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Abstract

Discussed is how non-perturbative properties of quark gluon plasma, recently discovered in RHIC experiment, can be related to the change of
properties of scalar and pseudoscalar glueballs. We set up a model with the Cornwall-Soni’s glueball-gluon interaction, which shows that the
pseudoscalar glueball becomes massless above the critical temperature of deconfinement phase transition. This change of properties gives rise
to the change of sign of the gluon condensate at 7 > T.. We discuss the other physical consequences resulting from the drastic change of the

pseudoscalar glueball mass above the critical temperature.
© 2007 Elsevier B.V. Open access under CC BY license

PACS: 24.85.+p; 12.38.-t; 12.38.Mh; 12.39.Mk

Keywords: Quarks; Gluons; Glueball; Plasma; Non-perturbative QCD

1. Introduction

The results obtained recently at RHIC suggest the formation
of a new phase of nuclear matter, i.e., the strongly interacting
quark—gluon plasma, in high energy heavy ion collision [1,2].
The origin of such phase might be related to the survival of
some strong non-perturbative QCD effects above the deconfine-
ment temperature (see, for example, [3,4]). This conjecture is
supported by the lattice result for the pure SU(3). theory [5],
which shows that the gluon condensate changes its sign and
remains to be large till very high temperature as the system
crosses over the deconfinement temperature.' This behavior of
gluon condensate forms a clear contrast to that of quark which
vanishes at the deconfinement transition [6]. Therefore, it is evi-
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! In the full QCD there is a shift of temperature where the sign change of the
gluon condensate is taking place [5].
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dent that the gluonic effect plays the leading role in the dynamic
of quark—gluon plasma (QGP) above the deconfinement tem-
perature and may give the clue to the unexpected properties of
matter produced at RHIC. The change of sign of the gluon con-
densate at the finite temperature may give the influence on the
glueball properties, because it is well known at zero tempera-
ture that the gluon condensate plays the role of fixing the mass
scale of glueball and therefore its dynamics [7-9]. It is our goal
of this work to investigate the influence at finite temperature.
We anticipate the change of the structure of QCD vac-
uum at 7 > T, which may lead to the strong modification of
the properties of scalar and pseudoscalar glueballs above the
deconfinement temperature. Some possible signatures of the
change of properties are already discussed for the scalar glue-
ball in QGP in the recent papers by Vento [10], but not for
the pseudoscalar glueball. Indeed, glueball properties should be
strongly modified along with the change of gluon condensate.
In the normal QCD, however, the role of two types of glue-
ball may not be important because of their large masses. In this
Letter within effective Lagrangian approach, based on the spe-
cific non-perturbative gluon—glueball interaction, it is suggested
that the pseudoscalar glueball can be much lighter above T..
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Fig. 1. (a) Diagrams for the contribution to the glueball mass, (b) and for the contribution to gluon condensate.

Therefore its role in such high temperature QGP could be sub-
stantially enhanced. This light glueball may lead the equation
of state, and play the role of the mediator of the strong inter-
action between gluons in this environment, more than what the
screening perturbative gluon does.

2. Glueball-gluon interaction and glueball mass above 7,

In [11] Cornwall and Soni proposed a simple form of the
effective scalar and pseudoscalar glueball interaction with glu-
ons,

bo

—aSGZUGZ‘)S +

_ §bo
Lées = 1677(S)

167 (S)

;G%,G% P, (1)

where G, is gluon field strength and GZV = €uvapGop/2.
S and P are scalar and pseudoscalar glueball fields, respec-
tively, and by = 11N,/3 for pure SU(3)., §&(= 1) is the para-
meter of the violation of S—P symmetry,> and (S) is the non-
vanishing expectation value of scalar glueball field with respect
to the vacuum. They incorporate the low-energy QCD theorems
by identifying correlators with gluonic operators

Js =a;G,, Gy,
Jp =,G% G . )

Note that (S) is related to the gluon condensate (g>G?) with the
strong coupling constant g as follows

bo

S)? = 2G2). 3
(8= 518°6) 3)
This equation can be rewritten in more convenient way with the
mass of scalar glueball My at zero temperature by low energy
theorem. (See [13] and references therein.)

8
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where fs is the residue
fsM5 = (01Js]S). (5)

From the comparison of Egs. (3) and (4) we get the simple re-
lation

(8) ~ — fs. (6)

2 1t can be shown within instanton model for QCD vacuum [12] that the ef-
fective scalar and pseudoscalar couplings in Eq. (7) should be identical due to
the self-duality of instanton field.

