = 1.

Writing a general X” as a product of various X;’s and using (18) imply easily the
general statement in Lemma 4.4. O

Lemma 4.4 implies that 7(X?) € S‘lﬁ O‘(G). More generally we readily obtain that the
differential calculus is included in ¥*°:

Corollary 4.5. Any T € Diff™ may be written as T =}, ,, aaX* where a, € D(G)
and its symbol is then

Moreover T € WT'(G, A).
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4.3. Kernels and smooth symbols

An important notion in the analysis of our operators in the intrinsic calculus is the
following notion of kernel.

Definition 4.6. The symbol ¢ = {o(z,7), (z,7) € G x G} admits an associated kernel
when for each z € G, we have o(z,7) € Fg(D'(G)). Then its associated kernel is
Ky 1= fala(x, ).

If k, is the associated kernel of 0 = {o(z,7), (z,7) € G x é}, the Fourier inversion
formula (see (4)) implies then

Op(0)0(x) = 6 % rp(w) = > d'Tr (w()o(e, mo(m) ) (21)

7r€CAvv

for ¢ € LZ .. (G), x € G.

Remark 4.7. We could have only assumed some distributional dependence in z, i.e. the
coeflicients of  — o(x,7) are in D'(G), then the quantisation formula in (14) would
still make sense and be valid. Moreover in this case, by the Schwartz kernel theorem, a
sufficient condition for a symbol to admit an associated kernel is that Op(c) (L2 ;.(G)) C
D'(G) and that Op(c) extends to a linear continuous operator D(G) — D'(G), this
extension being unique as LZ . (G) is dense in D(G) by Proposition 2.3. However in
our analysis, we will usually assume regularity in z, see below. So we do not seek the
greatest generality and we prefer assuming that each symbol makes sense at each point
x € G. The only exception in this paper is in the proof of Proposition 8.11.

Definition 4.8. A continuous symbol is a collection o = {o(z,7), (z,7) € G x G} such
that the associated kernel k, is a distribution depending continuously on z.

In fact, if the symbol o is continuous, then Op(o) extends (uniquely) as a continu-
ous linear operator D(G) — C(G) and the quantisation formula in (21) holds for any
¢ € D(G). Here C(G) denotes the (Banach) space of the continuous functions on G.

Definition 4.9. A smooth symbol is a continuous symbol with smooth entries and such
that for any D € Diff, {D o (z,7)} is a continuous symbol.

If the symbol o is smooth then x — &, € D/(G) is smooth and Op(o) : D(G) — D(G)
is continuous as an operator valued in D(G).

Naturally if the symbol o is invariant and if o € Fg(D/(G)), then it is smooth and
its associated kernel is Fg 1o, see Example 3.5. In particular, we have:

Example 4.10. For any 3 € NZ, the operator X? admits for symbol 7(X)? which is
invariant, i.e. does not depend on z. The associated kernel is x(y) = (X?)! 5., (y~1).
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Lemma 4.11. Any symbol o in SZ%(G) s smooth in the sense of Definition 4.9. Therefore
any operator in W5%(G) is continuous D(G) — D(G).

Proof. We fix for instance s = —[n/2]. By (12), for 5 € Njj, we have

m+

2 X0, ) @

IXfo(z,)

hem(@) = I+ Am)"

_ m+sl8]

ST+ 2 Xfa(a:,~)||Loo(@).

This shows in particular for 8 = 0 that the distribution s, := Fg'o(z,-) is in the
Sobolev space H*~™ by Lemma 3.3. We also have

rax X2 Kl pram = gleagHXfU(%') heem(G) S ||U||S,T6,O,\ﬁ|'

The continuous inclusion of any Sobolev Space H** in D'(G) implies that x — XZk, is
continuous from G to D'(G) and this concludes the proof of the statement. O

The following easy lemma implies that one can always approximate an operator of a
smooth symbol by an operator with a smooth kernel in the following way:

Lemma 4.12. Let o be a symbol. For each £ € N, we define the symbol oy via

o(x,m) if A<{
oulz,m) = {o( ! ifA> 0
Then for a fired £ € N, o, admits a kernel ky, € L*(G) N C>®(G).
For each v € G and ¢ € L ,,.(G), we have the convergence Op(o¢)¢ — Op(c)¢ as
¢ — oo since Op(og)dp — Op(o)d = 0 for £ > by where £y is such that suppgg c{re G
Ar < Lo}
If o is continuous or smooth, then so is oy.

Proof. The Plancherel formula (3) yields the square-integrability of ¢ . The conver-
gence follows from

Ob(00)é(x) = Op(@)é(@) = = Y. daTr (m(@)o(z,m)d(m)). O

WECA?:AW >/

5. An equivalent characterisation of our operator classes

In this section, we recall the definition of the differential calculus proposed by Michael

Ruzhansky and Ville Turunen in [10]. We then show that this coincides W5%.
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5.1. The Ruzhansky—Turunen difference operators A,

Here we recall the difference operators A, called RT-difference operators, introduced
by Michael Ruzhansky and Ville Turunen [10] with slight modifications. These RT-
difference operators are different from our concept of difference operators explained in
Section 3.2. The notation is close but the context should always prevent any ambiguity.

Definition 5.1. If ¢ € D(G), then the corresponding RT-difference operator A, is the
operator acting on the space of Fourier transforms Fg(D'(G)) via

A f = Felafy, feD(G).

This definition is motived by the abelian case. Indeed, in the case of R, if we denote
the Euclidean Fourier transform of a (reasonable) function g : R — C by

G=Frg, 50 = / g(w)e ™ dz, CER,
R

then 0¢'g = Fr{(—iz)*g}. The torus case is even more compelling:

Example 5.2. (Continuation of Example 3.9.) In the case of the torus T, we see that the
difference operator A., associated with the one dimensional representation e, ¢ € Z, is
given on a Fourier transform f € FgD'(G) by:

B flem) = Fm +0) = Flm) = [ gyt = )3T = Fastm) = Ay, Flm),
0

where go(x) = €¥® —1. Hence A,, coincides with A,, on Fourier transforms. In particular

the backward and forward difference operators correspond to the function g4i.
We will adopt the following notation and vocabulary:

Definition 5.3. A collection A = Ag of RT-difference operators is the collection of RT-
difference operators associated with the element of a finite ordered family @ of smooth
functions, that is:

Q:QA:{Ql,Aa”-aQnA,A}a A:AQ:{AD"')AHA}’
where Ag j = Ay,
For such a collection A = Ag, we set

0 =A% .Ag’:ﬁA, for any multi-index o = (v, ..., a,,) € Ng2.
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Note that A‘é is the RT-difference operator corresponding to

Qn
G =47 - qna®
and that this notation is consistent as any two RT-difference operators commute.
Let us recall the definition of admissibility for a collection of RT-difference operators
with a slight modification with respect to [12, Section 2]:

Definition 5.4. The collection A = Ag of RT-difference operators is admissible when the
gradients at e of the functions in @) span the tangent space of G (viewed as a manifold)
at eq:

rank(Vegq1, -y Veglna) =n (= dimG).

The collection A of RT-difference operators is said to be strongly admissible when it
is admissible and furthermore when eg is the only common zero of the corresponding
functions:

{ec} = N2 {r € G:q;(x) =0}

Remark 5.5. In the definition of admissibility in [12, Section 2], each gradient Vg;(eq) is
assumed to be non-zero so that the RT-difference operator is of order one (in the sense
of Definition A.2). We do not assume this here hence our definition might appear to be
more general. However from a strongly admissible collection in the sense of Definition 5.4,
we can always extract one which is admissible in the sense of [12, Section 2]. As proved
in Theorem 5.9, they yield the same symbol classes. The advantage in considering this
relaxed definition lies in its convenience in various proofs.

We can easily construct a strongly admissible collection:

Lemma 5.6. The exponential mapping is a diffeomorphism from a neighbourhood of 0 in g
onto a neighbourhood of eq. We may assume that this neighbourhood is the ball B(ep)
about ec. Let x,¢ € D(G) be valued in [0,1] and such that

X|B(Eo/2) =1, X|B(eo)C =0, '(/J|B(50/8) =0, "MB(EO/AL)C =1.

We fiz a basis {z1,...,X,} of g. For each j =1,...,n, we define a function p; : G — R

oy Jyi i Bleo) 3y =exp(3;y; X;),
Pily) = { Uiy ¢ Bleo)

and then a smooth function q; = pjx + 1. The collection of RT-difference operators
corresponding to Q = {q;}7_, is strongly admissible.
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Note that Vg;(eg) # 0 in Lemma 5.6.
We can perform the following operations on collection of RT-difference operators:

Lemma 5.7. Let Aqg be a collection of RT-difference operators. We denote by A= AVY
A = Ag and A" = Aq- the collections of RT-difference operators with corresponding

family of functions Q := {g; a(-"1)};, Q = {gja}; and Q" = {@,a(-"1)}-
If Aq is strongly admissible, then so are A, A and A*.

5.2. The Ruzhansky—Turunen classes of symbols

Let us recall the symbol classes introduced by M. Ruzhansky and V. Turunen [10].

Definition 5.8. Let A = Ag be a collection of RT-difference operators. A smooth symbol
o = {o(z,7),(z,m) € G x G} is in S7';(G, A) when for each o € Ng* and D € Diff’
there exists C' > 0 such that

m—p|a|+8b

V(z,7m) € (x,G) | XEAo(z, ™)) < C(L+ Ar) (22)

As the group G is compact and o is smooth in z, it suffices to check (22) only for
D= X% peNy.
For a,b € Ny, we set

_m—pla|+5|B]|
lollsmsca)ap = sup (14 Ar) | X2Ade (2, )| 2.
(z,m)EGXG
la]<a,|B]<b
(s ZL(;(G, A)

If x € G is fixed (and if there is no ambiguity), we may use the notation

m=—pla|+5|8]
2

HJ((E, ‘)”S;’fﬂG,A),a,b = SUE (1 + )‘W)_ HXfA%U(‘Tv 7T)||f(7-[(7r)'

TeG
la|<a,|B|<b
We denote by ¥7's(G, A) the corresponding operator classes:

;76(07 A) = Op( o (G7 A))7

X
and we define || - ||\I/;75(G,A),a,b via
ITlwm, (Ga)a0 = llollsr @ a),a6 when T = Op(o).
It is not difficult to show that || - ||S;'}5(G,A),a,b is a seminorm on S7%(G, A) and that

equipped with || - ||S;n5(G,A),a,b7 a,b € No, 57"5(G, A) becomes a Fréchet space. The space
v (G, A) inherits the Fréchet topology. One shows easily that the usual p, §-inclusions
similar to (17) hold for the classes of symbols and operators.
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Note that if a symbol has smooth entries and satisfies (16) then o is a smooth symbol
in the sense of Definition 4.9, and the operator Op(o) is a continuous operator D(G) —
D(G), see Section 3.1.

One important result of this paper is that the Ruzhansky—Turunen classes of operators
coincide with our intrinsic pseudo-differential calculus:

Theorem 5.9. Let m e R and 1> p >4 > 0.

1. If A and A’ are two strongly admissible collections of RT-difference operators, then
the Fréchet spaces S)'s(G,A) and S7'5(G,A") coincide, that is, the vector spaces
together with their topologies coincide.

2. Moreover, they coincide with the Fréchet space S;%(G) defined in Definition 3.10.

In other words, the intrinsic calculus can be described with symbols in S}'s(G, A) for
any strongly admissible collection A of RT-difference operators.
The next section is devoted to the proof of Theorem 5.9 and its corollary.

5.8. Proof of Theorem 5.9

The proof of Theorem 5.9 uses the following property:

Lemma 5.10. Let q,¢' € D(G) be two functions such that q/q' extends to a smooth
function on G. Let s € R and let 0 € X(G) be such that

3C>0 Vre@ |Ao)| <C+A) 5.

Then we have the same property for Ayo with the same s. More precisely, there exists
= > 0 (independent of o) such that

q,q9’,s
11+ A)2 Aol < CII(L+Ar) 2 Agol 20,

Proof of Lemma 5.10. Let ¢, ¢’ as in the statement. Let k € D'(G) and s € R. Denoting
by Ty and Ty, the convolution operators with kernels gk and ¢’k respectively, we have
to prove

1Tynll 22, m5) Ssaar | Tosllzwe ms).- (23)

Let ¢ € D(G). We have

Ty ()() = / 6(y)(¢'R)(y~ 2)dy = / S0 () (g) (v~ 2)dy,

G G

where the function ¢, € D(G) is defined for each = € G via
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~

s}

Ve(y) == —(y 'z), yeGq.

