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1. Introduction

This paper concerns complex algebraic K3 surfaces with a non-symplectic automorphism which
acts trivially on the algebraic cycles. Such K3 surfaces have been extensively studied using lattice
theory introduced by Nikulin. The classification of these K3 surfaces due to Vorontsov and Kondō
is twofold (cf. Theorems 2, 3). First it gives all possible orders of the non-symplectic automorphism
in general. Then it determines unique K3 surfaces in the extreme case where the transcendental
lattice T (X) is as small as possible relative to the order of the automorphism – but only for orders
which are not powers of 2. This paper complements the results of Vorontsov and Kondō by virtue of
the following classification:

Theorem 1. Let X be a K3 surface with a non-symplectic automorphism η which acts trivially on NS(X).
Assume that the order m of η is a 2-power and that T (X) has rank m. Up to isomorphism we are in one of the
following cases:
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m NS(X) Equation T (X)

2 U + E2
8 + A2

1 y2 = x3 − 3t4x + t5 + t7 〈2〉2

4 U + E2
8 y2 = x3 − 3λt4x + t5 + t7 U 2

4 U + D8 + E8 y2 = x3 + tx2 + λt4x + t7 U + U (2)

8 U + D4 + E8 y2 = x3 + λtx2 + t2x + t7 U 2 + D4

16 U + D4 y2 = x3 + λtx2 + t2x + t11 U 2 + D4 + E8

In each case, a general choice of the parameter λ guarantees that T (X) really does have rank m.

Here U denotes the hyperbolic plane with intersection form
( 0 1

1 0

)
, and U (2) indicates that the

intersection form is multiplied by 2. The lattices An, Dk, El refer to negative-definite simple root lat-
tices; these are in correspondence with Dynkin diagrams. The lattice 〈2〉 is generated by a single
element of self-intersection 2. Thus 〈2〉 and A1 agree up to the sign of the intersection form.

Note that only the first case for m = 4 is unimodular. In all other cases, NS(X) has discriminant −4.
Details concerning the general choice of λ can be found in (5) and Corollary 14.

The proof of Theorem 1 is based on lattice theory as developed by Nikulin. The main ideas go
back to Kondō. He used special properties of elliptic fibrations for the classification. We will recall the
main concepts in the next section. This will culminate in a list of all theoretically possible Néron–
Severi lattices (Table 1). We first consider the unimodular case in Section 3.1. The main part of this
paper is devoted to the non-unimodular cases. Sections 3.2–3.4 will rule out all lattices but the ones
in Theorem 1. We then derive the given families of K3 surfaces.

After the proof of Theorem 1, the paper continues with a discussion of arithmetic aspects. Within
the families of Theorem 1, we find K3 surfaces of CM type and determine their zeta functions over
finite fields (Theorem 19). This result makes use of coverings by Fermat surfaces which we briefly
review in Section 4.1. We conclude with comments about mirror symmetry. For the families in Theo-
rem 1, we determine mirror partners with comparable arithmetic properties.

2. Preliminaries

In this section, we recall the classification result of Kondō and Vorontsov. Furthermore we review
the techniques from lattice theory and basics on elliptic surfaces that will be used to prove Theorem 1.
Most of these ideas go back to Nikulin and Kondō.

2.1. The classification of Kondō and Vorontsov

Let X be a complex algebraic K3 surface endowed with an automorphism η of order m. We
call η non-symplectic if it acts on the holomorphic 2-form as multiplication by a primitive m-th
root of unity ζm .

The Néron–Severi group NS(X) of X consists of divisors up to algebraic equivalence. For a K3 sur-
face, we can also consider numerical equivalence instead. Through cup-product, H2(X,Z) is endowed
with the structure of the unique even unimodular lattice of rank 22 and signature (3,19):

H2(X,Z) = U 3 + E2
8.

Since NS(X) = H2(X,Z) ∩ H1,1(X) by Lefschetz’ theorem, it inherits the structure of a lattice. Its rank
is called the Picard number ρ(X). By the Hodge index theorem, NS(X) has signature (1,ρ(X) − 1).

The transcendental lattice T (X) is the orthogonal complement of NS(X):

T (X) = NS(X)⊥ ⊂ H2(X,Z).

It is known that the representation of Aut(X) on NS(X) + T (X) is faithful. I.e. let O (NS(X)) and
O (T (X)) denote the respective groups of isometries. Then the induced map
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Aut(X) → O
(
NS(X)

) × O
(
T (X)

)
is injective. It follows that any non-trivial automorphism that acts trivially on NS(X) is non-
symplectic. Another important consequence is that

φ(m)
∣∣ rank

(
T (X)

)
(1)

where m is the order of the non-symplectic automorphism η and φ is Euler’s φ-function. This follows
from the Z[ζm]-module structure on T (X) given by η (cf. [8, Theorem 3.1]). Vorontsov [15] announced
a classification including all those cases where we have equality in (1). Kondō [3] corrected and
proved the statements.

Theorem 2 (Unimodular case). Let X be an algebraic K3 surface with an automorphism η of order m. Assume
that NS(X) is unimodular and η acts trivially on NS(X). Let Ω = {12,28,36,42,44,66}. Then

(i) m divides an element in Ω .
(ii) If φ(m) = rank(T (X)), then m ∈ Ω .

(iii) Conversely, for any m ∈ Ω , there is a unique K3 surface as above with φ(m) = rank(T (X)).

The non-unimodular case is less uniform. In order to formulate analogues of (ii) and (iii), we
distinguish the following two sets

Ω1 = {3,9,27,5,25,7,11,13,17,19}, Ω2 = {2,4,8,16}.
Here the uniqueness part of (iii) is due to Machida and Oguiso [6] for m = 25 and Oguiso and
Zhang [10] for all other cases.