Therefore, Eq. (1) can be rewritten for the zero temperature as

LGgg = %(as G,G4,S +£a,GY, G, P). )
The effective mass of glueball at T > T, for pure SU(3), can
be calculated by considering the contribution of the diagram
presented in Fig. 1(a) to the mass operator I7(p) by using stan-
dard methods of finite-temperature field theory [14]. The result
is following

(p)s.p
100
oy | ] /dk dk (D (ko, k) + D(—ko, k))
=1 — N - b
7T4f§ ) 0 0 0
—io0
ioo+e |
+ / dkodk(D(k(Lk)+D(—k01k))mi|,
—ioo+€ (8)
where
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and a simple form for non-perturbative gluon propagator as
a free propagator with the effective mass m, has been used.
In Eq. (9), k1 = p +k, kp = k, and function F¢y provide the ul-
traviolet cut-off in the Euclidean space. In Eq. (9), numerator
for scalar and pseudoscalar glueballs can be rewritten as

F ki, ko)s =2(k . ko)* + k3k3
= p2k> +6k>(p . k) +2(p . k)* + 3k*,
F(ki, ko) p =287 ((k1 - k2)* — k7h3)
=2&%((p . k)* — p*k?). (10)

As usual, we define the effective mass of the glueball as a static
infrared limit of mass operator

M§ p=1Is.p(po=0, p— 0). (11)

After Wick rotation to Euclidean space and with assumption
about Gaussian form of cut-off function in this space

(k3.k3) = e A HiHD), (12)

the calculation of the integrals in Eq. (9) leads to

FE

cut

o0
MAT) ~ 7202 tdt
sy 2 4
w2 A4 fS J (2+1)
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)

M3(T) =0, (13)
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where we assume that at 7, < T < 27, the effective mass of
gluon coincides with its thermal mass [15]

mg =mg(T)~3T. (14)

We will neglect the contribution coming from the second term
in the right-hand side of Eq. (8), because, in our simple model
with heavy effective gluon thermal mass such contribution
should be suppressed by factor Tz/mé(T) ~1/103

Most remarkable result of Eq. (13) is that the pseudoscalar
glueball mass vanishes at T > T, due to the interaction Eq. (7).
We should point out that below T, one can expect that the glue-
ball interaction with gluons has no such a simple form because
confinement forces should also be included in the considera-
tion. The zero effective mass of the pseudoscalar glueball in
QGP follows from the specific Lorenz structure of pseudoscalar
glueball—gluon interaction and, therefore, this result does not
depend on some particular values of the our model parameters.
Note that the mass of pseudoscalar glueball, arising from the
interaction Eq. (7), is proportional to so-called topological sus-
ceptibility x (T)

2 2i 4 a ~a a ~a
M3(T) = —F/d x (TGS, (x) G, ()G, (0)GY, (0))
S

12872
3

which vanishes above 7, at the lowest order of our model. Zero
topological susceptibility above deconfinement temperature is
in good agreement with the recent lattice calculation for pure
SU(3). which shows a sharp drop of topological susceptibil-
ity across the deconfinement transition [16] and suggests much
simpler topological structure of the strong interaction above
T, in comparison with the confinement regime. In contrast to
the pseudoscalar glueball, the scalar glueball remains rather
massive even for T > T,. The temperature dependency of glue-
ball masses is presented in Fig. 2. In the region 0 < T < T,
we assume that values of glueball masses are equal to their
zero temperature values, which is consistent with the observa-
tion produced from lattice calculations of very small change
of the gluon condensate in this temperature interval [5,6]. The
value of residue fg = 0.35 GeV has been fixed from Eq. (4)
by using (g>G?) ~ 0.5 GeV* for the value of gluon conden-
sate at zero temperature [17] and value of scalar glueball mass
Ms(0) ~ 1.7 GeV from quenched lattice results [18]. We use
also the recent lattice results for thermal mass of gluons above
deconfinement temperature, o; & 0.5 and value of the decon-
finement temperature for pure SU(3)., T, ~ 270 MeV [19].
For the cut-off parameter A in Euclidean space in Eq. (12),
the value A &~ 1/Ms(0) has been taken.* We should point out

x(T), (15)

3 To take into account of this effect is beyond the scope of our accuracy esti-
mations involved in some values of glueball-gluon couplings, shape of cut-off
function and their possible temperature dependency. Such contribution, how-
ever, could not change our conclusion of vanishing of pseudoscalar glueball
mass above T¢.

4 We assume that fs and A do not change their values over the deconfinement
transition.
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Fig. 2. The solid (dotted) line is the temperature dependence of scalar
(pseudoscalar) glueball mass.

that at T, < T < 2T, the mass of scalar glueball is large,
Ms(T) > T, therefore, one can not expect significant contribu-
tion of this glueball to the bulk properties of QGP in this range
of temperatures. On the other hand, the massless pseudoscalar
glueball should play an important role in the thermodynam-
ics of QGP at T > T.. Indeed, the simple estimation shows
that the ratio of the scattering amplitudes of gluon—gluon in
the 7-channel exchanged by massless glueball to that by mas-
sive gluon, Eq. (14), should be about ozsmﬁ(T)/fS2 > 1 at
T > T.. Therefore, one might expect the dominance of glue-
ball exchange over screening perturbative one-gluon exchange
atT > T,.