= |

Then

2

/ Ty () (@) Pz < / sup / O()e, (1) (g) (' 2)dy| de

z1€G
G

2

s [l [ ewen e o] dods,

G M<g+1g G

having used the Sobolev inequalities (cf. Lemma A.5). We have obtained

1Ty @y S S0 / [T 0 X2, 6222 )

<3+l g

Tl oy S / 16X, G 3o drr.

|’Y|§%+1G

One can see easily that
Vs €No Vo,9 € D(G) |l <s max XYl oo ()l 72+,

and thus by duality and interpolation, we also have the same property for any s € R,
with the slight modification that the maximum is now over |a| < |s| + 1. Hence in our
case, we obtain that

/ 16X, reds < 1XY ) 6]l

ma.
W ior jal<lal /22

We have obtained (23). This concludes the proof of Lemma 5.10. O

Proof of Theorem 5.9, Part 1. Let A be a strongly admissible collections of difference
operators with corresponding functions ¢y, ..., ¢, . Up to reordering A, we may assume
that the rank of (Ve,q1,- .., Vegqn) is n = dim G. Furthermore the basis of g is chosen
tobe (X1,...,Xn) = (Vea@1, - Veaqn). For each ¢;, j = 1,...,n, we use the notation
of Lemma 5.6 to construct g;o := p;x + 1. We adapt the argument of Lemma 5.6 for
the other functions. That is for j > n, we know that V.,q; may be written as a linear
combination Y, céj )VeG ge and we define then

and  qjo:=p;x + Y.

pi(y) = { Z? 1 ng)yé if B(eo) >y = (Z] YiX5),
’ 1 if y ¢ B(eo),



3428 V. Fischer / Journal of Functional Analysis 268 (2015) 3404—3477

Clearly the functions g;o0, j = 1,...,na, yield a strongly admissible collections and for
each j =1,...,na, the functions ¢;/q;0 and g;0/q; are smooth on G. By Lemma 5.10,
the Fréchet spaces S)'5(G, A) and S7'5(G, {Ay; , }72;) coincide for each m, p, §. Moreover,
the functions g¢; 0, ] =1,...,n (only) yield also a strongly admissible collections and
for each j > n, the functions > 10? )Qg 0)/gqj,0 are smooth on G. By Lemma 5.10
again, the Fréchet spaces S)'s(G, {Aq7 o1i21) and S7(G, {Ag; ,}7—1) coincide for each
m, p, 6. This shows that any class 7s(G,A) with A strongly admissible coincides with
Ss(G, Ag) with a strongly adm1581ble collection Ag constructed in Lemma 5.6.

Let A; and Ay be two collections constructed in Lemma 5.6 out of two bases (X ;1))
and (X( ) of g. Let P be an n x n real matrix mapping (X( )) to (X(Q)). We con-
struct the two corresponding collections of functions (qﬁ-l)) and (g, (2 )) as in Lennna 5.6.
We check easily that for each j, (3, Pj, qu )/qjl) and (3", (P™1),k q,C )/q are smooth
on G. By Lemma 5.10, the Fréchet spaces S)'(G, A1) and S)'5(G, Az) coincide for
each m, p, 4.

Hence S (G, A) do not depend on a choice of strongly admissible collection A. This
concludes the proof of the first part of Theorem 5.9. 0O

In the proof of the second part of Theorem 5.9, we will need the following lemma:s:
Lemma 5.11.

1. Let 7 € Rep(G). For any o € Fa(D'(Q)), we have

A g = {A (7—)0} 5
% J1<ij<d,

where the functions qg?
0\7) (2) = 7i5(2) if i # J and 7} (2) = 75(x) — 1.

2. We fix a matriz realisation of each representation 7 € Fund(G), and we consider the
functions qgfj) as in Part 1. We then consider the family Q = {qgj), 1<i,5 <d,,

7 € Fund(G)}. The resulting collection Ag of RT-difference operators is strongly

are the coefficients of a matriz realisation of T — Iy, i.e.

admissible in the sense of Definition 5.4.

Proof of Lemma 5.11. One easily checks the first formula in the statement. Let us show
the second part. Each function qz( j) € D(G) vanishes at e since 7(eq) = Iy . Its gradient
at eq is

Veed? = (1ij(X1), ..., 7i5(Xn)), (24)

having kept the same notation for the representation 7 of the group G and the corre-
sponding infinitesimal representation of the Lie algebra g.
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Recall that G can be written as the direct product of a torus with a semi-simple
Lie group, that is, G = T x Gys with n; = dim gab- The set Fund(G) can be written
as the disjoint union of Fund(']I‘”') with Fund(G,s). Let us define Q, Qg and Qs as
the collections of functions qETj), 1<4,j <d,, as 7 runs over Fund(G), Fund(T”l) and
Fund(Gs) respectively. Naturally we can write the family @ as the disjoint union of Q.
with Q5. We write rank(V..Q) := rank{V..q, ¢ € @} and similarly for Q. and Qss.

With the notation of Examples 3.9 and 5.2, the fundamental representations of the
torus T are eq; and we see that e/,;(0) = 1. This shows that rank(V.. Q) = n’. This
implies the statement when G = T" has no semi-simple part. If G is non-trivial and
rank(V.,Q) # n, then rank(V.,Qss) < dim g,5. As any representation of g, appears in
the decomposition of some tensor products of fundamental representations, this together
with (24) would imply that any representation of the semi-simple Lie algebra gss is not
injective and this is impossible. Hence in any case, we have rank(V,.,Q) = n.

The zero set of @Q is

Nge@i : q(x) = 0} = Nrepuna@yiz : 7(x) — Iy, = 0}

= Nrerep(@) 1 : 7(x) — Igy, = 0}.

The inversion formula (4) implies that if 29 € G is a zero of @, then f(z¢) = f(eg) for
any function f € C(G). This implies that zo = e¢ and Q = {eg}. This shows that Ag
is strongly admissible and concludes the proof of Lemma 5.11. O

Proof of Theorem 5.9, Part 2. If o € S;%(G, A) for some strongly admissible collection
of RT-difference operator A, then by Part 1., we may assume that A = Ag defined in
Lemma 5.11. The properties of the tensor easily implies for a € Fund(G)“

1A% |lyge < Ca D0 [AG oI,

A
a’eNy Q lo/|=a

This shows that o € S™(p, 0)(G).
Conversely, let 0 € S™(p,0)(G). Then o is smooth by Lemma 4.11. Let A = Ag
n
defined in Lemma 5.11. The properties of the tensor easily implies for o/ € N, fQ

IAE oI, < Ca > [PANN YR
a€Fund(G),|a|=|a’|

This shows that o € S™(p,d)(G, A). The proof of Theorem 5.9 is now complete. O

From the proof of Theorem 5.9, we can obtain a corollary which was noticed by
Ruzhansky, Turunen and Wirth via other means in [12]. It concerns the Leibniz rule which
is a useful (and sometimes defining) property of derivatives. The difference operators in
the sense of Definition 3.8 or 5.1 generally do not satisfy this exactly. Our difference
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operators satisfy the estimate (18). In the Ruzhansky—Turunen viewpoint, the following
notion of Leibniz property was introduced in [12]:

Definition 5.12. A collection A = Ag of RT-difference operators satisfies the Leibniz-like
property when for any Fourier transforms f; and fy (with f1, fo € D'(G))

Agj(hif)=08gi(f) ot Fi Dgs(F)+ D ) Aqu(F) Agu(f)

1<lk<na
for some coefficients cl(Jk) € C depending only on I, k,j and A.

Note that this is equivalent to saying that Q = QA satisfies:

giey) = (@) + )+ > la) ). (25)

1<l,k<na

Recursively on any multi-index o € N{#, if A satisfies the Leibniz-like property, then

AGhR)= D WY () AR (),
o] <Jert|+]erz| <2]e|
for some coefficients ¢, ,, € C depending only on oy, az,a and A, with ¢g o = cf , = 1.

The proof of Theorem 5.9 yields:
Corollary 5.13. A strongly admissible collection of RT-difference operators which satisfies
the Leibniz-like formula always exists. An example is the strongly admissible family @

considered in Lemma 5.11.

Proof. We notice that the coefficients of 7 — I for any 7 € Rep(G) satisfies

q,f:;)(-ry) = qz(J)( + qz] + quk ng 1 S Z7.7 S dﬂ'a T,y € G7

with the notation of Lemma 5.11 since 7(zy) = 7(x)7(y). This together with (25) shows
the statement. O

6. Properties of the kernels

In this section, we show that the kernels of the symbols we have considered can only
have a singularity at the neutral element and we obtain estimates near this singularity.
We also show that these distribution may be approximated by smoother kernels.
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We will use the following property whose proof is provided in Appendix A:

Proposition 6.1. Let A = Ag be a strongly admissible collection of RT-difference opera-
tors. For any m € R and multi-index ov € Ng*, there exist d € Ng and C > 0 such that
for all f € C0,00), 7 € G and t € (0,1), we have

m—|af —m
= sup (L4 0) O V),
A>0

£=0,...,d

IAS{f(EA) H 230,y < CE2 (14 Ar)

in the sense that if the supremum in the right hand-side is finite, then the left hand-side
is finite in the inequality holds.

6.1. Singularities of the kernels

Let us show that the singularities of the convolution kernels in W% can be located
only at the neutral element in the following sense:

Proposition 6.2. We consider the symbol class ngé(G, A)withl1>p>6>0,p#0, and
a collection A such that if Ngea{z € G : q(xz) =0} = 0.

If o € S5, then its associated kernel (x,y) — k. (y) is smooth on G x (G\{eg}).

If 0 € S7°° is smoothing, then its associated kernel (x,y) — ky(y) is smooth on
G x G. The converse is true: if the kernel associated with a symbol is smooth on G x G
(as a function of (x,y)) then the symbol is smoothing, i.e. it is in S~°°.

The proof relies on the following two lemmata and their corollary:

Lemma 6.3. If k € D'(G) then

6l L2c) Ss sup(1+ An) 2 Bl 23y, s > n/2,
TeG

in the sense that k € L*(G) when there exists s > n/2 such that the right-hand side is
finite.

Proof. By Corollary A.5 and its proof, we have for s > 0,
k=1+L)2*k+B,) thus R(m)= 1+ \)*%7(Bs)m(k)
and, together with the Plancherel formula (see (3)),

1BllZ2(cy = 3 dellm(Bs) 31530,y < 00  whenever s > n/2.
Treé

The properties of the Hilbert—Schmidt operators and the Plancherel formula yield
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sl Ze) = Y dellR(m) s

re@

< ||Bsllp2(q) sup [[(1 + Ax )2R(T)|% 0.
TeG

This shows Lemma 6.3. O
The following properties are straightforward. See also Proposition 4.1 for notation.
Lemma 6.4.

1. Let o be a smooth symbol with associated kernel k.
If A = Ag and D € Diff® then the kernel associated with D, Ao € Sg?;pla|+5b(G)
for any o € NG is ¢“Dyky.
The kernel associated with o* is kernel k. (y) = Fz(y~1).

2. If o1 and o9 are smooth symbols with associated kernel k1, and Koy, then the kernel
of the symbol 0 = 0109 1S Ky = Kog * K1z-

Corollary 6.5. If o € S s with1 > p>062>0and A=A a collectwn of difference

operators, then for any dzﬁerentml operators D, € Diff® and D, e Diff” , the function
D! D.{q%(2)kz(2)} is continuous on G and bounded, up to a constant of m, p,d, A, b, b’
by sup_ . ||cr(x,w)\\smé(G,A)7‘a|7b/ as long as b+m +n+ 6 < plal.

Proof. If s € R, using Lemma 6.4 and the properties of the Sobolev spaces, we have:

(L4 £)2 D{gR D}kie ()}l r2(c) (26)
s+b «a
Se.p [T+ £) 2 {ga(2) Dypke(2) I L2(c)
3+5+b

Ss’ Sup(l + A )
TFGé

1Dz AG0 (2, ) 2(3,), (27)

by Lemma 6.3 with s’ > n/2. By the Sobolev inequality (cf. Lemma A.5), the function
D.{qX(2)ks(2)} is continuous if there exists s > n/2 such that (26) is finite and this
quantity also provides a bound for the supremum over z. As o0 € S'5(G, A), (27) is indeed
finite when s’ 4+ s + b < —m + p|a| — §b’ and it suffices that n + b +m+0b <plal. O

Corollary 6.5 clearly implies Proposition 6.2.
6.2. Approximations by nice kernels
We have already seen that the kernel associated with a continuous symbol can be

approximated by a smooth kernel in the sense of Lemma 4.12. In many proofs below, we
will use the following slightly different version for the symbols in S}
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Lemma 6.6. Let x € D(R) be a given function valued in [0,1] and such that x =1 on a
neighbourhood of 0. Let o € S5 with associated kernel k.. For each £ € N, we define
the symbol oy via

oo(z,m) = oz, 7) (" \y).

Then o; € ST and for any a,b € Ny, there exists C' = Cg m,a.b Such that

loellsmsan < Cllollsm, ab-

Moreover the kernel (z,y) — ke5(y) associated with oy is smooth on G x G and for any
BeNE, XPry o — XPry in D'(G) uniformly in x € G as { — oo.

Proof. By Proposition 6.1, x(¢~1A,) is smoothing. Thus the properties of the symbol
classes (see Proposition 4.1) implies the membership oy € S~°°. By Proposition 6.2,
(z,y) — ke (y) is smooth. The estimates for the semi-norms follows easily from Propo-
sition 4.1 and (18). The only point to prove is the convergence of the kernels. For this,
we proceed by adapting the proof of Lemma 4.11. Setting s = —[n/2], we have

1XE (Kew — Kol gre—m-sip1 = | X[ (00 — o) (, )]

ho—m—s8]-1(G)

= X0, )1 =0 A @)

m+146|8]

<N+ 2™ (1 ) A X o () |

By hypothesis, for some 0 < ¢, < A, the function yx is identically equal to 1 on [0, €,]
and to 0 on [A, +00). Consequently, x(¢~*A;) = 1 whenever A\, > ¢,/ and we have:

||Xf(/{m — Kg)|| gro—m—s181-1

< max L+ A" (1= ) (A X o, ),
T)EG:Ar>ex L

m+3|8]
< () mas (120 X e .