Theorem 3 (Non-unimodular case). Let X be an algebraic K3 surface with an automorphism η of order m > 1.
Assume that NS(X) is non-unimodular and η acts trivially on NS(X). Then

(i) m ∈ Ω1 ∪ Ω2 .
(ii) If φ(m) = rank(T (X)), then m ∈ Ω1 .

(iii) Conversely, for any m ∈ Ω1 , there is a unique K3 surface as above with φ(m) = rank(T (X)).

The elements of Ω2 are missing in (ii) and (iii). For these 2-powers, the next rank of T (X) com-
patible with (1) is rank(T (X)) = m. Theorem 1 gives a complete classification of this case. The proof
of Theorem 1 is given in Section 3. First we recall some lattice theory.

2.2. Discriminant group and p-elementary lattices

Any integral lattice L has a canonical embedding into its dual lattice L∨ . We define the discrimi-
nant group AL of L as the quotient

AL = L∨/L.

If L is non-degenerate, then AL is a finite abelian group. In the present situation, we consider a K3
surface X with perpendicular lattices NS(X), T (X). Nikulin [7] proved that

ANS(X)
∼= AT (X). (2)

We say that a lattice L is p-elementary (with p prime) if AL is a p-elementary abelian group. The
main step towards establishing Theorem 3 is the following result due to Vorontsov [15]:
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Theorem 4. Let X be an algebraic K3 surface with an automorphism η of order m > 1. Assume that NS(X) is
non-unimodular and η acts trivially on NS(X). Then

(i) m = pk for some prime p.
(ii) NS(X) is a p-elementary lattice.

This result readily puts us in a position to prove Theorem 1 for m = 2: Here T (X) is positive-
definite of rank two. Since it is 2-elementary by Theorem 4, we obtain T (X) = 〈2〉2. By the Torelli
theorem, this determines a unique complex K3 surface up to isomorphism.

On the other hand, the given elliptic K3 surface has exactly four singular fibres, two each of types
I2 and II∗ . Hence ρ(X) = 20 and NS(X) is as claimed (cf. Section 2.4). This implies that T (X) = 〈2〉2.
Consider the elliptic involution η : y → −y, which acts trivially on the singular fibres. Since NS(X) is
generated by fibre components and the zero section, η operates trivially on NS(X). This completes
the proof of the case m = 2 of Theorem 1.

2.3. 2-elementary lattices

By Theorem 4, we have to deal with 2-elementary lattices to prove Theorem 1. These have been
studied in great detail by Nikulin [9]. To recall his classification result, we introduce the following
notation.

For a non-degenerate integral lattice L, let �(L) denote the minimal number of generators of the
discriminant group AL . Consider the induced quadratic form 〈·,·〉 on L∨ . If L is 2-elementary, define

δ(L) =
{

0 if 〈x, x〉 ∈ Z for all x ∈ L∨,

1 otherwise.

Example 5 (Dynkin diagrams). The 2-elementary Dynkin diagrams, with their values of � and δ, are as
follows:

Type A1 E7 E8 D4n (n > 0) D4n+2 (n > 0)

� 1 1 0 2 2
δ 1 1 0 0 1

Theorem 6. (See Nikulin [9, Theorem 4.3.2].) Let L be an even 2-elementary lattice of rank r and signature
(1, r − 1). Then the isomorphism class of L is determined by the triple (r, �(L), δ(L)).

In the same paragraph [9, §4.3], Nikulin gives precise conditions for the existence of an even 2-
elementary lattice L with prescribed (r, �(L), δ(L)). In our situation, we furthermore have to take into
account that

�
(
NS(X)

) = �
(
T (X)

)
by (2). In particular we obtain the trivial bound

�
(
NS(X)

)
� min

(
rank

(
NS(X)

)
, rank

(
T (X)

))
. (3)

With this bound and Theorem 6, we can easily list all 2-elementary lattices which could possibly be
associated to the non-unimodular K3 surfaces in Theorem 1. In Table 1, we only give the hypothetical
Néron–Severi lattices. All other triples (r, �, δ) are ruled out by Nikulin’s statement in [9, §4.3] and (3).

The corresponding transcendental lattices are easily computed by comparing the discriminant
forms, following the theory developed by Nikulin [7]. In all present cases, there is only one class of
lattices per genus, so that the discriminant form determines the lattice up to isometry. Thus we verify
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Table 1
The 2-elementary lattices L possibly equalling NS(X) for non-unimodular K3 sur-
faces X with m = rank(T (X)) = 2k .

m (r, �, δ) L

2 (20,2,1) U + A2
1 + E2

8

4 (18,2,0) U + D8 + E8

(18,2,1) U + A1 + E7 + E8

(18,4,0) U + D2
8

(18,4,1) U + A2
1 + E2

7

8 (14,2,0) U + D4 + E8

(14,4,0) U + D4 + D8

(14,4,1) U + A4
1 + E8

(14,6,0) U + D3
4

(14,6,1) U + A4
1 + D8

(14,8,0) U (2) + D3
4

(14,8,1) U + A4
1 + D2

4

16 (6,2,0) U + D4

(6,4,0) U (2) + D4

(6,4,1) U + A4
1

(6,6,1) U (2) + A4
1

the transcendental lattices given in Theorem 1. For the non-symplectic K3 surfaces from Theorems 2
and 3, analogous arguments are presented in detail in [5].

We chose to write the Néron–Severi lattices in a very particular way, always involving U or U (2).
The reason for this will become clear in the next section when we turn to elliptic fibrations.

Let X be a K3 surface with NS(X) 2-elementary. Nikulin [9] showed that X admits an involution ι
such that

ι∗|NS(X) = 1, ι∗|T (X) = −1.

On the K3 surfaces from Theorem 1, we will consider ι = ηm/2. Then we will study the fixed curve

Θ = Fix(ι).

By the Torelli theorem, ι is unique. Hence Aut(X) is the centraliser of ι. In particular, Aut(X) maps Θ

onto itself, so the curve Θ will be fixed by η.