3. Gluon condensate

The contribution of glueballs to the gluon condensate in the
lowest order of the effective coupling constant is presented in
Fig. 1(b). The result of calculation is

1 00 00
262D = 225 [ [ar [ aydspx
g S‘P_jT3f§A6 y S,P k] 7y El

0 0 0 (16)
where

2
ty=(1 —x)

Bs(t,x,y) = J

(1+ )0t +m%(T)A?)
x (3t(1+ ) + 22y + 5127y (1 + y))

t(L+ y(1 +x) + y2x(1 — x))
X exp| — Tty

— yxMs(T)* A% — y(1 — x)mﬁ(T)Az},
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Fig. 3. The temperature dependency of the gluon condensate at 7T > T,.
The solid line is total condensate, the dashed (dotted) line is the scalar
(pseudoscalar) glueball contributions.
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In Fig. 3 the dependency of the gluon condensate on temper-
ature for T, < T < 2T, is shown. We should mention that the
contribution of the pseudoscalar glueball to gluon condensate
is proportional to &2. Therefore it is quite sensitive to the de-
gree of violation of the S—P symmetry shown in Eq. (7). In our
numerical estimation we assume that parameter £ ~ 1 in the
light of the Peccei—Quinn (PQ) mechanism [20] (see discussion
in [11]). The decrease of the & value will lead to the decrease
of the pseudoscalar glueball contribution to the condensate.> At
zero temperature by using Eq. (16) we get the following values
of condensates

(82G*(0)),,, =047 GeV',  (¢*G*(0)); =1.31 GeV*,
(*G*(0)), = —0.84 GeV*, a7)

where we use the quenching result Mp = 2.6 GeV for the
mass of pseudoscalar glueball at zero temperature [18]. One
can see that scalar glueball contribution to gluon condensate
is positive and pseudoscalar glueball contribution is negative.

5 In our model the change of the sign of the total glueball contribution to the
condensate at 7' = T, turns out to be possible only for the large value of that
parameter, £ > 0.86. Such large value of £ for the full QCD could result from
the restoration of U (1) 4 symmetry at T > 7, and PQ mechanism which relates
this symmetry to the S—P symmetry.

Total gluon condensate strongly depends on the masses of glue-
balls. Note that its value at zero temperature is taken to be in
agreement with QCD sum rule result [17]. It is evident from
Fig. 3 that just above T, the negative contribution of massless
pseudoscalar glueball to gluon condensate is greater than the
positive contribution coming from massive scalar glueball and
this is a reason of change of the sign of gluon condensate above
the deconfinement temperature in our model based on the effec-
tive glueball-gluon interaction Eq. (7). Unfortunately the direct
comparison of our result with lattice data [5] is not possible due
to the necessity of the subtraction of the perturbative contribu-
tion to (ngz(T)) from the data.® We would like to emphasize
that in our calculation the effective dimensionless coupling for
interaction Eq. (7) is very small, gy = 2 /(167% f2A%) < 1,
due to the factor of 1/(16772) which comes from the loop mo-
mentum integration for the diagrams presented in Fig. 1(b).
Therefore, one can safely neglect high order corrections com-
ing from effective interaction Eq. (7).

4. Conclusion

In summary, we consider the properties of scalar and
pseudoscalar glueballs in quark—gluon plasma. In the effective
Lagrangian approach, based on the low-energy QCD theorems,
it is suggested that scalar glueball remains massive above de-
confinement temperature. At the same time, pseudoscalar glue-
ball changes its properties in QGP in a drastic way. Indeed, this
glueball become massless at T > T, and therefore it can con-
tribute strongly to the bulk properties of QGP. We demonstrate
that the disappearance of pseudoscalar glueball mass above the
deconfinement temperature and its strong coupling to gluons
gives the rise to the sign change of the gluon condensate in the
pure SU(3). gauge theory as observed in the lattice calculations
at T =~ T,. The strong non-perturbative coupling of the glueball
to the gluons leads to the conjecture that one might expect that
the role of very light pseudoscalar glueball in QGP must be
quite similar to the role played by the massless pion in nuclear
matter below deconfinement temperature. In spite of the rather
simple form of non-perturbative glueball-gluon interaction and
the neglect of high order non-perturbative and perturbative in-
teractions, as well as the possible double-counting arising from
the simultaneous consideration of hadronic and partonic de-
grees of freedom, the possibility of the existence of very light
pseudoscalar glueball above T is worth being considered in re-
alizing the survival of the strong coupling between gluons via
pseudoscalar glueball in the region of the temperature above 7.
We like to mention on the lattice data in which bulk proper-
ties of QGP do not change much with the inclusion of light
quarks [5]. This may suggest that the appropriate extension of
our model to full QCD is possible [21].
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