Taking the supremum over z € G, we obtain:

max || X7 (ke — w0l e-m S (L4 60) o]
r€G

S1ms,0,8] < OO

The properties of the Sobolev spaces easily implies the stated convergence of the kernels.
This concludes the proof of Lemma 6.6. O
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6.3. Estimates for the kernel

In this section, we study the behaviour of the kernels near the origin. More precisely,
we show:

Proposition 6.7. Let o € S5 with 1 > p > 0 >0, p#£ 0. Then its associated kernel
(x,y) — ke (y) € C°(G x (G\{eg}) satisfies the following estimates:

e Ifn+m > 0 then there exist C and a,b € N (independent of o) such that

_ntm
Ika()] < C sup lr(, mlsn, Iyl =5
TeG

e Ifn+m =0 then there exist C and a,b € N (independent of o) such that

sm [ Inyll.

p.a,b

ke (y)] < Csup [lo(z,7)]
TeG

o Ifn+m <0 then ky is continuous on G and bounded

|k (y)] Sm sup [lo(z, )|
TeG

m_ o,
Sp.O,O

By Lemma 6.4, we also obtain similar properties for any derivatives in x and y of
k4 (y) multiplied by a smooth function g.
First we need to understand a ‘dyadic piece’ of a symbol in the calculus:

Lemma 6.8. Let o € S7'; with 1 > p > 6 > 0. Let n € D(R). For any t € (0,1) we define
the symbol o; via o(x,7) := o(x, m)n(tA;). Then for any m; € R we have

my—m
loellsms a0 < Cllollsysapt 2

where C = Cpy iy a,b,n does not depend on o ort € (0,1).

Proof of Lemma 6.8. This follows easily from the Leibniz property (18) together with
Proposition 6.1 for the strongly admissible collection of RT-difference operators given in
Lemma 5.11. We naturally have used the equivalence of description of the symbols, cf.
Theorem 5.9. 0O

Proof of Proposition 6.7. The case n 4+ m < 0 follows readily from Corollary 6.5. Hence
we just have to study the case m+n > 0. We fix a dyadic decomposition of Spec(L): we
choose two functions 1y, 71 € D(R) supported in [—1,1] and [1/2,2] respectively, both
valued in [0, 1] and satisfying
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VAZ>0 Zm()\) =1, where for each £ € N, 75,(\) :=m(27"VN).  (28)
£=0

For each ¢ € Ny, we set oy(x, m) = o(z, m)n¢(Ar) and we denote by k, and ks, the kernels
associated with ¢ and o,. By Proposition 3.14, each symbol 7y(A;) is smoothing, thus
each oy is also smoothing by Corollary 4.2. By Proposition 6.2, the mapping (z,y) —
kz(y) is smooth on G x (G\{eg}) and n,(L)d, is smooth on G thus (z,y) — ke z(y) =
Kz % (0g(L)de) is in fact smooth on G.

One can easily show the convergence in C*(G\{eg}) of

and the (possibly unbounded) summation,

vy e G\eah  lra()l <D Ires(y)l.
£=0

We suppose that a strongly admissible collection A has been fixed. Applying Corol-
lary 6.5 and its proof for any a € Njj (but no z-derivatives), for any m; € R, whenever
mi1 +n < pla| we have

—(f—1) 1™
Suglq“(z)fiz,m(Z)\ < sup [loe(@, m)llsms jago S lollsy, jal02” P77
z€E ’ '

TeG

by Lemma 6.8. As in Lemma 5.6, the strong admissibility implies

Vz € G,a € 2Np, |Z|a S,A,a Z |qo¢(z)|.

lee|=a

Hence for any a € 2Ny and m € R satisfying m; +n < pa, we have obtained:

m—mq

|2k (2)] S llollspy 02 2 (29)

We may assume |z| < 1 and choose ¢y € Ny such that
|z| ~27% in the sense that 27% < |z| < 27%0F1,

Case of m +mn > 0. For £ < {y, we choose the real number m; € R and the integer
even a € 2Ny to be such that
m+n m+n m — mq m-+n

>a > -2 and = —a. (30)
p p 2 P

Hence m > my so
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mi

lwz )| S llollsyyaole 722
5

with

nnl

_ m-—my _m+n
2] 722 Sl 2 Sl
For ¢ > £y, we replace a, m; by a’,m} where a’ = a + 2 and m/ satisfies the same

relation as (30) with a replaced with a’. This time m < m; so

m—1m
> Jkew(2)] S llollsm, aolzl = 2%

>4y

m—m} m+4n
and again |z|7?2% = = < |z|7 » This shows the statement in the case m +n > 0.

Case of m +mn = 0. For ¢ < £y, we choose a = 0 and m; = m and proceed as above:

lex IS ol

smssa0lo S llollsmy a0l nz]].

For ¢ > £y, we choose a = 2 and m; = m — 4 (as in (30))

Y ke (2] S llollsmy a0l 7920
>0

" Slollsmao

SO
k2 (2)] S llollssao0(l+ [ z]]) S lloflsm; a0l nz]].

This shows the statement in the case m +n = 0 and concludes the proof of Proposi-
tion 6.7. O

7. The calculus

In this section, we prove that Un,crW}'s satisfies the properties for the adjoint and
the composition, that is Parts (2) and (3) of Definition 1.1. We will also obtain the usual
properties of asymptotic expansions in the case p # 4.

7.1. Adjoint

This section is devoted to showing

Proposition 7.1. Let 1 > p > 6 > 0 and m € R. If T € Vs then its formal adjoint T
is also in U7's. Moreover T' — T™ is continuous on W's



V. Fischer / Journal of Functional Analysis 268 (2015) 3404—-3477 3437

By Lemma 6.6, we may assume that all the associated kernels are smooth on
G x G. This justifies the following formal manipulations. One computes easily that if
T =Op(o) € U with associated kernel kg then T™ has associated kernel kG given by

K (y) = Fay-1 (™). (31)
We denote its symbol by ¢(*):

T* = Op(c™).

*

Note that the kernel /ﬁé) and the symbol ¢(*) are usually different from the kernel
K%y Ke(y~!) and its associated symbol o* (unless, for instance, the symbol does
not depend on z) but we have /@é*)(y) = £y, (Y).

Proof of Proposition 7.1. If A = Ag is a collection of RT-difference operators, given the
formula in (31) for the kernel of ¢(*), one checks easily that

XfA%o(*)(m, m) = {X (A*Q)%U}(*)(x, m) for all multi-indices g, Bo. (32)
Thus, by Lemmata 5.7 and 6.4, it suffices to show that there exists b € Ny such that

lo® (@, ™)l 20y < Cllollsysc.ay00(1+Ax) % (33)

From (31), it is easy to check using integration by parts that we have

Aoz, m} = /(EN%)(yl)lezzy—l,ylzy—lﬁ(y)*dy
G

= Z 6,31162 /Xfllzryflkml (y_l)’]'('(y)*ﬂ'(X)ﬂ2dy

[B1|+|B2|=2N G

= Y adXPo(e,mOn(X).
|B1]+|B2|=2N

Thus

* 1821 v 51 *
A o@ ) ean S D U+A) T H{Xo(@,m)} 2o, (34)
|B1]+]B=21=2N

Now suppose that one can write o(z,7) = (1 + A\)V7(z,7) with N € Ny and

TE S;?{QN satisfying (33) with order m — 2NN. Then applying (34) to 7 yields

llo (2, )N 230,y = L+ A) V7 (2, 1)} | o,
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1821 , m—2N+445|81|
< HTHS;'}(;QN’O’b Z (]. + )\ﬂ.) I ——
[B1]+|B2|<2N

S llollsyy.o0 (1 + A7) %

and o also satisfies (33). This shows that it suffices to prove (33) for m << 0 and we
may assume m < —n.

From (31), we also observe that the kernel of ¢(*) is continuous and bounded in
(z,y) € G x G by Corollary 6.5 provided that m < —n. Thus, by (2), we have the crude
implication:

m<-—n= sup [o@(@,7)zm S lolsr,.00- (35)
7eG,xeG

We can now start the proof of (33) for m < —n. We consider a dyadic decomposition
of Spec(L), for instance the same as for the proof of Proposition 6.7: we choose two
functions 79,1 € D(R) supported in [—1,1] and [1/2,2] respectively, both valued in
[0,1] and satisfying (28). We set op(z,7) = o(x,m)ni(Ar) for each ¢ € Ny. We easily
obtain

lo® @ mll 2y < D lo” @ mllz o).
{=0

with possibly infinite non-negative quantities. Combining (35) and Lemma 6.8 already
provides an estimate for each ||aé*)(x, )|l .23y, £ € No. This can be improved for £ > 0
in the following way. For any N € N and each ¢ € N, we define

_(N _ _(N C(N) jo—(0—

i) =AM m ), A ) =@ YA and

6EN) (Z‘, 7T) = ﬁ§N) (AW)O'((.’E, 77)'

Simple manipulations show
og(,m) = 27NN G (5 oy, (36)

and using (34):

~(N * 1821 5By ~(N *
HAY G (@, 1)} Ollzmn S Y. (A T [{X26M (@M 260,
|B1|+]|B2|=2N

mi—m

Sllollsm, 02n (1+ Ag) V27D

P67

by (35) and Lemma 6.8, for any choice of m; < —n. Hence we have obtained

ml—m)

VeeNy  loe(zm) I 2ae) S lollspoen (L 4+ An) V2 N0,
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for any fixed N, m; satisfying N € Ny and m; < —n. Let us apply this for N = Ny,
my < —n if £ < £y, and for N = No, mo < —n if £ > ¥y for £y to be chosen suitably with
respect to 7. Setting N = max(Ny, Ns), we have obtained:

o) (@, 7) | 2 (3.

lo—1 0o
< ||0||52?5’0,2N ( (14 Ay)Nro—t(Ni+ ) 4 Z(l 4 Ag ) N2 N2t 2 /)>
=0 L=Lg

S lollsp oz (14 AnyV 2 o0er 55 (1 4 3 ¥ag—tolt 2372))

provided that Ny, N2 € N satisfy Ny + #5= < 0 and Ny + 725 > 0. Now we choose

o € N such that 2% ~ (1 + \;), in the sense that 2%0~1 < (14 \;) < 2%, together with
my = my = 2m, N1 := 7572 ] and Ny := [m5"2]. This shows (33) for m < —n/2 and
concludes the proof of Proposition 7.1. O

7.2. Composition

This section is devoted to showing

Proposition 7.2. Let 1 > p >0 > 0. If Ty € ¥'; and T> € V'3, then the composition

TiTs is in \Ilzlg""m? Moreover the map (Th,Tz) — ThTy is continuous \112”3 X \I/Z% —
\Iﬂnr‘rmz_
p:6

We proceed in a similar way as in Section 7.1. One computes easily that if T; =

Op(0i) € U}'5, with associated kernel k; ; i = 1,2, (which we assume smooth on G x G)

then T7T5 has associated kernel k, given by
kalw) = [ Kas g (s iy € G (37)
G
and symbol
o(x,m) =01 009(x,m) = //@w(z)ﬁ(z)*dz = //ilg;(z)ﬂ(z)*ag(xz_lﬂr)dz. (38)
G G

Note that k, and o = g1 0 02 are usually different from ko, * kK1, and o109, unless, for
instance, oo does not depend on x.

Proof of Proposition 7.2. Let A = A be a strongly admissible collection of difference
operators satisfies the Leibniz like property (see Theorem 5.9 and Corollary 5.13). This
Leibniz property (see (25)) together with the formulae in (37) and (38), imply easily
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XzﬂOAaQOJ = Z Car,az,B1,82 (XflAanUl) °© (X£2A3202)~ (39)

[B11+]82]=|Bo]
lao| <oy [+ o2 <20

Hence it suffices to show that there exists b € Ny such that

myt+mo

lo1 0 ooz, M) £,y < Cllollsm0p(l+Az) 2 . (40)

From (37) and (38), it is easy to check using integration by parts that

A1) ooy (z,7) = /(mem)(z)w(z)*og(xz_l, m)dz
G

= Y [ mXOR X, oalar, md:
|B11+182|=2N &

= Y cgpmo@X) X Py ().
|B1|+]|B2|=2N

Thus

MY ) ooa(@, M) lgmn S Y. Ino@X)*XPoo) (@, 7). (41)
[B1]+]B2|=2N

Now suppose that one can write o1(z,7) = (1 + A;)V 7 (2, 7) with N € Ny and that
T € S‘TgJN satisfies (33) with order m; — 2N for any oy € Sg?g. Then applying (41) to
71 yields that o also satisfies (40). This shows that it suffices to prove (40) for m; << 0
and we may assume my < —n.

From (38), we also observe that

lote, w200 < sup loa(er,m)| / 1.0 (2)dz].
xr1€
G

By Corollary 6.5, we have the crude implication:

m

2
my < —n = [lo 02, 1) 20,) S lo2llsmz oollonllsms o0l +A0)F . (42)

We can now start the proof of (40) for m < —n. We consider the same dyadic de-
composition of Spec(L) as in the first proof of Proposition 7.1: we choose two functions
1o, € D(R) supported in [—1,1] and [1/2,2] respectively, both valued in [0,1] and
satisfying (28). We set oy ¢(z,7) = o1(x, m)ne(Ar) for each £ € Ny. For any N € N, we
also define ﬁ%N)()\) := A"%n1()\), and the corresponding ﬁ§N) and &gf\?.

We easily obtain

o0

lo(@, )2, < D llore o oa(a, ™) 2.,
=0
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with possibly infinite non-negative quantities. Combining (42) and Lemma 6.8 already
provides an estimate for each [|oy¢ 0 o2(z,7)|| 2 (3, ), £ € No. Using (41), we also have:

~(N ~(N
Y6V oon(@,mllepn S D 1600 o (n(X) XP203) (2, 1) | 2 (30,

|B1|+1B2|=2N
mo+[81]+58]82] mi —m
S COn(o1,02) Z D e e
[B1]+[B21=2N
by (42) and Lemma 6.8, for any choice of mj < —n, with Cn(01,02) = |02 sm2 g 2 X
3.0,

llo1llsm1 0,0- Hence, using (36), we have obtained
a0,

< CN(UlaUZ)(]- + )\W)N+MT'22—€(N+W1;7H1)7

~

VeeNy  |loreooa(z,m)llzm,)

for any fixed N, m] satisfying N € Ny and m{ < —n. Let us apply this for N = Ny,
my < —n if £ < £y, and for N = Ny, m{ < —n if £ > £, for £y to be chosen suitably
with respect to 7. Setting N = max(Ny, N2), |[o(z,7)|| 2, is then bounded, up to a
constant, by

5071 Y —m
Cn(o1,02) <Z(1+/\W)Nl+";22 (ST Z (14 Ap) 25 f(N'ﬁl?l))
£=0 t=Lo

< On(o1,02) ((1 F AN (N TET) (g \ )Nt e“(Nﬁu))

provided that N;, Ny € N satisfy Ny + m1 ™ < 0 and Ny + 222™ > (0. Now we choose
¢y € N such that 2% ~ (1 + A =), in the sense that 2f—1 < (1 + )\ ) < 2%, together with
my =mf =2my, Ny := Lml 1| and Ny := [MW This shows (40) for m; < —n/2
and concludes the proof of Proposition 7.2. O

7.3. Asymptotic expansions

The analysis to prove the properties for the adjoint and the composition will also yield
a familiar (but matrix valued) expansion in the case p > §. This section is devoted to
understand the meaning of the expansion and the coefficients in it.