Theorem 7. (See Nikulin [9, Theorem 4.2.2].) Θ is a non-singular curve. It decomposes into disjoint components
depending on the triple (rank(NS(X)), �(NS(X)), δ(NS(X))) = (r, �, δ):

Θ =

⎧⎪⎨
⎪⎩

∅ if (r, �, δ) = (10,10,0),

C1 + C2 if (r, �, δ) = (10,8,0),

C + ∑n
i=1 Bi otherwise.

Here C1, C2 are smooth curves of genus one. C denotes a smooth curve of genus g = (22 − r − �)/2. The Bi are
smooth rational curves, n = (r − �)/2.

2.4. Elliptic fibrations

K3 surfaces can admit several elliptic fibrations onto P1. Here we further have to distinguish
whether a given fibration has a section. If so, we denote it by O . Then the general fibre F is an
elliptic curve with the intersection point F ∩ O as origin of the group law. On an elliptic K3 surface,
O 2 = −2. Hence F and O generate the hyperbolic lattice U .
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Fig. 1. Action of ι on non-reduced singular fibres.

We want to formulate a converse statement so that from the Néron–Severi lattices in Table 1 we
can deduce the existence of an elliptic fibration. For this we identify the reducible singular fibres
with Dynkin diagrams. If there is a section O , the identification is achieved by omitting the fibre
components that meet O . In general, one omits a simple component on each singular fibre (unless
there are multiple fibres). Then one just draws the intersection graph. The following table pairs the
type of the singular fibre in Kodaira’s notation with the corresponding Dynkin diagram:

Fibre type I2, III I3, IV In (n > 3) I∗n (n � 0) IV∗ III∗ II∗

Dynkin diagram A1 A2 An−1 Dn+4 E6 E7 E8

Lemma 8. Let X be a K3 surface. Assume that NS(X) = U + Γ1 + · · · + Γn where each Γi denotes a Dynkin
diagram. Then X admits an elliptic fibration with section and singular fibres corresponding to the Γi .

A proof of this lemma can be found in [3, Lemmas 2.1, 2.2]. The lemma applies to most lattices in
Table 1. Kondō also gave a generalisation for the remaining lattices which include a summand of U (2).
Here we need the extra information that the lattice is 2-elementary.

Lemma 9. Let X be a K3 surface. Assume that NS(X) = U (2) + Γ1 + · · · + Γn where Γi = A1, E7, E8, D4n
(n � 1). Then X admits an elliptic fibration with singular fibres corresponding to the Γi .

By the previous two lemmas, it suffices for our classification to consider elliptic K3 surfaces with
NS(X) 2-elementary as in Table 1. By Nikulin [9, §4.2], any such K3 surface is equipped with an
involution ι which acts trivially on NS(X). In particular, ι preserves the elliptic fibration and maps
each section, if there is any, to itself. Kondō [3, Lemma 2.3] describes the operation on the singular
fibres:

Lemma 10. Let X be an elliptic K3 surface with NS(X) 2-elementary as in Lemma 9.

(i) The involution ι acts on the simple components of the singular fibres as an automorphism of order two.
(ii) On the multiple components, ι acts either as identity or as involution of order two. The precise pattern is

as follows: ι acts as identity on the multiple components meeting simple components; from there on, its
action alternates between the two possibilities as depicted in Fig. 1.

For the relevant non-reduced fibre types corresponding to E7, E8, D4n (n � 1), we sketch the action
of ι on the fibre components in Fig. 1. Multiple components will be printed thick and vertically if
ι acts as identity; all other components, in particular the simple ones, will appear horizontally in thin
print.

By this lemma, we can identify many components of the fixed curve Θ of ι in Theorem 7 as fibre
components (or as the section O if ι|P1 = 1). We will then argue using the remaining components.

We conclude this section by recalling some basic facts from the theory of elliptic surfaces that will
play a central role in our analysis:

• By the Shioda–Tate formula, the Néron–Severi group NS(S) of an elliptic surface S with section is
generated by horizontal and vertical divisors, i.e. sections and fibre components. Hence permuta-
tions of reducible fibres induce a non-trivial action on NS(S).
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• Over C, there are exactly two elliptic curves that admit automorphisms of order > 2 (respect-
ing the group structure). They have j-invariants j = 0,1728 and CM by the full integer rings in
Q(

√−3) resp. Q(
√−1).

• If the generic fibre of an elliptic surface with section has CM, then the fibration is isotrivial. This
restricts the possible singular fibres. For instance, if the generic fibre admits an automorphism of
order four, i.e. if j = 1728, then the only possible singular fibre types are III, I∗0, III∗ .

3. The classification result

This section gives the proof of Theorem 1, divided into subsections corresponding to the four
families of K3 surfaces occurring. The single surface in case m = 2 has already been treated in 2.2.

3.1. Proof in the unimodular case

We are looking for all K3 surfaces X with a non-symplectic automorphism η under the following
assumptions: η acts trivially on NS(X), the order m of η is a 2-power and T X has rank m and is
unimodular.

By Theorem 2, the only possibility is m = rank(T (X)) = 4. Hence by the classification of even
unimodular lattices of given signature,

NS(X) = U + E2
8, T (X) = U 2.

By Lemma 8, X admits an elliptic fibration with section and two singular fibres of type II∗ . Such
K3 surfaces have been studied in great detail by Shioda in [13]. They are given by the Weierstrass
equation

X: y2 = x3 − 3λt4x + t7 + μt6 + t5 (4)

with II∗ fibres at t = 0 and t = ∞. In particular, any such K3 surface X admits a Shioda–Inose struc-
ture: the quadratic base change t → t2 results in another elliptic K3 surface. By [13], this is the
Kummer surface of the product of two elliptic curves E, E ′ . Based on an argument by Inose [2], the
elliptic curves are determined by their j-invariants through the parameters λ,μ (cf. (5) for the special
case μ = 0).