For the asymptotic expansion, we first prove:

Proposition 7.3. Let {0} en, be a sequence of symbols such that o; € S;?g with m;

strictly increasing to —oo. Then there exists o € S

o, 3y, unique modulo S~ such that

VMeN o-— ZOJ S (43)
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Under the hypotheses and conclusions of Theorem 7.3, we write
ag ~ Z O'j.
J

Proof of Proposition 7.3. Let ¢ € C*>°(R) valued in [0, 1] satisfying 1 = 0 on (—o0,1/2)
and ¢ = 1 on (1,00). Let A = Ag be a strongly admissible collection of difference
operators satisfies the Leibniz like property (see Theorem 5.9 and Corollary 5.13). Hence
we have

1AGXP {a; (2, M) (tA) H 2 (3.

S Y AR XPoie m)l 2 [AG YA 2

et [+ ]z |=al

Z (1 i )\Tr)7rlfp\021|+5\/3\t"f;2 (1 4 A)m2;|a2\ 7

lea [+]az|=|al

S ||"j||st§,\a|,|6|

by Proposition 6.1. We choose ma = my — m; and obtain easily

—m;

188X o3 (@, Mo (A L2t S 1031174 o ot

This implies that for any a,b € Ny, we have:

mg—m;

lo (A 570 0 < Cobimpoyt 2

We now choose a decreasing sequence of numbers {¢;} such that for any j € No, we have
€(0,277) and  Cjjmpot; <277,

We then define the symbol &; via ¢;(z,m) = o;(x, 7)Y (t;Ar).
For any ¢ € Ny, the sum

Z 15l 570,06 < Z 151l 579 6,6 + Z 277,
Jj=0+1
is finite. As S7"0 is a Fréchet space, we obtain that o = Z‘;C 0 0; is a symbol in S7"3.

Starting the summation at j = M + 1, the same proof gives ZJ M+10j € SmM+1.
Hence the symbol given via

o(x,m) —

1=

M
Uj(.’E,ﬂ')ZZU]( (1= Z aj,
§=0

j=M+1
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MM +1

is in S, as the symbol (1 — ¢)(¢;A\;) is smoothing by Proposition 6.1 and so is
0;(1 —9)(tjAr) by Corollary 4.2.

The property in (43) is proved but it remains to show that the symbol ¢ is unique
modulo smoothing operator. If 7 is another symbol as in the statement of the theorem,
then for any M € N, o —7 € S;'fé”“ as this symbol is the difference of o — ijvio o with
T— ZjM:O aj, both is in S7%3"*" by (43). Hence 0 = 7 modulo S~>. O

In the expansion given for adjoint and composition, we will need to identify a suitable
choice of A = Ag together with a choice of vector fields. This is the purpose of the next
lemma, whose proof is left to the reader:

Lemma 7.4. Let A = Ag be a strongly admissible collection difference operators. We
may assume that na = n. There exists an adapted basis XA := Xa1,..., XA n such that
Xi{a(-"HHeg) = ;. The following Taylor estimates hold for any integer N € Ny
andy € G:

f N
|RL n| < Clyl max [ X3 floc,

where the constant C > 0 depends in N,G,A but not on f € D(G). Furthermore for
~ B8
any B € N§, we have on the one hand {X§}|w1:zR£1,N = Ri?\,f and on the other hand,

8
{Xg}\ylzy{RiﬁN(yl)} satisfies the same estimates as RfJAVf*IBI(yl) above if N —|5| > 0.

Here and in the rest of the paper, if N € Ny, then ng n denotes the Taylor remainder
of f at = of order N — 1 (adapted to the fixed collection A):

Rl n) = flay) — D ¢"(y™HXaf(@)

la|<N
and X3 = X3!, ... X3",. If N <0 then R] \ = f(x).

Proof. The proof is straightforward. The properties of the remainder follow from the
facts that left and right invariant vector fields commute and that the Taylor expansion
is essentially unique. 0O

7.4. Adjoint property for p £ 6

This section is devoted to showing Proposition 7.1 with a more classical proof in the
case p > §. It will yields asymptotic expansions. In the rest of this section, we assume
that A and XA are fixed and chosen as in Lemma 7.4. We also simplify slightly the

notation by setting Xa ; = Xj.
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Lemma 7.5. We assume that 1 > p > 6§ > 0. Let o € S:}fé and let k; be its associated
kernel. We assume that (x,y) — k. (y) is smooth on G x G. Then for any multi-indices
B, Bo, a0 € N, there exists Nog € Ng such that for any integer N > Ny, we have

/X{ff(f” Goo W) [ K50 W) — D " WXIKIW) | ¢|dy < Cllollsm, ab,

where the constant C' > 0 and the semi-norm || - [|sm  a.p are independent on o (but may
depend on Na m,p, 57 Av Qo, ﬁU, ﬁ)

Proof. The idea is to use the estimate given in Lemma 7.4 for the Taylor reminder

BRIV =r) - Y ¢*()XSri(y) (44)

la|<N

in the case 8 = fy = ag = 0. More generally, for any multi-indices, using (1), we have:
o0 g, R

5 X209 (qagri )W), _
5{Rw1—11,N0 ! (y 1)}

REOXLI_ (qagr, ) (1)
S X P (R )
18114162 |=16]
S D0 TR ma X2 XX (qao, ) (0) (45)
[B1]+1B2|=|8] |a\<N

We apply Proposition 6.7 (see also Section 4.1') to estimate the maximum:

ly|=F  ife>0,
max X8 XX (dao ks )W) S llollsrgan § Iyl if e =0,

|| <N 1 ife <0,

with e = n+m—+46(|fo| + N) + |51] — plag|. We assume N > |S]. For any €, > 0 as small
as one wants, the sum in (45) is

e 181 )
N i n+m+6(1Bo] + N) + 18| — plao| <0,

S ||U||S,T(;,a,b _ n+m+818gl—plagl+IBl+(5—p)N .
ly| E otherwise.

This is integrable against dy when N > n + |3|/p (with a suitable €,) and the following
implication holds

! Change.
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n+m+0(|8o| + N) + [B] — plao| > 0
= n+m+6|Bo| — plao| +|B] + (6 — p)N < pn.

As p > 6, we can choose Ny € N such that Ng > n + |3|/p is the smallest integer
satisfying the implication just above. This shows Lemma 7.5. O

Proof of Proposition 7.1 when p > 4. Let o0 € S7;. First we assume that its associated
kernel (x,y) — k. (y) is smooth on G x G. We set

(7)) = o™ (z,7) — Z AL X o(x,m)".
la<N

Using the properties of the left or right invariant vector fields, especially (19), it is not
difficult to obtain the following very crude estimate:

I llsms.an < € > sup [| X2 Ag 7 (@, m)m(X)? | 2 (0.

loo|<a,|Bol<b  TEG
|81<2[ pa-+max(m,0) “€¢

(y)(

We see that 7y (z,-) is the group Fourier transform of y — R. "’ (y~1) given in (44).

Using (13) and (2), we see that each maximum above is bounded by the integral given
in Lemma 7.5. Thus for N > Ny with Ny, a’, b depending on m, p, 4, a,b, we have

I llsmsan S llollsmar e

From the properties of the symbol classes (see Section 4.1), the sum Z|a<N A3 XTo x
(z,7)* is a symbol in S;’f[;. This implies that (*) is also in S;”‘(; and depend continuously
on ¢. By Lemma 6.6, this extends to any symbol . O

The proofs above provide a more precise version of Proposition 7.1:

Corollary 7.6. Let 1 > p >0 > O If o € SJs then there exists a unique symbol o) in
™o such that (Op(c))* = Op(c™). Furthermore choosing A and XA as in Lemma 7.4
wzth Xj = Xna,;, we have for any N € Ny,

{o™) (z,7) — ZAX“ xﬂ)}GSm (p=0N
|| <N

and the following mapping is continuous

{Sp(; — SN
o — {a )(z,7) — Ylaj<n DG XTo(z, ™)}

If o € S5 with p >4, then o) ~ ~ Y05 Yjal=g DG X
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Remark 7.7. The proof that the adjoint of an operator remains in the calculus given in
[10, Theorem 10.7.10] is very formal since it is impossible with their analysis to justify
the claims in the last paragraph of their proof.

7.5. Composition property for p # 9

This section is devoted to showing Proposition 7.2 with a more classical proof for
p > 0 which yields asymptotic expansions. In the rest of this section, we assume that A
and Xz are fixed and chosen as in Lemma 7.4. We also simplify slightly the notation by
setting Xa ; = Xj.

Lemma 7.8. We assume that p > 0. Let o1 € S;’fg and oy € ngg with smooth associated
kernels Koy, K1,. Let also ky given by (37). Then for any multi-indices Sy, o0 € Nf

and b > 0, there exists Ng € N such that for any integer N > Ny, we have for any
(z,m) € GX G

IXZe A (o(w,m) = > Agor(z,m)Xgoa(z, 7)) | 20,
o) <N

—b
<C||01Hs J,al,b1||02\|s 5,@2,1)2(1"‘)\#)

where the constant C' > 0 and the semi-norms ||-|[gm1 4, 5,5 | ls72 0y, are independent
P02 p,6 774

of x, 7 and 01,09 (but may depend on b, N,myi,ma, p,d, A, ag, Bo).

Proof. We notice that

Kz (y) — Z (X%%Ka,) * (¢“FK12)(y) :/nl,x(z)R;fjv(yzﬂ)(zﬂ)dZ

o] <N G

thus taking the group Fourier transform

o(z,m) Z A{or(z, m) X Foo(x, ) / fﬁ, 7r)( “Ndz
la|<N G

having used the notation for the Taylor estimate for a matrix valued function — which
is possible. We may assume, and we do, that A = A satisfies the Leibniz like property
(see Theorem 5.9 and Corollary 5.13). Using this and the Leibniz property for vector
fields, one checks easily that

||Xf0A%° (0’(:17,7'(') — Z A%Ul(l‘,F)X;UQ(JJ,F))Hg(HW)

|a) <N
5 ASZ{XP020,(m)}, _
S > | [ (X5 qa,kra)(2)m(2)" Ry % Nz 2
lao|<|ai|+]|oz|<2lao] &
[Bo,1141Bo,2|=180|

(46)



V. Fischer / Journal of Functional Analysis 268 (2015) 3404—-3477 3447

N

> @ [ g k) )

|B1|+B2|=2b1 G
|ao|<|ar |+]az]| <2]|ap]
[Bo,1141Bo.2|=18ol

. AL (XP020,(m))
< || X2 {R% (20 23 d2, (47)
for any b; € Ny, having interpreted 7(2)* = (1 + Ar) % (I + £)%7(2)* and using inte-
gration by parts. Using the Taylor estimates, see Lemma 7.4, we have

G AZ{XP020,(-,m)}
X7 AR BRI Y PV

< (V18D sup || X2 AL {20y (21, ) 2 ()
x1€EG
|B5|<N

mo+8(N+|Bp,21)—plaz|
2

S llozllgma N+\5o,2|»|a\|Z|(N_|ﬁ2‘)+(1 + Ax)

p.d7

By Proposition 6.7 (see also Section 4.1), we have

|z|7F  ife>0,
(XD X7 oy 1,0) (2)] S [l

S5 .a1,b1 |[In|z|| ife=0,

1 if e <0,

where

e:=e(|Bonl, 1], |a1]) :==n+mi +5[Bo| + |B1] — plaa].

Thus each term in the sum (47) is

mo+8(N+|Bp,2)—plaz]
2

S (A4 M) 0 ||<71Hs;’jg a1.by ||02Hs;'fg,a2,b21(|50,1|’ |B1], e ])

where I(|B0.1], |81], |a1]) is the integral
[ || V18D =5 1275 it e >0,

I(|Boals 1B1ls larl) = ¢ Jo |z|(N=182D+ | In |2||dz if e =0,
Jo 12| (N =1B2D+ g if e <0.

The integrals I(|8o.1],|581], |ca]) are finite when (N — |B2|)+ — %f > —n. To ensure this,
we choose Ny € N satisfying

1

Moz L 0, o)+,

’ " p\alr&éaole(wml g |)+
[B0,11<] 8ol

and, noticing that
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e , o 2b
Bl + (180,11 |i1| | 1|)+) < 71+(n+m1+5|ﬂo|)+,

max
lar|<2]eols]B0,11<]Bol,| B2 <201

we define by € Ny as the largest integer such that b; < N/2 and

(n+mi + 5\ﬂ0|)+.

p
Z(N _
b1<2( +n) 5

Under these conditions, we have obtained:

HXfOA%" (U(:L‘,ﬂ') — Z A%01($,F>Xg0'2(l',ﬂ'))||_~'Lp(7.[ﬂ)

o] <N
mo+3(N+[Bo,2)—plaz]
—by+ 2 :
S ) (1+ ) 2 o lls7s v, 19211575
[B1|+]|B2|=2b1
|ao|<|a|+|az|<2]a0]
[B0,11+]Bo,21=Bo

S+ Aw)_b/2\|01||s;'}g,a1,bl||02||s;'j§,a2,b27
where
l~) = 2b1 — Mo — 5(N+ ‘BOD Z (p* 5)N+p’fl — (n+m1 +(5‘,30|)+ — Mo — 6|ﬁ0| — 2.