Because of the singular fibres of type II∗ , the general fibre of X does not admit an automorphism
of order four. Hence η has to operate non-trivially on the base curve P1. Since η preserves the elliptic
fibration, we deduce μ = 0. This reduces (4) to the equation in Theorem 1. Here η is given by

η: t → −t, x → −x, y → √−1y.

For the corresponding elliptic curves, this implies that one of them, say E , has j(E) = 1728. Thus
E admits an automorphism of order four (which induces η).

Finally we have to make sure that η acts trivially on NS(X). This certainly holds true for O , F
and the two singular fibres of type II∗ . However, we could have ρ(X) > 18 (so that by (1) already
ρ(X) = 20). In all such cases, one can see that there are some additional cycles that are not η-
invariant.

For instance, if λ3 = 1, there are further reducible singular fibres of type I2 at t = ±1. Hence η in-
terchanges them. In fact, the resulting surface is isomorphic to the K3 surface for m = 2 in Theorem 1.
The non-symplectic automorphism η2 acts trivially on NS(X). In terms of the Shioda–Inose structure,
this is exactly the case E ∼= E ′ .

On the other hand, there could be additional sections. By the Shioda–Inose structure, this happens
if and only if the two elliptic curves are isogenous, but not isomorphic. Since E has CM and j(E) =
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1728, this is equivalent to E ′ having complex multiplication by some order in Q(
√−1) ( �= Z[√−1]).

In terms of the parameter λ, both degenerate cases together can be expressed as follows:

ρ(X) = 20 ⇔ 1728λ3 = j(O) for some order O ⊆ Z[√−1]. (5)

3.2. Non-unimodular case m = 4

We first rule out all 2-elementary lattices L from Table 1 except for one. Then we derive the family
of K3 surfaces given in Theorem 1 for the remaining lattice. In each hypothetical case, the assumption
NS(X) = L guarantees an elliptic fibration on X with certain singular fibres by Lemma 8. We will
always work with this fibration.

If NS(X) = U + A1 + E7 + E8 or U + A2
1 + E2

7, then there are more than two reducible singular fibres.
As explained, interchanging them induces a non-trivial action on NS(X). Hence η has at least three
fixed points on the base curve P1, so it operates trivially. Thus η also fixes O . Hence the general fibre
is an elliptic curve with an automorphism of order four. I.e. the fibration is isotrivial with j = 1728.

With NS(X) of the given shape, isotriviality is only possible in the second case with singular fibres
III, III∗ twice each. By a Möbius transformation, we move the singular fibres to 0,1, γ ,∞. Then it
follows from Tate’s algorithm [14] that the elliptic fibration is given up to isomorphism as

X: y2 = x3 + t3(t − 1)(t − γ )x. (6)

The automorphism of order four is indeed operating trivially on the singular fibres. However, there is
a two-torsion section (0,0). Hence the lattice U + A2

1 + E2
7 has index two in NS(X). At the end of this

section, we will verify that NS(X) = U + D8 + E8.
The final case to be ruled out is NS(X) = U + D2

8. Here we could again argue with an explicit
Weierstrass equation. However, we decided to give a geometric proof that no such elliptic surface
admits an automorphism of order four with trivial action on NS(X). The proof follows the lines of
Kondō’s arguments in [3].

We will use that η acts non-trivially on P1. Otherwise, the general fibre would have CM again
which is not possible with singular fibres of type I∗4. We let ι = η2. By Theorem 7, there are smooth
rational curves Bi (i = 1, . . . ,8) such that

Fix(ι) =
8∑

i=1

Bi .

By Lemma 10, we may assume that B1 = O , and B2, . . . , B7 are disjoint double components of the
singular fibres. Moreover, there are eight isolated fixed points of ι, one on each simple component of
the singular fibres. Exactly two of these points lie on O . Hence the remaining six lie on B = B8. Since
η operates trivially on NS(X) by assumption, each of these fixed points of ι = η2 is already a fixed
point of η.

We deduce that B intersects the general fibre in three points. Since η|P1 �= 1, this implies η|B �= 1.
Hence we can apply the Hurwitz formula to B and η. With d = ord(η|B) it reads

−2 = 2
(

g(B) − 2
) = d

(
2g(B/η) − 2

) + 6(d − 1) � 4d − 6.

Since d > 1, this gives the required contradiction.
For the remaining lattice NS(X) = U + D8 + E8, we shall now derive the family of elliptic surfaces

given in Theorem 1. Then we will check the compatibility with the isotrivial fibration (6).
With singular fibres of type I∗4, II∗ at 0,∞, Tate’s algorithm predicts the following Weierstrass

equation:

X: y2 = x3 + (μt + ν)tx2 + λt4x + γ t7, νγ �= 0. (7)
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After scaling, we can assume ν = γ = 1. Here η|P1 �= 1 for the same reason as before. Since η pre-
serves the elliptic fibration, we deduce μ = 0. Hence (7) reduces to the equation in Theorem 1. Then
η can be given as

η: t → −t, x → −x, y → √−1y.

This elliptic surface has discriminant

� = 16t10(27t4 − 2λ
(
2λ2 + 9

)
t2 − λ2 + 4

)
,

so in general there are four singular fibres of type I1. They degenerate exactly in the following cases:
If λ2 = 3, then there are two fibres of type II instead. If λ = ±2, then two I1’s merge with the fibre I∗4
at t = 0 to form I∗6. Hence ρ = 20, and we obtain the surface from case m = 2. Note that η does not
act trivially on the fibre of type I∗6 any more, but, of course, η2 does.