Hence if p > & with Ny chosen large enough, b may be as large as one wants. This shows
Lemma 7.8 in this case. O

Proceeding in a similar way as for the case of the adjoint, Lemma 7.8 implies Propo-
sition 7.2. The proof also yields:

Corollary 7.9. Let 1 > p > § > 0. If 01 € S’Z?g and o9 € S;”g then there exists a
unique symbol o = g1 009 in S;’f§+m2 such that (Op(c)) = Op(o1)Op(o2). Furthermore,
choosing A and Xa as in Lemma 7.4 with X; := Xa ;j, we have for any N € Ny,

{o(z,m) = > Agor(w, m)Xgos(w,m)} € Syt 0TI,
la]<N

and the following mapping is continuous
{S;’}g x M2y grtmam(emON
0 v {o(2.1) = X jjen Abo1 (2, 1) XSoa(z, m)}

If o1 € )5 and o2 € S)'§ with p > 6, then o ~ 2. 37, _; Ajo1(z, ) X oa(z, 7).

Remark 7.10. The proof that the composition of two operators remains in the calculus
given in [10, Theorem 10.7.8] is very formal since it is impossible with their analysis to
justify the claims in the last paragraph of their proof.
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8. Boundedness on Sobolev spaces and commutators

In this section, we show that pseudo-differential operators are bounded on Sobolev
spaces and we give a commutator characterisation of the operators in the calculus. This
will prove the last property (5) in Definition 1.1 and the fact that our calculus coincide
with the Héormander calculus when the latter is defined. This will conclude the proof of
Theorem 3.13.

8.1. Boundedness on L*(G)

This section is devoted to showing that operators of order 0 are bounded on L?(G)
in the following sense:

Proposition 8.1. Let 1 > p > d > 0 with § # 1. If 0 € 5276 then Op(o) is bounded
on L*(G):

3C>0  V¥eD@)  0p(0)dlixe) < Clldllza-

Moreover the constant C' may be chosen of the form C = C”Ha”sg sab With C" >0 and
Il - H32 ,.a.b independent of o (but maybe depending on G and p,d).

Given the continuous inclusions of the spaces Sg, s, it suffices to prove the case p = 4.
We first show the case p = § = 0 and then the case p = § (strictly) positive. The case
(p,0) = (0,0) follows from the following lemma since, using the notation of the lemma,
Co = llollsg,.0,z7- This lemma was already given in [10, Theorem 10.5.5].

Lemma 8.2. If o is a smooth symbol such that

Cy:= max  sup X5 oz, ™)l 2,) < oo
€@ a
\04|<( 1 7€

then Op(o) is bounded on L?(G):
3C>0 V¢ eD(G) |0p(0)¢llr2(e) < Cll¢llL2(a)-
Moreover the constant C may be chosen of the form C = C'Cy with o' independent of o.

Proof. Let T = Op(o), 0 € 5870 and f € D(G). Sobolev’s inequalities yield

Tf(@)] =|f * ka(2)]? < sup, | *ra (@S /|X f g, (2)Pday.

lel<[51G

As X2\ f * kg, (7) = Tx, s, (f), after integration over G, we obtain:
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/ITf Parg Y //\TX o (@)

<21 G

S Y 180 ool e
|CY\<( G
S max ITxe w22 1 172(c0)-
lal<[2]

We conclude with Co = max {||Txe r,, [l 2(z2(@)), 71 € G,|a| < [§]}. O

The case of p = § € (0, 1), is more delicate and, in its proof, we will need the following
property which uses the arguments above (amongst others).

Lemma 8.3. Let ) € D(0,00) and p € (0,1). There exists C = C,, , ¢ such that for any
T e W9  ¢eNy, we have:

PP’
T2 L)l 2 (r2(c)) < ClTlw 0521

Proof. As the exponential mapping is a diffeomorphism from a neighbourhood V of
0 € R™ to B(eg, €0), there exists a finite number of points zg = e, 1, . .., N, such that
G= Uj—VZOOB(xj, €0/4) and some functions x; € C°°(G) valued in [0, 1] and supported in
B(eg, €0/2) such that Z;VZOO Xj(xjflx) =1foralxedG.

Note that if x € B(eg,€) and r < 1, then we can define a local dilation via: r -z =
exp(rv) where x = expv, v € V.

Let 0 € Sg)p. For each j =0,..., Ny, we define 0; € Sg’p via

oj(z,m) :=o(zjz,m)x;(x), (z,7)e€Gx G.
For each £ € Ny and j =0,..., Ny, we set
oo(z,m) = oz, )2 \;), and oje(x,m) = aj(x,ﬂ)n(Z_e)\,r).

We have o(z,m) = Z;V:OO oj¢(zx;,m). Recall that Op and using the argument in
Lemma 4.3, one shows easily that if 7 = {7(z,7), (z,7) € G X é} is a symbol such
that Op(7) is bounded on L?(R™) then for any zq € G we have

10p(T) |l 2z2(c)) = IOP(TL 20| 2(12(c)),  Where  Tp (2, 7) = T(z02, 7).

Therefore we have

Ny

10p(o0)ll2(z2c)) < D 110D(0.0)ll 222y (48)
j=0
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and we are left with proving the L?-boundedness for each Op(cj,). We notice that the
a-support of its symbol o ¢(x, 7) is included in B(eg, €9) and we can dilate its argument
to define:

y )27 x,m) ifx € Bleg, €),
0375(33,7T) - { 0 otherwise.

Then one checks easily that the symbols o4, 0;, and G, are in Sg’p.

The symbol 0;, and its convolution kernel x;, = {k;¢(y)} are supported in z in
B(eg, €o), thus for any f € D(G), Op(oj.¢)(f) is also supported in B(eg, €y) and we can
dilate its argument, that is, for any = € B(eg, 2¢)

Op(oj,0) ()27 2) = fr k9000277 2) = fxRje. (277 1),

where &j ¢ = {Kj¢(y)} is the convolution kernel associated with &, . Proceeding as in
the proof of Lemma 8.2, we have

Op(0;,) (/)27 -2) S D IX f Ry 277 - 2) | L2
1BI<T3]

On both sides, we now integrate over = € B(eg, 2?¢) and make the change of variables
2’ = 2% .z (with constant Jacobian 27"):

10D(0,0) ()@ M2@eny S D XD F # Rgon (@) 2 ey -
EINE

Therefore

I0p(oj.0)l 222y S D sup || X7 G50(z1, )| 2000y S llollse, 0,127
18|<[2] (z1,m)€GXG

Because of (48), the proof of Lemma 8.3 is now complete. O
The case p =0 € (0,1) is proved as follows:
Lemma 8.4. Let p € (0,1). If o € S}, then Op(0) is bounded on L*(G):
AC>0 V9 eD(G)  ||Op(o)dllr2e) < Cllollrz(q)-

Moreover the constant C may be chosen of the form C' = C"||o|[so o4 with C" >0 and
b independent of o (but depending on n and p).

Proof. We consider the same type of dyadic decomposition of Spec(L) as in the first
proofs of Propositions 7.1 and 7.2: we choose two functions 79,171 € D(R) supported



3452 V. Fischer / Journal of Functional Analysis 268 (2015) 3404—3477

n [—1,1] and [1/2,2] respectively, both valued in [0,1] and satisfying (28). We set
o1(x,m) = o1(z, m)ne(Ar) for each £ € Ny, as well as

T :=0p(c), and T, :=Op(oy) = Op(a)ne(L) = Tne(L).

The properties of such a dyadic decomposition implies classically

1T (22 (a)) S sup 1Tl % (12 () + Z 1T Te || 2 (L2 ()
0

.
0.0 &N,
+ ) T Tellzw ey (49)
.y,
0,0/ €2Ng+1

The uniform boundedness of T;’s operator norms follow from Lemmata 8.2 and 8.3 but
the boundedness of the sums remain to be shown. For this, we proceed as follows.

Let k¢ = {ke¢,2(y)} denote the convolution kernel of Ty and let K ¢,¢ denote the integral
kernel of T Ty

7T f( / Koo(e,g)f)dy,  Koo(e.y) = / R (@ ) ke (g1 2)dz.
G

As @ is compact, we have

1Ty TE/H.z’ L2(@)) < Sup |K€ Z’(x y)l (50)

T,Yy€

Let us assume ¢ # ¢'. Let N € Ny. Introducing powers of I+ £ and using the Sobolev
embedding (cf. Lemma A.5 with s := [%]), we have

| Koo (z,y)]

- / T+ L)Y (0 + L)X, {Femr (2 o)y (5 20) ) d2
G

,S/ su%| I+ L) Zl(IJrE - {’Wzl -1 Q)Ii[/’zl(yilzz)}|d22
z1€

dZQ

/H +L ZH;O I+ L) {:‘%4721(w_lzg)ﬁg/’zl(y_lzg)}‘
L2(dz1)

S+ o8P+ £ (R (6 22 e, (5 22) |

L2 (dzz le

’S Z H( + ‘C {X ke Zl( ZQ)X;’?IW”ZI (y_ 22)}HL2(dzzdzl) ’
lag|+|oz | <2(N+sp)
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by the Leibniz rule. Applying Lemma B.1 for N > s, we obtain easily

5 05 (X0 )X o)
< o7 max(®OWN=0) | X, (2| p2(asy | X 2600 20 (25) | 2 any)-

e 6 ¢ 0 iald-
Lemma 6.3 and o € 5, , yield:

/L ol
X0 K20 (25 L2(azp) S sup(L+ M) [ X2 e (21, )|y S N0 llsg 0,000 2700720,
TeG
thus
> | X2 Ktz (20) | L2 azg) 1 X 22 e 2, (25) || L2 (a2

o [+]a2| <2(N+s5)

< llollzo gmax(£,£')(2s5+p(N+s())

0 ,.0,2(N+sp)

We have obtained for any N > s{:

sup Koo (z,y)| S ||0'||2sg,p,o,2(1v+56)2max(€’e (e=D)N+s1),

z,yeG
with s1 := (2 + p)sj. As p € (0,1), we can choose N € N such that N > sy and
(p —1)N + 51 < 0. This choice together with the estimates in (50) shows that the two

sums in (49) are bounded, up to a constant by [|o[|%, 3(N+sy)- Lhis concludes the proof
pp7
of Lemma 8.4. O

Remark 8.5. Lemma 8.4 in the case of the torus was announced in [10, Section 4.8] and
proved in [11, Theorem 9.5]. However, the arguments there cannot be extended to the
case of a non-abelian group since the dimension of any 7 € G is usually strictly greater
than one.

Proposition 8.1 is thus proved. We obtain the continuity on (L?-)Sobolev spaces with
loss of derivatives controlled by the order:

Corollary 8.6. Let 1 > p > >0 with § # 1 and m € R. If o € S5, then Op(c) maps
boundedly the Sobolev spaces H®* — H®*™™ for any s € R and we have

10p(o) |2 (sr2,115-m) < Cllolls7;.0,6

where the constant C > 0 and the semi-norm || - [[sm  a are independent of o (but may
depend on s,m, p,d,G).
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This corollary of Proposition 8.1 follows readily from (I + E)m// 2 ¢ \I/T(/) for any
m’ € R, see Proposition 6.1.

Note that, from the estimates of the kernel given in Proposition 6.7, one checks easily
that the operators ¥9  are of Calderon-Zygmund type and hence are bounded on L”(G),
1 < p < oo, see [5]. So in the case (p,d) = (1,0), also Corollary 8.6 also holds any
LP-Sobolev spaces, p € (1,00).

Another consequence is the continuity for commutators, see the next section. We will
need the following property:

Lemma 8.7. Let 1 > p >0 >0 withd £ 1, p#0, and m € R. If q is a smooth function
on G wvanishing at eq up to order ag — 1 (see Definition A.2) and if o € 057 then
Op(A,0) maps H™P% boundedly to L*(G) and

10P(Aq0) || 2(mmr00,12(G)) < Cllollsm,.ab,

where the constant C > 0 and the semi-norm |o||sm o are independent of o (but may

depend on q,ag, m,p,0,A,G).

Proof of Lemma 8.7. Let x € D(G) be valued in [0, 1] and such that x|p(c,/2) = 1 and
X|B(eo)e = 0. We write Ayo = Agyo + Ay1—y)0. As the kernel associated with Ayq_yyo
is smooth, this symbol is smoothing. Let A = Ag be a strongly admissible collection

of RT-difference operators, for instance the ones constructed in Lemma 5.6. It is not

difficult to construct a smooth function ¢’ as a linear combination of ¢* = ¢ ...¢%",

|a| = a, such that xq/q" is smooth on G. We check easily that

Op(Aqu)(b(x) = Op(Aq’U)(¢w¢) (.’E)

where 1, (y) = xq/q (y~*x), thus by the Sobolev embedding (cf. Lemma A.5),

0p( e )illEaiey < [ sup 068y 0)(0h,6)(0) s

G
< / / OP(Ay @) (X2 the, ) () Pdrde

G x1€G

5”Op(Aq/U)HDQ%(H"I*PGO,LP(G)) Z /HXfl@[’zl(b”?{sdxl-

We argue in a similar way as at the end of the proof of Lemma 5.10 to obtain

S [ I bl S ol
BI<T 210, %G

and we conclude with
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1OP(Ag o)l 2(rm—ra0,L2(c)) S ||Aq'<7Hslv:/é—moﬂhb1 S ||U”S:;M0,a1+ao,b1’
by Corollary 8.6. O
8.2. Commutators

We adopt the following notation: if ¢ € D(G) and D € Diff, we denote by L, and Mp
the commutators defined via

LT =qT —~Tq and MpT = DT —TD,

for any linear operator T': D(G) — D'(G).
Let us collect some easy properties for these commutators:

Lemma 8.8.

o If q is a smooth function, T is an operator D(G) — D'(G) and D is a vector field
then

MD(qT) = (Dq)T + qMDT and MDLq - LqMD = LDq.

o If q is a smooth function and if T : D(G) — D'(G) is a linear continuous operator,
then |LoT||l 2 (r2(c)) < 2llalloc Tl 2(z2(c)) since

19Tl 2 z2(a)) < llallool Tl 2 2@y and | Tqllz2@) < llalloollTll2z2(@))-

More generally, for any si,s2 € R, we have ||LT| ¢msi me2y < 2Cqs s, X
| T||.2(rrs1 b2y since

max([|qT | e, mo2) 1Tl 2o mo2)) < Cosisa|l Tl 2o 1e2)-

Proof of Lemma 8.8. The first part is easily checked by direct computations. The second
part follows from the continuity of ¢ — q¢ on any H® for any ¢ € D(G). O

The Leibniz properties yield:
Lemma 8.9.

1. Let A = Ag be a collection of difference operators satisfying the Leibniz-like property
as in Definition 5.12. Then, for any continuous symbol o, we have:

Ly, 0p(0) = Op(Ag,0) + > c}Op(Ag.0)a

1<l,k<na
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and

Op(Ag,0) = —Lg;0p(0) = > )arLyOp(0),

1<l,k<na

with the same coefficients c E C as in Definition 5.12, and §;(x) = q;(z71).
2. For any X € g and any smooth symbol o, we have

M4 Op(o) = Op(Xo).

Proof. For the first formula, we apply (25) to ¢j(z) = ¢;(yy ') in

L, 09()6(0) = [ (@(@)6(wraly™0) - 4s(0) 0w (y™'0)) d
G

1

For the second formula, we apply (25) to ¢;(y~'z) in

Op(Ag, o)) = / (1)1 (™ 2) ko (y )y

and we have

Op(Ay,0) = Op(0)d; + ¢;0p(0) + Y. })arOp(0)d

1<l,k<na

We write Op(o)§; = (G; — Lg;)Op(c) and observe that

> Cl(Jk)qkql —(g; + ),
1<l,k<na

having applied (25) to o,y = x~!. Thus we obtain:

Op(Ag,0) = Op(0)d; + 4;0p(0) + Y e}lar(~Lg, + @)Op(o)

1<l,k<na

= 0p(0)q; +¢;0p(0) — (4; +3)Op(@) — > c}arLqsOp(o)

1<l,k<na

= Lz;Op(o) — 3 cauLqOp(o).
1<l,k<na

For the second part, we see

X, O0p(0)g(x) = X, {b* ha(2)} = Xo =20 % Ky (T) + Xz2:z¢ * kg (T2)
= ¢ % Xy, o, (2) + (X @) * 1y (2) = Op(X0)¢ + Op(0)(X ).
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If A = Ag is a collection of RT-difference operators and if Xj,...,X,, form a basis
of g, then we set

=Ly =Ly Lq®, a€Ng®, and M{:=MQ.. M BeNp. (51)
Proposition 8.10. Let 1 > p > 6 > 0 with 6 # 1 and m € R. If T' € W}, then LeMAT
extends boundedly in an operator from H™=PleI+918l 1o L2(G) for each o € Ny, 3 € N§
and for LR, M?{ as defined in (51) where A is any collection of RT-difference operators.
Moreover

ILXMET | o (rm-riaissio1 26y < CITwmy ap

where the constant C > 0 and the semi-norm || - |
depend on a, 8, A and the choice of basis for g).

T ab OT€ independent on T (but may

If A = A satisfies a Leibniz-like property, then Corollary 8.6 and Lemma 8.9 imply
Proposition 8.10. In the general case, we have to use Lemma 8.7 and the ideas of its
proof.

Proof of Proposition 8.10 when p # 0. As we can always enlarge the collection A, we
may assume A to be strongly admissible. Let x € D(G) be valued in [0, 1] and such that
X|B(eo/2) = 1 and X|p(e,)e = 0. We can always write 0 = Ayo + A;_yo. As the kernel
associated with A_, o is smooth (see Proposition 6.2), this symbol is smoothing and the
operator LY M ?(Op(Al_Xa) is also smoothing. In particular it maps any Sobolev space
to any Sobolev space continuously by Corollary 8.6. For A, o, we define the function

(z,y) — ¥ (y) via

Po(y) = (@) = (1) - (@na () = Gua (1) *"2 (¢* (v~ 2) "Xy~ '2) a2 #y,

and extend it smoothly to G x GG. We check easily:

MZLYOp(Ayo)(z) = Op(Ay X70) (10) (),

thus by the Sobolev embedding (cf. Lemma A.5),

122068 X )0l < [ sup [0b(Ay X0 (0, 0) o) P

1€G

5/ / |Op(Aq/)~(ﬁa)(Xflwxl¢)(m)|2dx1da:

G z1€G

S COTGRPRISIED SR B R o
18IS 210,26

< HOp(Aq/XﬁU)Hf%’(HS,L?(G))||¢HHSa
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by Lemma 8.7 for the operator norm and by arguing as at the end of the proof of
Lemma 5.10 for the H®*-norm. We then conclude using Lemma 8.7. 0O

Proof of Proposition 8.10 when p = 0. The case p = 6 = m = 0 follows from Proposi-
tion 8.1 and Lemma 8.8. For m # 0, we observe

L,(ThTy) = (L)1 + Th(LyT), (52)

for any ¢ € D(G) and any operator T3, Ty (for instance both D'(G) — D'(G) or D'(G) —
D'(G), or alternatively 71 : D(G) — D/(G) and 1> : D(G) — D(G)). Setting T, g =
M;%T(I + £)~™/2 this implies that MEZLZT is a linear combination of

(LR Ton ) (LR (T4 L)) = (LY T, p) (L2 (T4 £)™2), || + |as| = |a

We may apply Proposition 8.10 to the operator (I + £)~™/2 € Vo and Ty, 5 =
Op(XPo)(I+ L£)~™/? € W0 o, as the cases of operators in W7 " and g, have already
been proved. This shows that M ?(LZT € Z(H™) and concludes the proof of Proposi-
tion 8.10. O

8.8. Commutator characterisation

Importantly, the converse to Proposition 8.10 holds:

Proposition 8.11. Let 1 > p >0 > 0 with d # 1 and m € R. Let A = Ag be a strongly
admissible collection of RT-difference operators. If T : D(G) — D'(G) is a continuous
operator satisfying LO‘M:%T € L(HM P8l [2(@Q)) for any o € N§, 8 € N, then
T € W}'s. Moreover for any semi-norm || - [[wm, ap, we have

[Tl ,a0 < C IL* MET|| g (grm-slatsist 2(c))»

max
IBI<b+[3 ] |al<a
where the constant C > 0 is independent of T (but may depend on || - ||\p;f?57a7b, A, G).

Proof of Proposition 8.11 when m = p = § = 0. Let T be a linear operator which
is D(G) — D’'(G)-continuous and such that L“M?(T € Z(L*(G)) for any a € N2,

B eNg.
We can associate a symbol o via (14) in a distributional sense, see Remark 4.7:

(o(x, m)u,v)yy, = ((TW)(x)u,w(x)v)Hﬂ, U,V € Hy.

Given our hypotheses on T, for each ™ € G this defines o(-,m) € L*(G,H,), that is, a
square-integrable function defined on G with values in Z(H,) (or after a choice of basis,
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in the space of complex d, X d -matrices). The Cauchy—Schwartz inequality and easy
manipulations yield:

(o (s m)u, )3, 2 @) < NT 22y lula, o], -

More generally we may adapt the proof of Lemma 8.9 so that it holds for distributional
kernels and we obtain for any 5 € Ny

IX2(o(, m)u, v)ag, L2 (@) < IMET ) 22y lula, V], - (53)

Denoting Sy;. = {u € Hax,|u|p, = 1} the unit sphere on H,, the Sobolev embedding
(cf. Lemma A.5) yields:

sup ||o(z,m)|| 2 (3,) = sup sup sup|(o(z,m)u,v)3,|
(z,m)eGXG re@ w,vESy, w€CG

<sup sup  max || X7 ) 2 S max [|MET| w26,
7reGuv€Sv-¢7r \ﬁ\<( ]” ( ( ) ) ”L( ) ‘g‘g(%] ” X ” (L( ))

having used (53). This also implies that, for each 7 € é, the mapping G 3 z — o(z,7) €
Z(Hr) is continuous. Moreover, applying this to M;%OT for any Sy € Njj, we obtain that
G 3z XPo(x,m) € £ (H,) is continuous and that

X Fo < 8
sup XPoo(x,m )5 max MZT 2 . 54
L W@l S| e IMET o) (54)

Hence the mapping G 3> z — o(z,7) € ZL(H,) is smooth.
Combining Lemma 8.9 with (54) (with 8y = 0), we obtain:

sup [[Ag,o(z, )|l 234
zel

weé

<\ |<( 1”M (= Lq;0p(0) — Z Cglququp( N2y
’ 1<l,k<na

ma MZLeT ,
S <o | Iy

by Lemma 8.8. More generally, using the same methods as above, we obtain recursively

A X Bra
sup A2 X500 (2, 1) || 2ay S max MELOT| oir2ia),
(x,w)eréH © ( )H () |5\§[%W+|ﬁo|’\a|§|ao|” X H (L2(@))

for any ag € N(*, Sy € Njj where A= {Ag;}72, is also a strongly admissible collection
of RT-difference operators. This shows that o € S5§,. O
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Rest of the proof of Proposition 8.11. Let 7" be as in the statement. Then
M?(T(I + £)""/? € Z(L*(@)) for any § and by the first part of the proof of the
case p = 6 = m = 0, the symbol of the operator T(I + £)~"/? satisfies (54) with
x— Op Y(T(14 £)~™/?)(x, ) smooth. We may define the symbol of the operator T to
be o := Op H(T(1+ L£)~™/2)(1 + \,)™/2.

We set Ty, 80,m = Op(A%UXﬁ‘J o) (I4-L)(=mteleol=018D/2 Temmata 8.8 and 8.9 imply
that T, g,.m is a linear combination of pa (L M2 T)(1+ £)~™/2 for some py € D(G),
|o/| = |ap|. One shows recursively that LQAM;%Taoﬁo,m € Z(L*(@)) for any multi-indices
« and 3 using the ‘almost commutation’ of L* and M? (see Lemma 8.9), (52) and
LI+ L)™/? € ZL(H*, H*~™). This is routine but lengthy and left to the reader.
Hence we can apply Proposition 8.11 for the case p = § = m = 0 which is already
proven: we have Ty, g,,m € \118’0 and

—m+plag|—3|Bol
2

sup HA’*OXBOU(JC,W)H:%(HW)(l + M)

(2,7)EGX G

< max |[|[M2Ta, sm 2

S e 1M Tao,60,mll 2(12(6))

< max ||LZM§T||$(H*’"+P‘“‘*5‘B‘,LQ(G))’

~BIST21+Bo el <o

by Lemmata 8.8 and 8.9, together with (52) and LY(I+ £)™'/2 € Z(H®, H*=™"). Thus
s SIT(; and this concludes the proof of Proposition 8.11. O

Because of Lemma 8.8 and of the inclusions H®* C H?®2, s; > s, the order for
the commutators Ly, and M;(j for L*MPT in Propositions 8.10 and 8.11 could be
arbitrarily changed. Furthermore, we could replace the basis of right-invariant vector
fields Xi,...,X,, with any other collection vector fields Di, ..., Dy generating the
D(G)-module of Diff*(G). Then we would adopt the notation Mg = M[’B,ll ...Mg‘i,

B € Nd. Hence we have obtained the following characterisation of the operators in Wiy

Corollary 8.12. Let 1 > p > 6 > 0 with § # 1, and m € R. Let T : D(G) —
D'(G) be a continuous operator. The operator T is in s if and only if there ex-
ists a strongly admissible collection A of RT-difference operators and {D1,...,Dg}
a family of smooth wvector fields generating the D(G)-module Diff'(G), such that
LEXMPT € Z(H™Pleltol8l [2(G)) for any o € Ng», 8 € N2 In this case LYMpT €
ZL(H™=rIeH0IBI 12(@)) for any collection A = Ag of RT-difference operators and any
family {D1,...,Dg} of smooth vector fields on G and any multi-indices o and 3.

This commutator characterisation is almost the same as the characterisation of the
Hérmander classes of operators on a manifold. This was already explained in [10, Sec-
tion 10.7.2] (but see Remarks 7.10 and 8.5). In this paper, we obtain:
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Corollary 8.13. If p and § satisfy 1 > p>3d >0 and p>1—19, then W5 coincides with
the Hérmander class ¥7's(G, loc).

Recall that a linear operator T' : D(G) — D'(G) is in ¥]'5(G, loc) when for any
o, € D(G) supported in charts of G, the operator ¢Tv : f — ¢T (¢ f) viewed as an
operator TWZJ on R™ is in \IIZ?(;(R"). The hypotheses on p and 4, that is, 1 > p > 6 > 0,
p > 1 — 4, ensure that the operators in \I/;’f(;(G, loc) are well defined using changes of
charts.