We still have to show η|NS(X) = 1 for a general choice of λ. For this, it suffices to verify that
ρ(X) = 18 (so that in particular NS(X) = U + D8 + E8, since a II∗ fibre does not admit any torsion
sections). We show this using the smooth specialisation X0 at λ = 0. Clearly 18 � ρ(X) � ρ(X0).
On X0, we can take the square root of η: fixing a primitive eighth root of unity ζ , we have

Aut(X) � √
η: t → ζ 2t, x → ζ 2x, y → ζ 3 y.

By (1), T (X0) has rank at least four. I.e. ρ(X0) � 18, which implies the equality ρ(X) = ρ(X0) = 18.
In particular η operates trivially on NS(X) for general λ. This completes the proof of Theorem 1 in
case m = 4.

We conclude this section by checking the compatibility of the two elliptic fibrations (6) and (7).
We exhibit an alternative elliptic fibration on the K3 surfaces (7). For this we consider the affine chart
x = t3u, y = t3 v of the triple blow-up at (0,0,0):

X: v2 = t3u3 + tu2 + λtu + t.

We now choose u as a section. A simple variable change produces the Weierstrass equation

X: v2 = t3 + u3(u2 + λu + 1
)
t.

This reveals the relation to the family of isotrivial elliptic fibrations (6):

λ = −1 + γ√
γ

. (8)

In Section 4, we will use this relation to determine the K3 surfaces in the family with ρ = 20
(cf. Corollary 14). Those surfaces are excluded in Theorem 1.

3.3. Proof of case m = 8

By the same methods as before, we can rule out the four cases NS(X) = L where L can be written
as sum of U and at least three Dynkin diagrams: Here η|P1 = 1 and η fixes O . Hence the general fibre
is an elliptic curve with an automorphism of order 8, contradiction.

If NS(X) = U (2)+ D3
4, we still have η|P1 = 1, but no section. Instead we work with the fixed curve

of ι = η4. By Theorem 7, there are disjoint smooth rational curves B1, . . . , B4 such that

Fix(ι) = B1 + · · · + B4.
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By Lemma 10, three of these curves are the multiple components of the I∗0 fibres. Denote the remain-
ing rational curve by B . Since η operates trivially on NS(X), it fixes each single Bi . Moreover, η has
12 fixed points where B intersects the simple components of the I∗0 fibres again by Lemma 10. We
distinguish two cases depending on d = ord(η|B).

If d = 1, then the intersection with B equips each fibre F with four rational points fixed by η.
Hence F is an elliptic curve with an automorphism of order 8. As above this gives a contradiction.

If d > 1, then we establish a contradiction with the Hurwitz formula applied to B with η and the
12 fixed points.

To rule out NS(X) = U + D4 + D8, we apply a similar argument. Here η|P1 has order at least four,
since otherwise the general fibre would have an automorphism η2 of order four. By Theorem 7 there
is a smooth curve C of genus two such that with disjoint multiple components B1, . . . , B4 of the
singular fibres

Fix
(
η4) = C + O + B1 + · · · + B4.

Again C is fixed by η. Since η acts trivially on NS(X), it has six fixed points where C intersects the
simple components of the singular fibres. In particular C . F > 0, so that d = ord(η|C ) � ord(η|P1 ) � 4.
Now we apply the Hurwitz formula

2 = 2g(C) − 2 = d
(
2g(C/η) − 2

) + 6(d − 1) � 4d − 6

to establish the contradiction d � 2.
Finally we derive the Weierstrass form for the family of elliptic surfaces with the remaining lattice

NS(X) = U + D4 + E8. We locate the singular fibres at 0,∞. Then the Tate algorithm predicts the
Weierstrass equation

X: y2 = x3 + A(t)tx2 + B(t)t2x + C(t)t3

with deg(A(t)) � 1,deg(B(t)) � 2,deg(C(t)) = 4. After translating x, we can assume C(0) = 0. Then
the fibre at t = 0 has type I∗0 if and only if B(0) �= 0.

Now we use that by the same arguments as before ord(η|P1 ) � 4. Since η preserves the elliptic
fibration, it acts as multiplication by some scalar on the polynomials A, B, C . From the low degrees
(and C(0) = 0), it follows that A, B, C are all monomials. By the above conditions, we may assume
that, after scaling,

C(t) = t4, B(t) = 1.

Here η has to operate as t → √−1t , x → √−1x. Hence A(t) = λ, giving the equation from Theorem 1.
The discriminant is

� = 16t6(27t8 − 2λ
(
2λ2 + 9

)
t4 − λ2 + 4

)
,

so in general there are 8 fibres of type I1. Degenerations occur exactly at λ = ±2 where four of them
collapse with I∗0 to form I∗4, and at λ2 = 3 with four II’s instead. Hence for λ general, η acts trivially
on the reducible singular fibres. For the remaining claims about the general member X , the same
argument with the smooth specialisation X0 at λ = 0 applies as in Section 3.2.
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3.4. Proof of case m = 16

If NS(X) = U + A4
1 or U (2) + A4

1, we again have η|P1 = 1. In the first case, there is a section (fixed
by η). Hence the general fibre is an elliptic curve with an automorphism of order 16, contradiction.

In the second case, C = Fix(η8) is a smooth curve of genus five by Theorem 7. By Lemma 10,
C meets each component of the reducible singular fibres in two points. Hence C intersects the general
fibre F in four points. In particular, these are fixed by η4. This means that F is an elliptic curve with
an automorphism η4|F of order four which fixes four points. This is impossible.

We now consider the lattice NS(X) = U (2) + D4. By Theorem 7,

Fix
(
η8) = B + C

where B is the multiple component of the special fibre and C is a smooth curve of genus 6. By
Lemma 10, C meets each simple component of the special fibre in a point which is actually fixed
by η. Hence C . F = 4 and # Fix(η) � 4.