Proof of Corollary 8.13. Let 7' € U7";. Let also ¢,¢ € D(G) supported in charts of G.
By Lemma 4.3 and the linearity of T', we may assume that v is supported in the ‘small’
neighbourhood B(ey/2) of e and use the exponential mapping there as chart. We apply
Corollary 8.12 with a basis of right invariant vector fields and the collection A = Ag
constructed in Lemma 5.6. This implies that Ty, satisfies the hypotheses of Beal’s
characterisation of pseudo-differential operators (for the commutators of 9., and x;) [3].
Thus Tdm/} SRS (RM)and T € s (G, loc). The converse holds for the same reasons. 0O
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Appendix A. Multipliers of the Laplace operator

This appendix is devoted to the proof of Propositions 3.14 and 6.1. We will use
‘classical’ methods to estimates weighted norms of kernels of spectral £-multipliers using
the heat kernels.

First we will reformulate Propositions 6.1 and 3.14 into Proposition A.3 and Corol-
lary A.4 below using the notation of vanishing order of a function which we now define
precisely.

Lemma A.1. Let ¢ € D(G) and a € N. The following are equivalent:

1. For all « € N§j with |a| < a, then X%g(eg) = 0.
2. For any differential D € Diff*| k < a, we have Dq(eg) = 0.
3. There exists a constant Cy such that for all x € G, we have |q(x)| < Cqlz|*.

Definition A.2. If ¢ € D(G) satisfies the equivalent properties of Lemma A.1, then we
say that ¢ vanishes at eg up to order a — 1. We extend this to a < 0: a smooth function ¢
vanishes at eg up to order a — 1 if g(eg) # 0.

We reformulate Proposition 6.1 into the following property:
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Proposition A.3. Let m € R and a € Ny. For any q € D(G) vanishing at e up to order
a — 1, there exists d € Ny such that for all f € C0,00) satisfying || f|| m
have

my2,d < 00, we

m

—a
2
)

vre G, te(0,1)  ALSEA)H 2o < CEF (14 Ar)

where the constant C may be chosen as C'||f||m,, ..a with C' depending only on m,q,a

m/2>

and the group G but not on f,t,m.

In the statement above, we have used the following notation for d € Ny and m' € R:

Iflla,a = sup (14X FONI-
A>0, £=0,...,d

Proposition A.3 easily implies:

Corollary A.4. Let m € R and a € Ny. For any q € D(G) vanishing at eq up to
order a — 1, there exists C such that for any function f : Spec(L) — C satisfying
SUP\espec(c) (1 + N2 |f(N)] < oo and m € G, we have

m

1A f Aty < CL+A) "2 sup  (L+A)”EF|F(V)].
AESpec(L)

Proof. We can construct the function

V= fsu,

nESpec(L)

where the functions ¢,, € D(R) are bump functions valued in [0, 1] with disjoint supports
and such that ¢, (u) = 1. We have f € C®[0,00), f(£) = f(£) and

sup (L+A)"F[f(N)[= sup  (1+X2)7F[F(N)].
A€Spec(L) AESpec(L)

Hence we may assume f = f € C*[0, c0).
More precisely, we can choose the bump functions as

A —ul
A = _—
ould) = x (maX(u,Lde) ’
where x € D(R) is a fixed function such that

0<x<1, suppxC[-11], x|_,

1
2°2

]E].,

and where dy := min{|A\1 — A2], \1 # A2 € Spec(£)} is the minimum distance between
two distinct eigenvalues of £. In this case, we have
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1Mo Sa sup (LX) 2 [F)].
A€Spec(L)

We then apply Proposition A.3 to f and, for instance, t = 1. O

Corollary A.4 easily implies the first and second part of Proposition 3.14. The last
part follows from the following remark: it is possible to extend the proof presented in
this appendix to symbols depending on z in the following way: o(z,7) = f(x, \;), for a
function f very regular in z € G.

Hence this section is devoted to the proof of Proposition A.3, which will be presented
in Appendix A.4. Before this, we present its main tool, the heat kernel, whose prop-
erties will be recalled in Appendix A.1. We also state and prove technical lemmata in
Appendices A.2 and A.3.

A.1. The heat kernel

The heat kernel, i.e. the kernel of the operator e**:

pei=e 5., t>0,
is a positive smooth function on G which satisfies

Vs, t >0 /pt(x)da: =1, pa™!) =pi(x), and p;*ps = pits
G

and the following estimates [18]

pe(z)] < CV(VE e, zeG, t>0, (A1)

| X pe ()] < C\/Fni‘ale_%, reG, 0<t<l1. (A.2)

In these estimates, C' is independent of x € G and ¢ > 0 but may depend on the
multi-index o € Nj. V(r) denotes the volume of the ball centred at eq and of radius
r > 0. It may be estimated via

r™ ifr € (0, €e),

A3
1 ifeg<r< Ry, ( )

Vi(r) = |B(r)| ~ {

and [18, p. 111]

/ e de < CV (VD). (A.4)

G

For the sake of completeness, let us sketch the proof of the following well known facts:
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Lemma A.5. If s > n/2, then the kernel B, of the operator (1+L£)~*/? is square integrable
and the continuous inclusion H® C C(G) holds.

Sketch of the proof of Lemma A.5. If s > 0, the properties of the Gamma function and
of the heat kernel together with the spectral calculus of £ imply that the kernel B, of
the operator (I + £)~*/2 is the integrable function given via:

o0
1 e
Bs = / t2 e tp,dt,
=0

and that we have

IBuEscey = B Bi(e) = o [ [ (ata) 3716 0 e
0 0

/2 2 //(t1t2)%_1e_(tl+tz)c(t1 + to) " 2 dtydts.
s
00

It is not difficult to show that this last integral against dtidt, is finite whenever
s >mn/2. The Sobolev embedding then follows easily from the fact that one can write
f={0+L)"52f} x B, for any f € H® with s >n/2. O

A.2. Technical lemmata
In this section, we state in Lemma A.6 the main step in the proof of Proposition A.3

as well as two properties used in its proof in the next section.
Recall that f(L£)d. denotes the convolution kernel of the operator f(L), see (9).

Lemma A.6.

1. Let ¢ € D(G) and m € R. There exists C = Cy. such that for any continuous
function f with support in [0,2], we have for any t > €

/|q be(a)ldo < Clf

2. Let a € Ng and 8 € Nj. For any q € D(G) vanishing up at eq to order a — 1, there
exist C = Cyap and d = dq 5 € N such that for any function f € C?0,00) with
support in [0,2], m € G we have for any t € (0,1)

x [F O

)1, :

/ lg(2) XP{F(tL)5.} (x)
G
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Remark A.7.

1. Tt is not difficult to prove that, if f is compactly supported in [0,00), then the
kernel of f(L£) is smooth and thus the integrals intervening in Lemma A.G are finite.
Indeed this follows readily from Spec(£) C [0, 00) being discrete and the fact that the
eigenspaces of L are finite dimensional and included in D(G). However Lemma A.6
yields bounds for these integrals in terms of f and ¢ which will be useful later.

2. The second part of Lemma A.6 implies that for any ¢ € D(G) vanishing at eg up to
order a — 1, 8,7 € Njj, we have:

a—=|8]=|v|

[ 1X01a@x? feos ) @lde < 06T pax 170
G

3Ly

with the constant C' = Cy g, > 0 independent of f. This follows easily from

X @)= Y X a(@) X6(),

[71]+ vz =7

for any reasonable function ¢ on G. Indeed X7 ¢ vanishing at e up to order a—1—|7y|.

Here ¢ = f(tL)6..

The two following lemmata will be useful in the proof of Lemma A.6 given in the next
section.

Lemma A.8. Let a € Ny. For any q € D(G) vanishing at eq up to order a — 1, there
exists C' = Cq q such that for any r > 0 we have

1
2
HQHL2(B(7)) = < / |q(g;)|2d:r> S C’min(l,raJra).

|z|<r

Proof of Lemma A.8. We can estimate directly ||q||z2(B(r)) < [/q]/co- If 7 is small, we can
obtain a better estimate using Lemma A.1 (3) and the fact the ball B(ep) yields a chart
around the neutral element. More precisely we have

Vr € (0, €) ||q||%2(3(r)) < / Clla**dx S C / s20s" " ds S Cor?etn, O

|z|<r s=0

The second lemma is a classical construction.

Lemma A.9. Let g € S(R) be an even function such that its (Euclidean) Fourier transform
satisfies:
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0.

g € D(R), q 1, and g

’[_%é] ‘(—oo,l]u[l,oo) =

Such a function exists.
For any d € N and any h € S'(R) satisfying h € C*(R) with ||h(9 ]| < oo, we have

6d
W20 lh=hxgslo < 5 [ ooy 1)
R

where gs is the function given by gs(z) = 6~tg(6~tx).

Proof of Lemma A.9. The hypothesis on g implies

/g(x)da: =1 and /ng(z)dx =0forall /e N.
R R

Using the Taylor formula on h, we have

=1 p(0) (4
hx gs(x) = /h(w + 6y)g(y)dy = / (Z %(dy)e + Ra(, 5y)> 9(y)dy

R R M=0

= h(z) +/Rd(x75y)g(y)dy7
R

where Rg4(z,-) is the Taylor remainder of the function h at = of order d. We conclude
easily with the following (z-independent) estimate for the remainder:

|0y|¢
Rue,69)) < U [0 D).
A.83. Proof of Lemma A.6

This section is devoted to proving Lemma A.6. We will use the classical technics
relying on estimates for the heat kernel, see [18,1]. More precisely, we will follow closely
the presentation of [8].

Let ¢ € D(G) vanishing at eg up to order a — 1 > 0.

We fix a function f : [0, 00) — C with compact support in [0,2]. We assume that f is
regular enough, more precisely in C¢[0, o), that is, d-differentiable with d-th continuous
derivatives. d will be suitably chosen.

Step 1: For each t > 0, we define the function h; : [0,00) — C via

he(p) = e f(ty?), 1> 0. (A.5)

We have
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helloo < €*[lflloe and  f(EX) = he(VA)e ™.
The spectral theorem implies easily
FOL)Se = he(VL)pe and | f(tL)Se] L2y < llhelloo IPell 2 (-

For the L?2-norm of the heat kernel, we use (A.1) and (A.4) to obtain

N

I1pellr2(q) < CV(VE)~2.

This implies f(t£)d. € L?(G) with the following estimate:

I£(tL)8elr2(cy S IfllscV (VB2 (A.6)

Step 2: Let us show that the integral in the statement on a ball of radius /¢ near the
origin may be estimated by:

la(z) f(tL)8e(x)|dz Sq min(1,%)[| |- (A7)
lz|<VE
In order to show this, we first use Cauchy—Schwartz’ inequality:
/ lg(z) f(tL)de(w)|dx < [|qll 25 (ya)) I F(EL)ell 2B (va))-
|z| <Vt

The first L?-norm of the right-hand side may be estimated using Lemma A.8 and the
second with (A.6):

1FEL)5el| 2 iy < (L) L2y S [ FllocV (VE) 2.
Hence
[ la@) 1605 @)ldn 5, min(u, Vi 71V (VD
|z|<V?t

Using the estimates for V() in (A.3), this shows the estimate in (A.7).

Step 3: For ¢ large, that is, if v/# is comparable with the radius Ry of G, then the first
part of Lemma A.6 is proved. Let us now consider the case of a multi-index 5 € N, and
still v/t comparable with the radius Ry of G. Proceeding as in Steps 1 and 2, we obtain

IXPF(tL)ell2(c) = IIhe (VL XD} 2(6) < I1Pelloo| X P el L2y

and
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1 XPpell 2@ < C, fort ~ 1.

Hence

1F(tL)8ellr2(c) < Ce?[1flloo

Thus the second part of Lemma A.6 is proved for ¢ ~ 1. We therefore may assume that
t is small and consider the case of a multi-index 8 € Nj.
Step 4: In order to finish the proof, it remains to show

a—|8]

N / lg(0) XP{F(L)S @) dw S Cot“F | (A8)
|z| >Vt

We will decompose the integrand using
XP{f(tL)6e} = (VL)X py = (VL) Z{Xﬁpt} Lpi—1yp + {Xp} Lp2i-1ya)e)-
j=0

Here 1p(,y and 1p(,)e denote the indicatrix functions of the sets given by the ball B(r)
around the neutral element and by its complementary B(r)¢. The function h; was defined
earlier via (A.5). Note that the sum over j is finite but the number of terms is the smaller
integer J such that 27t1\/t > Ry, thus J depends on t. In order to obtain t-uniform
estimates, we view this sum as infinite. This decomposition yields

/mwﬁmmmmmsz/mwﬂyﬁwﬁu (A.9)
|z|> V2 I=04,, At

where
Apj={r e G: 2Vt <|z| <2t} = BRITIWVH\B(2MV1),
and
MY = h,(VE) {Xﬁpt 13(2j,1ﬁ)} and M2 = h,(VI) {Xgpt 13(23_7%)0}.

In both cases 7 = 1,2, we will use Cauchy—Schwartz’ inequality

/w@mmemMWWJ
At,j

For the first L2-norm, we use Lemma A.8 (with ¢ small):

lallzzca, ;) < lallL2paiivay) S Ca@ V"2
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Step 4a: For the second L2-norm, in the case i = 2, we have

2 2
1M |2 a, ) < 1M

26y < (V)22 @n 1 XPp1 1paivpell2 o)

On the one hand, we have by the spectral theorem

Ihe(VE) || 2(r2(c)) < lhelloo < €21 flloo-

On the other hand, the estimate for the heat kernel in (A.2) yields

1XPp: gy lBay < sup | XPpi(o)] / X5 py(2) | de
|z|>20-1/t

< il 2 1>/

G

S\/{*”*\ﬁ\ 22(7 ) \/—*n |5| (\/—),

y (A.4). Thus we have obtained

Bl _226-1)

_ﬂ_‘
1XPpe Tpai-symyellize SVE 2 e o,
and

2) —18] _22G-1
HM( ”L?(At] <||fHoo\[ H e c .