This implies that the order of the η-action on P1 is at most four. Otherwise d = ord(η|C ) �
ord(η|P1 ) � 8, since C . F > 0. Then the Hurwitz formula would give

10 = 2g(C) − 2 = d
(
2g(C/η) − 2

) + 4(d − 1) � 4d − 6,

so d � 4, contradiction.
Define ξ = η4 with trivial action on P1. If ξ |C = 1, then the general fibre is an elliptic curve with

an automorphism of order four, fixing four points. As above, this gives a contradiction.
If ord(ξ |C ) = d > 1, then we apply the Hurwitz formula to C and ξ . Here we use that ξ has at

least 22 fixed points on C : the nodes of the singular fibres of type I1 or the cusps and one further
point on the II fibres plus the four intersection points with the I∗0 fibre. Hence the Hurwitz formula

10 = 2g(C) − 2 = d
(
2g(C/ξ) − 2

) + 22(d − 1) � 20d − 22

gives the contradiction d < 2. This completes the non-existence proof.
It remains to derive the family of elliptic surfaces with NS(X) = U + D4 from Theorem 1. We work

with an elliptic fibration where we locate the special fibre at t = 0. By the same arguments as before,
η|P1 has order at least 8. Hence there are 8 singular fibres of type II or 16 I1 which are interchanged
by η. Since e(X) = ∑

F e(F ) = 24, there remains one singular fibre of type II which is fixed by η. We
locate it at ∞ with cusp at the origin. Then Tate’s algorithm gives

X: y2 = x3 + A(t)tx2 + B(t)t2x + C(t)t3 (9)

with deg(A(t)) � 2, deg(B(t)) � 5, deg(C(t)) = 8. After translating x, we can assume C(0) = 0. Then
the fibre has type I∗0 at t = 0 if and only if B(0) �= 0.

As before, η acts as some scalar multiplication on the polynomials A, B, C . Since η has order at
least 8 on P1, we deduce that each polynomial is in fact a monomial due to its small degree. After
normalising, we obtain

C(t) = t8, B(t) = 1, A(t) = λ.

Thus (9) reduces to the claimed family of elliptic K3 surfaces. The discriminant is

� = 16t6(27t16 − 2λ
(
2λ2 + 9

)
t8 − λ2 + 4

)
,

so in general there are 16 fibres of type I1. Degenerations occur exactly in the two usual cases: at
λ = ±2 where eight I1’s merge with I∗0 to constitute I∗8, and at λ2 = 3 with eight II’s instead.
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The non-symplectic automorphism η involves a primitive 16-th root of unity ζ :

η: x → ζ 2x, t → ζ 2t, y → ζ 3 y.

For λ general, η acts trivially on the reducible singular fibres. All other claims about the general
member X can be proved with the smooth specialisation X0 at λ = 0 as in 3.2 and 3.3.

4. Arithmetic aspects

In this section we will discuss arithmetic aspects of the K3 surfaces in Theorem 1. In particular,
we will show that each family contains at least three members of CM type.

First we note that the surface for m = 2 in Theorem 1 has ρ = 20, hence is modular by [4]. The
associated Hecke eigenform has weight 3 and level 16 as given in [11, Table 1].

In all other cases of Theorem 1, we are concerned with one-dimensional families of K3 surfaces.
Hence any relation to automorphic forms (as predicted by the Langlands program) will be more
complicated. The transcendental lattice gives rise to a compatible system of m-dimensional Galois
representations � over Q. However, we can still reduce to two-dimensional Galois representations
over some extension of Q. For this we fix a primitive root of unity ζm of order m.

Proposition 11. Let X be a K3 surface over a number field K with a non-symplectic automorphism of order m.
Then the Galois representation � associated to T (X) splits into m equidimensional Galois representations
over K (ζm).

The proposition relies on the fact that the non-symplectic automorphism endows T (X) with the
structure of a Z[ζm]-module (leading to (1)). This property carries over to the Galois representations.
Applied to the families from Theorem 1, Proposition 11 produces two-dimensional Galois representa-
tions over Q(ζm).

In the unimodular case of m = 4, we can describe the two-dimensional Galois representation ex-
plicitly. From the Shioda–Inose structure with the elliptic curves E, E ′ , it follows that

T (X) = H1(E) ⊗ H1(E ′) (10)

if ρ(X) = 18 (cf. (5)). Over some extension, this relation translates into Galois representations. Since

E has CM, there is a Hecke character ψ over Q(
√−1) associated. Then H1(E) = IndQ(

√−1)
Q

ψ . Hence

� is induced by ψ ⊗ H1(E ′).

Definition 12. Let X be a smooth projective surface over a number field K . We say that X has CM
type if over some finite extension of K the Galois representation � associated to T (X) splits into
one-dimensional Galois representations.

By (5) and (10), a member of the unimodular family from Theorem 1 is of CM type if and only if
the elliptic curve E ′ has CM as well. Here the Picard number jumps to 20 if and only if the CM field
is Q(

√−1). The specialisation X0 at λ = 0 of CM type has been studied in [5]. Here j(E ′) = 0 by (5).
Hence E ′ admits an automorphism of order three. Together with η, this induces a non-symplectic
automorphism of order 12 on X0.

Our next aim is to investigate CM type surfaces in the other families from Theorem 1. We
start with the non-unimodular family for m = 4. Thanks to the relation (8), we can work with the
model Xγ from (6). We want to establish a structure similar to (10). Here we use that Xγ is an
isotrivial elliptic surface with smooth fibre E of j(E) = 1728.
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For γ �= 0,1, we apply the following base change to the elliptic surface Xγ → P1:

Cγ = {
v4 = u(u − 1)(u − γ )

} → P1

(u, v) → u.

The base change results in the product E × Cγ . This induces an embedding of T (Xγ ) into H1(E) ⊗
H1(Cγ ). The involution v → −v identifies a summand of H1(Cγ ) coming from the elliptic curve

Eγ : w2 = u(u − 1)(u − γ ).

Moreover there are three involutions that permute the points above 0,1, γ ,∞ pairwise (e.g. (u, w) →
(γ /u, γ w/u2)). For each involution, the quotient is an elliptic curve with an automorphism of order
four, i.e. it is isomorphic to E . These quotients provide enough information to conclude that Jac(Cγ ) is
isogenous to the product Eγ × E2 (an argument sketched to us once by R. Kloosterman). Since T (Xγ )

has rank four in general, but T (E × E) has rank two, we obtain the following structure:

Lemma 13. The general surface Xγ has T (Xγ ) = H1(E) ⊗ H1(Eγ ).

In the above construction, we had to exclude γ = 1 which corresponds to λ = ±2. As we know,
that specialisation agrees with the surface for m = 2 from Theorem 1.

Corollary 14.

(i) The surface Xγ has CM type if and only if γ = 1 or Eγ has CM.
(ii) ρ(Xγ ) = 20 if and only if γ = 1 or Eγ has CM in Q(

√−1).

We shall now study the other non-unimodular families. Here we investigate the special members
from the previous sections: X0 at λ = 0 and the degenerations at λ2 = 3,4. Each surface can be
shown to have CM type using Proposition 11. Below we will give an alternative proof by exhibiting a
covering by a Fermat surface. This will also enable us to determine the zeta function.

Remark 15. In each non-unimodular family, the surfaces at λ and −λ are isomorphic via
√

η. Hence
it makes sense to refer to the specialisations X2 and X√

3 in the following. In fact, there are models

of the families in terms of μ = λ2. For instance, one obtains for m = 4

X: y2 = x3 + 1

μ
tx2 + t4x + t7.

In this model, the member at μ = 0 degenerates. Therefore we decided to use the given models with
symmetry λ ↔ −λ.

Lemma 16. In the non-unimodular families, X0, X2 and X√
3 have CM type.

Proof. We have seen that X0 admits a non-symplectic automorphism
√

η of order 2m. Hence the
claim follows from Proposition 11. On X2, the singular fibres degenerate in such a way that T (X4) has
only rank m/2. Hence the same proposition applies.

For m = 4, the surface X√
3 has CM type by Corollary 14. By (8), λ = √

3 corresponds to γ being a
primitive sixth root of unity. Hence Eγ has CM with j = 0, since in general

j(Eγ ) = 28 (γ 2 − γ + 1)3

γ 2(γ − 1)2
.
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On the other hand, the elliptic surfaces X√
3 for m = 8,16 are isotrivial with j = 0. Hence the

general fibre admits an automorphism ω of order three. As ω is non-symplectic, ηω has order 3m.
This implies the claim by Proposition 11.

Here isotriviality is a consequence of the number of fibres of types II and II∗ . After completing
the cube so that the coefficient of x2 vanishes, the coefficient B(t) of x has total multiplicity 9 at the
singular fibres. Since the deg(B(t)) � 8, B ≡ 0. Up to scaling, we obtain the Weierstrass equation

X√
3: y2 = x3 + √

� (m = 8,16). � (11)

4.1. Fermat surfaces

The prototype surfaces of CM type are Fermat surfaces. Here the action of roots of unity on coordi-
nates provides a motivic decomposition of H2 into one-dimensional eigenspaces. Following Weil [16],
these eigenspaces correspond to Jacobi sums. Shioda [12] showed that these properties carry over to
Delsarte surfaces, i.e. surfaces in P3 defined by a polynomial with four terms. In the next section we
will show that all surfaces in Lemma 16 are Delsarte surfaces. Then we determine their zeta functions
over finite fields. Since our arguments follow the same lines as [5], we will omit the details. Most of
these ideas go back to N. Katz, Ogus and Weil.

Let Sn denote the complex Fermat surface of degree n:

Sn:
{

xn
0 + xn

1 + xn
2 + xn

3 = 0
} ⊂ P3.

For n > 4, Sn has general type while S4 is a K3 surface with ρ = 20. The n-th roots of unity act on
coordinates as μ3

n . This induces a decomposition of H2(Sn) into one-dimensional eigenspaces V (α)

with character. Here α runs through the character group

An :=
{
α = (a0,a1,a2,a3) ∈ (Z/nZ)4

∣∣∣ ai �≡ 0 (mod n),

3∑
i=0

ai ≡ 0 (mod n)

}
.

Let (Z/nZ)∗ operate on An coordinatewise by multiplication. Let Tn ⊂ An consist of all those α ∈ An

such that the (Z/nZ)∗-orbit of α contains an element (b0, . . . ,b3) with canonical representatives
0 < bi < n and

3∑
i=0

bi �= 2n.

Then the eigenspace V (α) is transcendental if and only if α ∈ Tn . We obtain

T (Sn) =
⊕
α∈Tn

V (α).

Weil [16] showed that these eigenspaces correspond to Hecke characters over Q(ζn). These can be
expressed in terms of Jacobi sums. Given a prime p � n, choose q = pr ≡ 1 mod n, so that there is a
primitive character

χ : F∗
q → C∗
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of order n. For α ∈ Am , define the Jacobi sum

j(α) =
∑

v1,v2,v3∈F∗
q

v1+v2+v3=−1

χ(v1)
a1χ(v2)

a2χ(v3)
a3 .

Theorem 17 (Weil). The Fermat surface Sn over Fq has the following zeta function:

ζ(Sn/Fq, T ) = 1

(1 − T )P (T )(1 − q2T )

where

P (T ) = (1 − qT )
∏

α∈An

(
1 − j(α)T

)
.

4.2. Zeta functions

Shioda [12] showed that the motivic decomposition of Fermat surfaces carries over to Delsarte
surfaces, i.e. surfaces in P3 defined by a polynomial with four terms. Here we apply these ideas to
the K3 surfaces in Lemma 16 and determine their zeta functions.