Collecting the previous estimates yields:

22(J 1)

[ 10 ME1 £ o Vi T E e

22(i—1)
C

< Cyll fllaoVa™ 7 2D

The exponential decay allows us to sum up over j and to obtain:

/ g MP| S CyllflloavE ™™ (A.10)

Jj= OA,[]

Step 4b: The case of ¢ = 1, that is, the estimate of ||Mt(;)||L2(At,j)’ requires a more
sophisticated argument. The function h; is even and has compact support. Assuming
f € C?0,+00) with d > 2, the function h; € C%(R?) admits an integrable Euclidean
Fourier transform of hy € L (R). Hence the following formula holds for any p € R
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1 ~
hi(p) = Py /cos(s,u) hi(s)ds, peR,
R

with a convergent integral. The spectral theorem then implies

h(VL) = % /COS(S\/Z) ?Lt(s)ds

R

and also

T or

MY (@) = - / cos(sVE) { X7pi Lpas 1y | (&) uls)ds. (A.11)
R

The operator cos(sv/L) has finite unit propagation speed [16, Ch. TV] in the sense
that supp{cos(sv/£)d.} C B(|s|). This implies

S Atvj and ‘S| < 2j71\/£ — COS(S\/Z) {Xﬁpt 13(23'71\/5)} (I) = 0.

We use this property in the following way. Let g € S(R) and g5 = d~'¢g(6~!-) be functions
as in Lemma A.9. As supp §(2j_1\/%)_1 C [-2771/t, 277 1/1], the finite propagation speed
property implies

red,; = /COS(S\/Z) {Xﬁpt 1B(2j,1ﬂ)} (z) ﬁt(s)’g\@jflﬁ),l(s)ds =0.
R

Hence we can rewrite (A.11) for any « € A, ; as

1 1 A -
MiE,])(m) = % /COS(S\/Z) {Xﬂpt 1B(2j—1ﬁ)} (-’L‘) (ht(S) — ht<8)g(2j71\/z)—1) dS
R

= (ht — hy % 9(2:‘—1\/2)71) (\/Z) {Xﬂpt 13(2]‘—1\/2)} (),

having used the spectral theorem and the inverse Fourier formula for even functions
on R. Applying the L%-norm on A, ;, we obtain

1
1M ezca,y <1 (B = e gy ) V) X700 gy i)
<[t — by * 92i-1/t)—1 ||oo||XBpt 13(2j—1\/z)||L2(G)’
by the spectral theorem. We estimate the supremum norm with the result of Lemma A.9:
e = he x gaims -1 lloe S @ VE A o,

and one checks easily
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(d d i
1157 oo = #1247 oo S 8% _max (17

For the L?-norm, the estimates in (A.2) for the heat kernel yields

n=l8ly, L i 31
1Xpe gyl SVE T VEITIWVHZ SagvE *

where we have set thanks to (A.3):

V(2r
Yo = sup (2r)

SUD 0 € (0,0).

Hence we obtain
4 i -2-1p
1M e,y € @V 4E max 7@ agnd Vi

We can now go back to

. _ d J —ﬂ—ﬁ
e N R T VG N

S Gy, max [ f912’ (at+g—drimge) o= lf]

We choose d to be the smallest positive integer such that d > a + § + m;" so that we
can sum up over j to obtain

/Ith S0y, max 5OVt

Jj= OAt]

Using (A.9) and (A.10), this shows (A.8). This concludes the proof of Lemma A.6.
A.4. Proof of Proposition A.3

Reduction 1: in Proposition A.3, we may assume m < 0 for the following reasons.
Let f € C?0,00) satisfying sup x>1 A"2H[fO(N)| < oo. Then fi(\) =
’

graay

(1 + A)~N f()) satisfies the same properties as f but for m; = m — 2N and we can
choose N large enough so that m; < 0. As f(A) = f1(A\)(1 + NP, we also have
FfOx) = fiA) (1 + AN, If we knew that f; satisfies the property described in
Proposition A.3 for my and any ¢ € D(G) then this together with Lemma 4.4 would
imply the property for functions ¢ yielding a collection A of RT-difference operators
satisfying the Leibniz-like property described in Definition 5.12. By Lemma 5.10 and
Theorem 5.9 with Corollary 5.13, this would imply Proposition A.3 for f and any
q € D(G).
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Reduction 2: we may assume f = 0 on [0, 1] as a consequence of the following property:

Lemma A.10. Let m € R and a € Ny. There exists d = dg,m € Ng such that for any
q € D(G) vanishing up to order a — 1 there exists C = Cy ., > 0 satisfying for any
function f € C?0,00) with support in [0,1]:

Vre G, te(0,1) 1A (A2 < CEF (14 M) "2 (. ax ||f loo-

0,1

Proof of Lemma A.10. From the properties of the Laplace operator and its Sobolev
spaces together with (2), we have:

L+ 2N AGf (A | 2 (30)
= 11+ m(L) Y Ag f(tAe) | 230

/| (1+ L)V g(@){(1 + L)V F(EL)5.} (2)|da
s Y [Wa@Uesy@ld £ 3 3 max 110
|ﬁ|<2NG |8|<2N ’

having used Lemma A.6 and Remark A.7 (2). Hence we have obtained

Vre @, te(0,1)  [|Agf(tAs) (1 M)

A

)1,

for any m; = 2N € 2N. The properties of interpolation and duality of the Sobolev spaces
imply the result for any m; € R. We then choose my =m —a. 0O

Strategy of the proof of Proposition A.3: We may use the following notation:

16l o= [Tkl 2(z2(e)) = sup |Far(m)| 2.
TeG
with the understanding that this quantity may be infinite.
Let ¢ € D(G), m < 0, and f € C?%[0,00) supported in [1,00). The properties of the
Sobolev spaces imply that it suffices to show

15 a FE0IH. < CHF sup ATFHIO ), for b=0.-m +a.  (A12)

where C' = Cp g, > 0 and a € Ny is such that ¢ vanishes up to order a — 1 at eq.
Let us fix a dyadic decomposition, that is, a function x; € D(R) satisfying

1
0<x1<1, X1|[%7%] =1, suppxi C [_72]7

2
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and
YAZ1 > x;(N) =1,  where x;(\)=x(277)) for j € N.

We then set for j € Nand A >0

m

i) = A" f)x;(0) and  gj(A) = A% f;(27N).
Note that, for any j € Ny, g; is smooth, supported in [%, 2], and satisfies
vd e No )"l S sup A~E 7O (A.13)
¢<d

The sum f(A) = 3272, 273 g;(279)\) is finite for any A > 0 and even locally finite on
[0,00). Using (A.13) and >, 27 < oo (recall that m < 0), we obtain

oo
7

If (o)l z(z>c Z 2% ||g; (2770 226y Sm sup)\ V)] < oo

Hence we can write

:ZQJ’%gj(Q*M) in Z(L*(@)), so
Z 2% g;(279tL)s. in D'(G),

with each function g;(277L£)d. being smooth, cf. Remark A.7 (1). This justifies the
estimates:

oo
IXPqf(tL)oelli(cy < D 2% 1 X%qg;(2774L)8e ]| 1)
J=1
By Lemma A.6 and Remark A.7 (2), we have:

a-lsl '
”Xﬁqgj(Z ]tﬁ)(s HLI(G) Sas (27 jt> zn(%a.d.).(d”gj(' )”oo

a—|8]
2

Ib

sup A~ 2 T O ()], (A.14)
A>1
0<d

gq,ﬁ (2_jt>

having used (A.13). This yields the (finite but crude) estimate:
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o0
em i a—|B| m
IX207 (£)5ell @) Sapm 3227073 sup AE O]
J=1 1<d
Sopmt 2 sup ATFHFO(N)],
A>1
<d

as long as m —a + || < 0. This rough L!-estimate implies the estimate in (A.12) in the
case b = 0 but is not enough to prove the case b = —m +a. We now present an argument
making us of the almost orthogonality of the decomposition of f(L£). More precisely we
will apply the Cotlar—Stein Lemma to the family of operators

9%
=210k gy emnncysy

where b = —m + a. Note that the properties of the homogeneous Sobolev spaces imply

124 fags 2 t0)5. 3 < (17 ags 2011631 ) (1€ agy2 108, 3).)

with 6 = [2] — £ and we can bound the | - ||.-norm with the L'-norm given in (A.14),
summing up over 3’s with |3| = [4] or |8] = [£]. We obtain:
122 {ag; (27 tL)8e} e Sqam (27707 sup A~ EFHFO(), (A.15)
A>
tZd
and, as ¢ — b = m, the operators T;’s are uniformly bounded. We also need to find a
bound for the operator norm of T;7}" whose convolution kernel is

2UHRE (L3 qg;(279EL)0.} + {L5 g Gr(27 L0, }.
As the operator L is central, this kernel may be also written as
20 E (L5 qg;(2778L)0} + {L£7% ¢ gu(27F1L)3e}
for any real number c¢. The estimate for ||£§{qgj(Q*jtll)ée}||,k in (A.15) holds in fact for
any b > 0 and by duality for any b € R. Hence we can use it at b+ ¢ to obtain
bie

; m bte —i b—c —
1Ty T3 |2 z2ey) < 295 (1L7% {qg;(27tL)0} | ]1£7= {qgu (2~ 1L)8} -

. m -a—(btc) a—(b—c) m
Sq,b)CQ(J*‘k)?ta_bQ_J 7 9 kT supA‘7+f|f(‘)()\)|
A>1
0<d

2
Sabe 20705970 Lsup AEH PO ]

A>1
¢<d
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having used b = —m + a. We choose ¢ to be the sign of j — k. This shows that the
hypotheses of the Cotlar—Stein Lemma [15, Section VIL.2] are satisfied and this shows
(A.12) for b= —m + a.

This conclude the proof of Proposition A.3.

Appendix B. A bilinear estimate

This section is devoted to showing the following bilinear estimate which is used in the
proof of the L2-boundedness of pseudo-differential operators (cf. Lemma 8.4).

Lemma B.1. For any 7,s € R with 2y+s < 0 and s > n/2, there exists C = Cs .G such
that for any A\, p € Spec(L) with X\ # u, for any f € ’HE\L) and g € H,(Lﬁ),

1T+ L) (f9)llze < O+l = ADOF | fllzzllgll e

Let us recall that Hg\ﬁ) denotes the A-eigenspace of L, see (7). In the proof of
Lemma B.1, we will use the following properties of the Laplace-Beltrami operator ob-
tained in relation with the theory of highest weight and representations:

Lemma B.2. Let A\, Ay € Spec(L). If f; € ’Hg\f), i = 1,2, then the point-wise product

f1f2 is a function in ®A§max()\1,)\2)Hg\£)-

Proof of Lemma B.2. As is customary, we consider the highest weight theory on compact
Lie groups extended to the reductive case. If m € GG, denoting by 7 its highest weight,
the corresponding eigenvalue is [9, Proposition 5.28]:

Ae = |7+ pal® = Ipal?, (B.1)

where pg is the half-sum of the positive roots of the semi-simple part of g.

By the Peter—Weyl theorem, for any = € G , the space L2(G) decomposes as d, copies
of the representation 7, i.e. L2(G) ~ d.V, where V; is the abstract representation space
of w, and any f € L2(G) can be written as matrix coefficients of m. Hence if f € L2(G)
and g € L2(G) then fg is in the space which can be written as the abstract tensor product
(dxVz) ® (d: V7). The highest weight among the irreducible components of V; ® V; is of
the form 7 + 7 [9, Proposition 9.72]. Naturally, V; ® V; may contain other components
with dominated weights, but, thanks to (B.1), we always have

max{\, :w € G,V,, C Ve @ V;} < Ar 4 Ar. (B.2)

Consequently, fg € EBASAW_MTHE\L) and the formulae in (8) and (B.1) imply the state-
ment of Lemma B.2. O
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Proof of Lemma B.1. Let s,v, A, i, f, g be as in the statement. We may assume A < pu.
The Plancherel formula and the Cauchy—Schwartz inequality easily imply:

[T+ L) (fo)@) = | D daTr ((T+ L)I(f(2)7(2))g(m)) |

Ar=p

<llgllez, [ D dell@+ L)AF @) @) Zr 5020
Ar=p

Thus

I+ L) (f9)l1Z < llgllZ= > dw/||(I+E)l(f(z)ﬂ(x)))\l?{s%)dﬂﬂ-
G

Ar=H

We can easily rewrite these last integrals as

[+ G @@ oz = 3 [ 10+ L @ma@)Pds
G

1<l k<dx &

= > D A+ A) I (P sy -

1<L,k<dx rc@

Now we notice that

oo me) aswny = . I Gma)lewl,

1<l k<dy 1<l k<dy
1<l K <d.
and that
[T (fme)lv e = /f(x)m,k(x)ﬂ',k’(x)dx = [ (frr 1))k
G
thus

oo Gmn) sy = > Im(Fmw) s,

1<1,k<dr 1<l k'<d,

We have therefore obtained:

1T+ L UlZe <llglZe D de D de(@+ 2> D0 () Irsen)
A

=i el 1<l k' <d,
<lglzz Y dr+ 2> Y7 uO)(Ffa)liay,  (B3)
re@ 1<l k' <d,

by the Plancherel formula, where 1,,(£) denotes the orthogonal projection onto ’Hl(f).
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As f € Hg\ﬁ) and 1 € ’Hg\f), by Lemma B.2, fry € EBXS)\JFATHE\[,:). Thus if
A+ A <pthen 1,(L)(fryp) = 0. If A4+ A; > p, then we use

Yo I@Umiliae < Y Iwwlliae = dllflize-

1<U,k'<d. 1<U,k'<d.

Inserting this in (B.3), we obtain:

IX+ L) (fDlZe < llgliZallfIZe D d2d+A)*

ATZAU‘_A

< CallglZa Iz (1 + = 2,

where C 1= Y _ad2(1+ X;)™* = ||Bs||12(c) is finite for any s > n/2 by Lemma A.5.

This concludes the proof of Lemma B.1. O
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