Here we will not consider X2 or X√
3 for m = 4. The former has ρ = 20 and thus equals the surface

for m = 2. Hence the essential factor of the zeta function is given by the newform of weight 3 and
level 16. The zeta function of X√

3 can be obtained from Lemma 13 through Eγ with j(Eγ ) = 0.

Lemma 18. Consider the specialisations X0, X2, X√
3 in the non-unimodular families. Except for X2, X√

3 in
case m = 4, each surface is covered by a Fermat surface.

We first show that the surfaces are Delsarte surfaces. This implies the claim by [12], but we will
also give the explicit covering maps.

The surfaces X0 are visibly Delsarte surfaces. Now we let m = 8,16. On X−2, the translation x →
x − t produces the representation as a Delsarte surface:

X−2: y2 = x3 + tx2 + t3+m/2. (12)

Note that for m = 8, this produces exactly X0 from the m = 4 case. On X√
3, the elliptic fibration (11)

is a Delsarte model. After a variable change over Q(ζm,31/m), the fibration becomes

X√
3: y2 = x3 + t3 + t3+m/2. (13)

For the covering maps, we will always work in the following affine chart of Sn:

Sn: un + vn + wn + 1 = 0. (14)

For the Delsarte surfaces X2, X√
3, we will employ the above affine models (12), (13). Then we write

y,−x,−t as functions of u, v, w .
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m λ n y −x −t

4 0 8 u4 v14/w21 v12/w14 v4/w6

8 0 16 u8 v7/w21 v10/w14 v2/w6√
3 24 u12 w9 v8 w6 w6

16 0 32 u16 v11/w33 v18/w22 v2/w6

−2 16 u8 v22/w33 v20/w22 v4/w6√
3 48 u24 w9 v16 w6 w6

In each of the above cases, let G denote the subgroup of μ3
n which leaves the coordinates y, x, t

invariant. It follows that the Delsarte surface X is birationally given as the quotient Sn/G . Then we
determine those α ∈ An such that V (α) is G-invariant. This yields subgroups AG

n ,TG
n . Since the tran-

scendental lattice of a surface is a birational invariant, we obtain

T (X) =
⊕
α∈TG

n

V (α). (15)

We list the subgroups TG
n as (Z/nZ)∗-orbits of a single element α ∈ Tn . The element is represented

by the triple (a1,a2,a3) corresponding to the affine chart (14).

m λ n TG
n = orbit(α)

4 0 8 [4,2,1]
8 0 16 [8,5,1]√

3 24 [12,8,3]
16 0 32 [16,9,5]

−2 16 [8,2,5]√
3 48 [24,16,3]

The decomposition (15) carries over to the Galois representation � associated to T (X). Hence we can
compute the zeta function of X . Again we refer to the models given by (12) for X−2 and (13) for X√

3.

Theorem 19. Let X = X0, X2 or X√
3 in one of the non-unimodular families except for X2, X√

3 in case m = 4.
Then

ζ(X/Fq, T ) = 1

(1 − T )P (T )(1 − q2T )

where

P (T ) = (1 − qT )22−φ(n)
∏

α∈TG
n

(
1 − j(α)T

)
.

Proof. The product in P (T ) is the reciprocal characteristic polynomial of Frobenius on � by (15). The
other factor of P (T ) comes from NS(XC). By the above considerations, ρ(XC) = 22 − rank(T (X)) =
22 − φ(n). Since each fibre component is defined over Q, NS(XC) is generated by divisors over Q.
Hence Frobenius operates as multiplication by q. �
4.3. Mirror symmetry

Mirror symmetry is supposed to interchange complex and Kähler structure. For K3 surfaces, we can
impose further conditions on the lattices of algebraic and transcendental lattices. Here we employ the
notion of mirror symmetry introduced by Dolgachev [1].
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Definition 20. Let X be an algebraic K3 surface. A K3 surface X̆ is a mirror of X if

T X = U ⊕ S X̆ . (16)

Mirror symmetry is exhibited for families of K3 surfaces. For instance, for the two families of K3
surfaces with m = 4 in Theorem 1, the mirror family would be general elliptic surfaces with section
(so that NS = U ) resp. with bisection (so that NS = U (2)).

In [5], it is shown that the special member X0 in the unimodular family has mirror surfaces of CM
type. This instance of arithmetic mirror symmetry is our motivation to study the families for m = 8
and 16 from Theorem 1.

Consider the families of K3 surfaces for m = 8,16 in Theorem 1. By definition, their general mem-
bers are mirrors of each other. Here we want to point out that mirror symmetry extends to specific
members in an arithmetic way:

• The surfaces at λ = 0,±√
3 have general ρ; they are all of CM type.

• The surfaces at λ = ±2 degenerate with T (X) of rank m/2 instead of m. Both have CM type.

In fact, both families of K3 surfaces can be collected in a single family of elliptic surfaces over P1.
For this we only have to apply the base change

t → t32/m.

The resulting elliptic surface Y of Euler number e(Y ) = 36 is given by the following Weierstrass
equation:

Y : y2 = x3 + λx2 + x + t16.

It has discriminant

� = 16
(
27t32 − 2λ

(
2λ2 + 9

)
t16 − λ2 + 4

)
,

so in general there are 32 fibres of type I1 plus one fibre of type IV at ∞. The degeneration behaviour
is the same as before. The general surface in this family has ρ = 10, since the Mordell–Weil group has
rank six. Up to finite index, it is obtained by base change from the family of rational elliptic surfaces

Z : y2 = x3 + λx2 + x + t4.

Here the general member has MW (Z) = E∨
6 . It follows that the general member for Y has transcen-

dental lattice of rank 24. Note, however, that despite the non-symplectic automorphism t → ζ16t , the
rank of T (Y ) is not always divisible by 8. E.g. the surface at λ = 2 is of CM type with rank(T (Y )) = 12
by construction.
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